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Electrolytic recovery of bismuth and copper as a
powder from acidic sulfate effluents using an
emew® cell

Wei Jin,a Paul I. Laforest,a Alex Luyima,a Weldon Read,b Luis Navarrob

and Michael S. Moats*a

Effective removal of bismuth is a primary concern during copper electrorefining. A novel electrowinning

process using an emew® cell was developed to recover bismuth and copper from a copper

electrorefining waste stream. Significant removal and co-deposition of copper and bismuth were

achieved from a highly acidic sulfate industrial effluent using a current density of 350 A m�2, but the

current efficiency was low (27%). Operating at a lower current density (75 A m�2) facilitated the preferred

removal of Cu, while increasing current efficiency to 67.4% due to the decrease of aside-reaction.

Consequently, a two-stage process was employed to remove most of the copper at low current and

then extract bismuth at high current. 93.4% of the bismuth and 97.8% of the copper were recovered with

a satisfactory current efficiency, and a high purity (�98%) Bi powder was obtained in the second step.

This novel emew® cell approach may serve as a promising alternative for recovering copper and

bismuth, and the proposed two step strategy may offer insight for the selective recovery of metals in a

multi-component system.

1. Introduction

In the primary production of copper using pyrometallurgical
methods, electrorening is required to produce high purity
metal.1 During copper electrorening, many impurities from
the original copper concentrate, such as group 15 elements
(bismuth, antimony and arsenic), are dissolved along with
copper into the sulfuric acid electrolyte.2 The accumulation of
these impurities can result in cathode contamination, oating
slime formation and reduction of current efficiency.3 Therefore,
the removal of impurities from the electrolyte is a key concern
for copper electroreneries.4

Conventionally, the purication of copper electrolyte is
achieved by electrowinning in liberator cells where impurities
are removed from the electrolyte by their co-deposition with
copper. However, this technique has some drawbacks such as
low current efficiency and loss of possible by-products, partic-
ularly bismuth.5,6 Although the standard reduction potentials of
Bi3+ and Cu2+ are very close as shown in eqn (1) and (2),7 few
authors have reported the co-deposition of Cu and Bi by elec-
trowinning in acidic media.8 Hoffmann indicated that bismuth
does not electrolytically co-deposit with copper under normal
electrowinning conditions9 and the bismuth removal in the

conventional copper electrolyte purication is limited. This is
due to the fact that the electrodeposition reaction is largely
determined by the diffusion of the reactant ion. Bismuth
deposition is limitedwhen copper concentration is high (>15 g L�1)
and bismuth concentration is low (<0.3 g L�1). The diffusion
coefficient of copper ion is also nearly 3.5 times more than the
bismuth ion.10,11

Bi3+ + 3e� $ Bi(s) + 0.308 V (vs. RHE) (1)

Cu2+ + 2e� $ Cu(s) + 0.340 V (vs. RHE) (2)

Furthermore, bismuth is widely employed in semiconductor,
thermoelectric and electrochromic devices.10 It is obtained as a
by-product from the production of copper, silver, lead and tin
ores.12,13 Therefore, bismuth recovery from copper electro-
rening electrolytes could produce a valuable by-product from
an otherwise problematic element for copper.

Recently, a new electrowinning technology, the emew® cell,
has been developed based on re-design of the electrowinning
chamber.14,15 The cell is constructed from a pair of concentric
tubular electrodes with a closed chamber, and the target solu-
tion can be pumped at high ow rates between the electrodes to
obtain improved mass transport.15 Consequently, a much
higher current efficiency and larger operating window can be
achieved in this new cell.15,16 The electrowinning of copper,
nickel, cobalt, zinc, gold and silver have been reported using
this type of cell.14,16 Moreover, it has been employed to recover
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metals from industrial waste solutions.15 Obviously, extending
this new technology to the electrowinning of bismuth could
overcome the diffusion limitation of Bi/Cu co-deposition and
result in the substantial improvement in the treatment of
copper electrorening effluents.

In this regard, the aim of this study is to develop a novel
electrowinning process using an emew® cell to recover bismuth
from a copper electrorening waste stream. The co-deposition
behavior of Bi and Cu in the electrowinning process was also
investigated to understand the mechanism of the current effi-
ciency results obtained. This approachmay serve as a promising
alternative for overcoming the disadvantages of existing
bismuth production techniques and/or copper electrorening
electrolyte treatments.

2. Materials and methods
2.1 Materials

The chemical reagents used in the preparation of synthetic
solutions used in this study were all of analytical grade purity
and used as received, including sulfuric acid (GFS Chemicals,
95.0–98.0 wt%) and bismuth(III) nitrate pentahydrate (Sigma-
Aldrich, $98.0 wt%). A synthetic solution was prepared by dis-
solving the corresponding sulfuric acid and bismuth salt into
ultrapure water (18 MU cm) obtained from a water purication
system.

An industrial solution was provided by ASARCO from their
copper renery electrolyte purication system. Its composition
is listed in Table 1. Acid concentration was analyzed by titration
while the other elements were determined by inductively
coupled atomic plasma emission spectrometry (ICP-AES).

2.2 Electrochemical studies

To understand the basic electrochemistry of bismuth electro-
deposition, cyclic voltammetry (CV) was performed at ambient
temperature using a Gamry (reference 3000) electrochemical
workstation. A three electrode cell with a 316L stainless steel
working electrode (active area of 1.0 cm2), an IrO2–Ta2O5 coated
titanium counter electrode and a double junction Ag/AgCl
(0.22 V vs. SHE) reference electrode was employed. Prior to
each experiment, the stainless steel plate was prepared by
successively polishing using 180, 400 and 600 grit silicon
carbide sandpaper in order to obtain a smooth, even surface for
deposition. Following polishing, the electrode was washed and
sonicated in water. The electrochemical measurements were
then performed in N2-purged solutions by potential cycling
from�0.18 V to 1.0 V vs. SHE at various scan rates. All potentials
are reported versus SHE.

Linear sweep voltammetry (LSV) and chronopotentiometry
(CP) were used to understand hydrogen evolution from the
industrial effluent on stainless steel. LSV and CP were per-
formed with the same electrochemical cell and electrodes as
described in the CV procedure. The potential range for LSV was
0.5 V to �0.4 V with a scan rate of 10 mV s�1. Chro-
nopotentiometric experiments were conducted at 75, 175 and
350 A m�2 to correspond to the current densities used in
emew® cell experiments. Both LSV and CP were conducted with
electrolyte stirring to approximate the hydrodynamic condi-
tions of the cell.

2.3 emew® cell test

A laboratory scale emew® system was provided by Electro-
metals, USA. A schematic drawing and an image of the system
are shown in Fig. 1. The cell is tubular in nature with an IrO2–

Ta2O5 coated titanium anode in the center and a stainless steel
foil cathode on the outside of the tube. The cell has a cathode
area of 0.04 m2. Current was applied at 3, 7, or 14 amps or at
cathodic current densities of 75, 175, or 350 A m�2, respectively.
Current was applied for 20, 30, 45 or 90 minutes depending on
the purpose of the test.

Experiments with the emew® system were conducted at
ambient temperature and pressure. 3 liters of solution were
used in each test. The ow rate used was 5 L min�1, unless
otherwise specied. Most tests were conducted with the
industrial solution. One test was conducted using a synthetic
solution of 3.44 g L�1 Bi(III) and 604 g L�1 H2SO4.

2.4 Powder characterization

The surface morphology and approximate composition of
prepared powder from the electrowinning tests were charac-
terized using a Helios Nanolab 600 scanning electron micros-
copy (SEM) with energy dispersive X-ray spectroscopy (EDS),
while its crystalline structure was measured using a PAN-
analytical X'Pert X-ray diffractometry (XRD) with Cu Ka radia-
tion. The Cu/Bi ratio of the powder sample was determined by
EDS, while its relative speciation was obtained by XRD aer
calibration using samples of known mixtures. The mean
particle sizes and size distribution were determined using a
Microtrac S3500 particle size analyzer.

3. Results and discussion
3.1 Electrochemical reduction of Bi(III) in concentrated
sulfuric acid solution

Cyclic voltammetric (CV) measurements were performed using
the synthetic Bi(III)–sulfuric acid solution to determine the
electrochemical reduction performance of Bi(III) at the stainless
steel electrode. The H2SO4 concentration of 604 g L�1 and Bi(III)
concentration of 3.44 g L�1 were selected to be the same as
the industrial solution. As shown in Fig. 2, a well-dened
reduction peak emerged at 0.05 V with a peak current density
of 3.12 mA cm�2 in the presence of Bi(III), while no reduction
peak was observed in the same potential region when Bi(III) was
not in the sulfuric acid solution, indicating this peak is related

Table 1 Industrial effluent chemical composition

Cu
(g L�1)

H2SO4

(g L�1)
Cl�

(g L�1)
Sb
(g L�1)

As
(g L�1)

Pb
(g L�1)

Bi
(g L�1)

0.8 604 0.026 0.2 <0.1 <0.1 3.44
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to Bi(III) reduction. There is the corresponding oxidation peak at
0.17 V with a maximum current density of 1.35 mA cm�2 in the
reverse scan of the CV curve in the presence of Bi(III), suggesting
a quasi-reversible reaction. It should be noted that a crossover
occurs at 0.08 V. This crossover indicates that bismuth deposits
easier upon itself than on stainless steel. The experiment indi-
cates, an overpotential of �68 mV is required to promote Bi(III)
nuclei formation on 316L stainless steel. These results indicate
that Bi(III) electrodeposition on the stainless steel electrode in
concentrated sulfuric acid solution occurs if an adequate
potential is applied.

In order to further characterize the electrochemical reduc-
tion of Bi(III), potential scans were performed at different rates
(from 10 to 50 mV s�1). As can be seen in Fig. 3a, a negative shi
in the cathodic peak potential with increasing sweep rate is
observed, which agrees with the theory of a quasi-reversible
reaction.17 There is also a linear relationship between the
Bi(III) reduction peak current and the square root of scan rate
(v1/2) as seen in Fig. 3b, indicating the reaction is diffusion-
controlled.18,19 In general, the peak current of a diffusion-
controlled quasi-reversible electrochemical reaction at 298 K
for an insoluble product can be described by the following
equation:20

Ip ¼ 367n3/2AD1/2Cv1/2 (3)

where Ip (A) is the peak current, n is the number of electrons
(n ¼ 3 for Bi(III) reduction), A (cm2) is the surface area of the
working electrode, D (cm2 s�1) is the diffusion coefficient of
Bi(III), C (mol L�1) is the bulk Bi(III) concentration, and v (V s�1)
is the scan rate. Using this equation and the slope from the
least-squares t linear correlation curve shown in Fig. 3b, the
diffusion coefficient of Bi(III) was calculated to be 0.89 � 10�6

cm2 s�1. This value appears reasonable as compared to the
reported value of 1.72 � 10�6 cm2 s�1 in 1 mol L�1 HNO3

solution.10 It is believed that the Bi(III) diffusion coefficient in
the strong sulfuric acid solution (�6.45 M) used in his study is
lower due to higher solution viscosity. Given the low concen-
tration of Bi(III) in solution and its small diffusion coefficient,
the emew® cell is expected to overcome the diffusion issues
better than a parallel plate cell because of its improved design.

3.2 Treatment of synthetic Bi(III) solution

The electrowinning performance of a synthetic Bi(III)-containing
solution was evaluated using an emew® cell, and the treatment
was conducted with a current of 14 A (350 A m�2) and a solution
ow rate of 5 L min�1. As shown in Table 2, 9.3 g of powder
product were obtained aer a 20 min treatment. The powder
was determined to be crystalline Bi using XRD (Fig. 4), which
conrms the feasibility of Bi powder electrowinning from a
concentrated acidic sulfate solution. Nearly 94.9% of the Bi
content was extracted from the three liters of solution in this 20
min treatment and most of the as-prepared Bi powder was
removed by washing with water. This indicates that the Bi
powder could be ushed from the cell with water, which over-
comes a disadvantage of powder harvesting from a conventional
electrowinning cell.

The current efficiency was calculated to be 76.7%, which is
much higher than the previous 30.6% reported under similar
conditions in a conventional electrowinning cell.8 This signi-
cant improvement is believed to be due to the excellent mass
transport of the cell. It should also be noted that the working
cathode employed in our treatment was an inexpensive

Fig. 1 Schematic diagram and photograph of the laboratory emew® cell setup.

Fig. 2 Cyclic voltammograms using a stainless steel working elec-
trode in the absence and presence of 3.44 g L�1 Bi(III) in a solution of
604 g L�1 H2SO4, scan rate ¼ 10 mV s�1, ambient temperature.
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stainless steel sheet (foil), while the reported treatment in the
conventional cell was a more expensive Nb electrode.

3.3 Co-deposition of Bi and Cu

As discussed earlier, the removal of bismuth from copper
electrorening electrolyte is a problem in copper production.21

However, industrial solutions typically contain multiple metals
with various counter anions. The ASARCO industrial solution
contains primarily Bi (3.44 g L�1) and Cu (0.8 g L�1) in a high
concentration of sulfuric acid (604 g L�1), while the Cl�, Sb, Pb
and As concentrations are relatively low.

In order to determine the electrochemical behavior of Bi(III) in
the presence of other impurities, cyclic voltammetry using the
industrial solution was performed and the results are presented
in Fig. 5. As compared to the synthetic solution, the reduction
peak shis slightly positive to 0.06 V and the current density
increases slightly to 3.63 mA cm�2. The standard reduction
potentials of Bi(III) and Cu(II) are very close with the potential of
Cu(II) reduction occurring at slightly more positive potentials.
Therefore, the shi of peak potential and current in the industrial
solution is probably due to the combination of Bi and Cu

reduction. The cyclic voltammogram from the industrial solution
also reveals the oxidation peak of the metal deposited during the
reduction sweep shis positively and the peak current is signi-
cantly higher as compared to the data from the synthetic solution

Fig. 3 Bi(III) reduction behavior as a function of scan rate on stainless steel: (a) cyclic voltammograms with increasing scan rate (10–50mV s�1); (b)
variation of the reduction peak current as a function of the square root of the scan rate in synthetic solution of 3.44 g L�1 Bi(III) and 604 g L�1 H2SO4.

Table 2 Performance of emew cell treatment with synthetic and industrial effluents

Test # Electrolyte
Current
(A m�2)

Flow rate
(L min�1)

Run time
(min)

Product
weight (g) Product composition Current efficiency Cu removal Bi removal

1 Synthetic 350 5 20 9.3 Bi 100 wt% 76.7% — 94.9%
2 Industrial 350 5 30 4.2 Cu2O 21 wt%, Cu 14 wt%,

Bi 65 wt%
26.7% 57.2% 26.5%

3 Industrial 350 8 30 4.8 Cu2O 19 wt%, Cu 17 wt%,
Bi 64 wt%

31.5% 67.8% 29.8%

4 Industrial 175 5 30 2.5 Cu2O 15%, Cu 53 wt%,
Bi 32 wt%

44.5% 69.1% 7.8%

5 Industrial 75 5 90 5.3 Cu 42 wt%, Bi 58 wt% 67.4% 92.7% 29.8%
6 Industrial 350 5 90 12.1 Cu2O 13 wt%,

Cu 8 wt%,
Bi 79 wt%

27.4% 98.6% 92.6%

7 Industrial 75 5 90 5.3 Cu 42 wt%, Bi 58 wt% 67.4% 92.7% 29.8%
350 5 20 6.7 Cu2O 1 wt%, Cu 1 wt%,

Bi 98 wt%
55.8% 97.8%a 93.4%a

61.6%a

a The data were calculated for the whole process.

Fig. 4 XRD spectrum of the as-prepared cathodic deposit from emew
cell using a synthetic solution (3.44 g L�1 Bi3+, 604 g L�1 H2SO4) after
350 A m�2 and 20 min: flow rate ¼ 5 L min�1.
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which does not contain copper. Thus, the higher oxidation
current is attributed to the inuence of Cu-related dissolution.

Electrolytic metal recovery from the industrial solution using
the laboratory cell was rst examined using 350 A m�2 and a
solution ow rate of 5 L min�1 for 30 minutes. At the end of the
test, a powder was removed by washing the stainless steel foil
with water. The powder was ltered, dried in air and charac-
terized. SEM and EDS analyses indicate the powder consisted of
Bi and Cu with some oxides present (see Fig. 6). XRD conrmed
the presence of Bi, Cu and Cu2O as shown in Fig. 7a. The
composition of the powder was estimated by combining the
XRD and EDS results as 21 wt% Cu2O, 14 wt% Cu and 65 wt%
Bi. The formation of Cu2O is believed to occur by the partial
reduction of Cu2+ to Cu+ followed by the precipitation of Cu+ as
Cu2O due to the very low solubility of monovalent copper in
solution. It is common to see copper “burn” (e.g. form Cu2O)
during high current density plating in acidic sulfate baths when
the agitation or mass transport is not great enough.22 These
results indicate the co-deposition of Bi, Cu and Cu2O from the
industrial solution under these conditions. Based on the esti-
mated composition of the deposit 57.2% of the copper and
26.5% of the bismuth was removed from the solution by the 30
minute treatment. The current efficiency was calculated to be
26.7%. Clearly, the co-deposition performance of Cu and Bi was
not complete or particularly energy efficient.

Given the formation of cuprous oxide, a higher ow rate of
8 L min�1 was employed to the cell in an attempt to minimize
the “burning” of the deposit while maintaining the current
density at 350 A m�2 for 30 minutes. A slight improvement
(higher current efficiency or removal rate) was obtained as
shown in Table 2. Cu2O however was still formed indicating that
even at a high ow rate to the laboratory scale cell, the selected
current density (350 A m�2) was likely too high for copper
plating. Consequently, the ow rate was returned to 5 L min�1

and maintained at that level in subsequent measurements.
A treatment using a lower current density (175 A m�2) for 30

minutes was then examined. The product weight and compo-
sition was signicantly different from those produced at 350 A
m�2. The weight of the powder product was lower at lower
current as expected (2.5 g vs. 4.8 g). More interestingly, there
was a substantial decrease in Bi reduction and the formation of
Cu2O. This suggests the composition of the deposit is current
(e.g. potential) dependent. The lower current promoted the
deposition of copper while inhibiting bismuth and Cu2O
formation. This likely occurred by the lower current density
promoting a more positive potential at the cathode surface
which favored copper electrodeposition at the expense of the
other two reactions. At the lower current density, the current
efficiency was also improved (44.5% vs. 26.7% at 350 A m�2).
The powder composition and energy efficiency can be modied
by changing the current input to the emew® cell during the
treatment of the industrial solution.

An even lower current density (75 A m�2) was applied to the
cell with a longer treatment time of 90 min to examine if better
performance could be achieved. As illustrated in the Table 2,
nearly 92.7% of copper was removed as Cu metal from the
industrial solution and a much higher current efficiency
(67.4%) was achieved. Interestingly only 29.8% of the Bi was
recovered in this treatment. No Cu2O was detected in the XRD
analysis of the powder. Therefore, it appears a suitably low level
of current applied to the cell may facilitate Cu formation over
Cu2O and Bi metal.

The preferred electrodeposition of copper over bismuth at
the lower current density is related to its higher standard
reduction potential. The CV shown in Fig. 5 reveals that

Fig. 5 Comparison of the cyclic voltammograms between the
synthetic and the industrial effluents at stainless steel electrode: scan
rate ¼ 10 mV s�1.

Fig. 6 (a) SEM image and (b) EDS spectrum of the as-prepared
cathodic deposit in the industrial effluents after 350 A m�2 and 30 min
emew® treatment: flow rate ¼ 5 L min�1.

Fig. 7 XRD spectra of the as-prepared cathodic deposit in the
industrial effluents after (a) 350 A m�2 and 30 min; (b) 75 A m�2 and 90
min emew treatments: flow rate ¼ 5 L min�1.
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reversible potential of the industrial effluent is more positive as
compared to the synthetic bismuth only solution. This indicates
that even with the low concentration of copper in the industrial
effluent, it is potentially more favored than bismuth reduction.
Thus, at lower current densities copper deposits more quickly
than bismuth. Optimization of the plating current and time in
the rst stage could further improve the separation of copper
from bismuth.

A loss in current efficiency during electrochemical deposi-
tion of powders can be caused be re-solution of the powder
when the particles lose electrical contact with the cathode
substrate. The possible re-solution of particles was examined by
measuring the particle size distributions for selected emew®
produced powders from the treatment of the industrial effluent.
The particle size distributions are shown in Fig. 8. The mean
particles size for the current densities of 350 A m�2, 175 A m�2

and 75 A m�2 were 130 mm, 90 mm and 35 mm, respectively.
Smaller particle sizes typically lead to an increase dissolution
rate due to higher specic surface area.22 Since current effi-
ciency decreases with increasing current density and larger
mean particle size, it suggests the main source of current inef-
ciency is not re-solution of particles.

On the other hand, it is well known that lowering the oper-
ating current density can result in the enhancement of current
efficiency by better matching the applied current to the mass
transport of the desired ion to be reduced.23 This increases
current efficiency by limiting the amount of current lost to a
side reaction that occurs at a more cathodic potential. The
possible inuence of a side-reaction was investigated by
measuring chronopotentiometric curves using a stainless steel
working electrode in a three electrode cell with signicant
agitation (to simulate the high surface mass transport condi-
tions in an emew® cell) of the industrial effluent at the current
densities employed in the laboratory electrowinning
experiments.

The chronopotentiometric results are presented in Fig. 9.
The obtained potentials at 350 A m�2, 175 A m�2, and 75 A m�2

are �0.46 V, �0.34 V, and �0.19 V, respectively. These poten-
tials were compared to the potential at which hydrogen evolu-
tion occurs on a stainless steel cathode aer some plating of
copper and bismuth has occurred. The hydrogen evolution

onset potential was determined using linear sweep voltammetry
and is observed aer some reduction of copper and bismuth on
the stainless surface to be �0.24 V in the industrial effluent (see
inset curve in Fig. 9). From these data, it appears that as current
density was increased in the emew® cell, a more negative
cathode potential was produced which allowed hydrogen
evolution to occur leading to the decrease in current efficiency
observed.

3.4 Two-stage emew® cell treatment

The preceding experiments were designed to understand the
effects of ow rate and applied current, which are the two major
operating variables of an emew® cell, on copper and bismuth
recovery. Using the information gained, two additional experi-
ments were designed with the goal of removing a signicant
quantity (>90%) of copper and bismuth from the industrial
solution.

Current was applied at the highest level tested previously
(350 A m�2) for 90 minutes. As presented in Table 2, 92.6% of
the bismuth was removed from solution as metal, and 98.6% of
copper was removed as Cu2O and Cu. This indicates good
removal performance for both metals using this single step
treatment. However, the current efficiency was low (27.4%) and
the powder produced was not very pure. While metal values
could be recovered using this one-step process, the value of the
product and the energy efficiency is less than desired.

As suggested from the previous experiments, if the cell
current (e.g. cathode potential) is set to a suitable level, the
copper could be initially removed with some contamination and
then maybe the bismuth could be extracted using a higher
current setting. This could result in an improvement in current
efficiency and productivity of the cell. Therefore, a two-stage
treatment was examined to selectively remove the Cu and then
the Bi from the industrial solution. In the rst stage, 75 A m�2

was applied for 90 minutes. The resulting powder deposit was
removed. Then, 350 A m�2 was applied for 20 minutes in the
second stage. A second powder was then removed. Using the
two stage treatment, 97.8% of copper and 93.4% of bismuth
were removed, and a reasonable current efficiency of 61.6% was

Fig. 8 Particle size distributions for powers produced in the emew®
cell when different current densities were applied.

Fig. 9 Chronopotentiometric curves using a stainless steel working
electrode in the industrial effluents produced at different current
densities with stirring; inset: linear sweep voltammogram produced
using the industrial effluent with a stainless steel working electrode,
scan rate ¼ 10 mV s�1.
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obtained. The rst step produced a powder that consisted of
metallic copper and bismuth and no detectible Cu2O. This
powder could be used to produce a Cu–Bi master alloy to
improve the machinability of brass.24 The second step produced
a high purity Bi powder (98%) which could serve as a feed stock
to a bismuth renery. The two stage process appears to offer a
more energy efficiency process with higher value products.

4. Conclusions

A novel electrowinning process to recover bismuth and copper
from an industrial copper electrorening effluent using an
emew® cell was developed. Bismuth powder can be electrowon
from the synthetic and industrial Bi(III)-containing concen-
trated sulfuric acid solutions using an emew® cell. By adjusting
the applied current, the electrowinning performance of the cell
could be altered. The co-deposition of Cu and Bi was achieved at
high current conditions in the emew® cell, but the current
efficiency was low (<30%). Low current operation facilitated Cu
powder generation over the formation of Cu2O and Bi metal
while increasing current efficiency. The improvement in current
efficiency appears to occur by reducing the cathode over-
potential and inhibiting hydrogen evolution. The current inef-
ciency does not appear to be related to the re-solution of the
powders produced.

A two-stage emew® cell process was demonstrated to
produce higher value products with greater energy efficiency.
The rst stage of the process used a low current setting (75 Am�2)
for 90 minutes to remove most of the copper. In the second
stage, a high current (350 A m�2) was applied for 20 minutes to
deposit bismuth. The two stage process produced two products
(Cu–Bi powder and high purity Bi powder) which are of suitable
purity for use as a master alloy for lead-free machinable brass
and a bismuth feed stock while achieving an overall current
efficiency of 62%.
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