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Seismic-Hazard Map of Southeast Missouri and Likely Magnitude

of the February 1812 New Madrid Earthquake

by Jae-won Chung and J. David Rogers

Abstract The New Madrid seismic zone lies beneath the upper Mississippi
Embayment, straddling the border between southeastern Missouri and northwestern
Tennessee. In late 1811 and early 1812, it produced five earthquakes of magnitudes
>6:5, violently shaking the central and eastern United States (CEUS). Its magnitude
and recurrence are of concern to today’s central United States regions. By considering
the effects of local geology, deterministic scenario maps (Mw 7.3 and 7.7) were pro-
duced for ground motions intended to simulate the 7 February 1812 event (NM3),
which was the largest felt. These maps include spatial estimates of peak ground accel-
eration and of 0.2 s and 1.0 s spectral acceleration (SA). Compared with the isoseismic
map of modified Mercalli intensities (MMIs) in southeast Missouri, the MMIs con-
verted from 0.2 s SA suggest that Mw 7.7 is a plausible scenario for NM3. To better
constrain its magnitude, other CEUS sites shaken during NM3 were also examined.
Local site conditions were studied and evaluated before calculating the threshold mag-
nitude for the reported MMIs. These results indicate that the magnitude of NM3 was at
leastMw 7.6, which validates our estimated size ofMw 7.7 for southeastern Missouri.

Introduction

With increasing frequency within the United States,
seismically induced ground-shaking hazards are being spa-
tially portrayed on geographic maps using geographic infor-
mation systems (GIS). The information on these maps is
most often conveyed in terms of peak ground acceleration
(PGA) and spectral acceleration (SA). These can be used to
estimate the severity of seismic site response to aid planners,
engineers, and building officials in making decisions. PGA
and SA values are also the important factors for assessing
liquefaction potential and likely damage to man-made struc-
tures, respectively. These maps have been generated from
either probabilistic seismic-hazard analyses (PSHA) or deter-
ministic seismic-hazard analyses (DSHA; Krinitzsky, 2002;
Cramer et al., 2006). A PSHA map shows the spatial
probability of exceeding a certain level of ground motion
with all possible rupture scenarios but using different weight-
ings. A DSHA map is used to assess ground motions for a
specific magnitude and location of a historic or future
earthquake as a scenario event (Cramer et al., 2006; Frankel,
2013).

Effect of Site Conditions on Seismic Hazards

The peak ground motion and the response spectra are
affected by local site/geologic conditions, including stiffness
and thickness of unconsolidated sediments overlying bed-
rock (Seed et al., 1976). Local site conditions are spatially
variable and can thus amplify or deamplify seismic energy

when the seismic waves propagate up through the soil cover,
or cap. Historic earthquakes have demonstrated that local
geologic conditions can significantly increase seismic dam-
age. For instance, the Ms 8.1 Michoacán earthquake in 1985
struck Mexico City, more than 300 km from the epicenter,
causing severe damage to a portion of the city. The affected
area was a zone underlain by soft lacustrine deposits
30–45 m thick, which magnified the incoming seismic wave-
trains because of the impedance contrast with long-period
motions (t > 1:0 s). These soft soils amplified rock motions
between 400% and 740% (Seed et al., 1988). Virtually all of
the high-rise buildings (7–22 stories high) collapsed or were
severely damaged (Seed and Sun, 1987).

The U.S. Geological Survey (USGS) has produced and
updated national PSHA maps, which present the expected
rock motions from likely earthquakes emanating from
known seismic zones in the western United States and central
and eastern United States (CEUS; Frankel et al., 2002; Pe-
tersen et al., 2008, 2014). Their PSHA maps are constructed
by assuming firm rock as the reference site condition with
VS30 of 760 m=s (VS30 = average shear-wave velocity in the
upper 30 m). This value is equivalent to the B/C site classi-
fication adopted by National Earthquake Hazard Reduction
Program (NEHRP) in 2003 (Building Seismic Safety Coun-
cil [BSSC], 2003).

Because the national PSHA maps do not consider the
effects of actual geologic site conditions, these maps may
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under- or overestimate the level or severity of shaking. To
prepare realistic PSHA maps incorporating actual site effects,
the variations in local site conditions (such as thickness of the
soil cap) should be considered. Local site conditions are
often a major factor in preparing realistic DSHA maps for
scenario earthquakes. The DSHA maps can be treated as
separate information and are useful in estimating ground
motions during historical earthquakes bereft of seismic
recordings. This is because the felt ground motions can be
reproduced from the specific or repeat earthquakes in terms
of their magnitude and/or assumed source zone (Krinitzsky,
2002; Haase and Nowack, 2011).

New Madrid Earthquakes

In the CEUS, the New Madrid seismic zone (NMSZ) in
southeast Missouri has exhibited the highest seismicity, aver-
aging about 200� earthquakes greater thanM 1.0 per annum
(Missouri Department of Natural Resources Division of
Geology and Land Survey [MODGLS], 2014). Since 1700,
about 6259 earthquakes of M ≥2:5 are reported to have oc-
curred (Petersen et al., 2014). Five earthquakes equal to
M 3.0 are expected to occur each year (Boyd, 2010). The
1811–1812 earthquake sequences believed to have emanated
from the NMSZ are the largest historic events (Williams et al.,
2010). The five mainshocks occurred on 16 December 1811
(three shocks; Fuller, 1912; Hough and Martin, 2002) noted
as NM1 (Johnston, 1996), 23 January 1812 (NM2), and 7
February 1812 (NM3).

A repeat of this sequence would cause significant dam-
age to the present-day central United States, which is criss-
crossed by numerous pipelines, electric transmission lines,
highways, and railroads that would be at considerable risk.
Although the accurate evaluation of the 1811–1812 events is
a critical factor to assess the seismic hazard in the areas
adjacent to the NMSZ, the actual magnitudes are uncertain
because no instruments recorded the earthquakes. These
events are estimated to range betweenM 7.0 and 8.1, mainly
based on felt reports.

The earthquake of 7 February 1812 (NM3) was the most
severe of the 1811–1812 events, but its magnitude has been
subject to considerable debate. Mueller and Pujol (2001)
suggested NM3 ranges ofMw 7.2–7.4, based on the Reelfoot
fault displacement of 1.5–3.1 m. With the assumption that
the ruptures of the Reelfoot fault are 47.5–84.5 km long dur-
ing NM3, Van Arsdale et al. (2013) estimated Mw 7.0–7.2,
using published relationships between magnitude and fault
rupture.

Johnston (1996) and Johnston and Schweig (1996)
developed a regression of moment magnitude based on the
macro-isoseismal area of intensities, suggesting a magnitude
ofMw 8.0 for this event. Hough et al. (2000) lowered earlier
felt intensities (modified Mercalli intensities [MMI]) by
considering damage reports for structures at that time and
site-response effects in the river valleys. They concluded its
moment magnitude (Mw) to be between 7.4 and 7.5, apply-

ing the Johnston (1996) regression. Bakun and Hopper
(2004) suggested Mw 7.8, based on the attenuation relation-
ship between the MMI and distance (for eastern North
America). They calculated site corrections with MMI and
each likely magnitude. Later, Hough and Page (2011) rein-
terpreted MMIs with multiple experts’ opinions and rescaled
its magnitude to Mw 7.3 using Bakun and Hopper’s method.
Cramer and Boyd (2014) estimated it to be Mw 7:7� 0:3
(95% confidence level), based on mean MMI comparisons
at large distances (600–1200 km) with known magnitudes.

These uncertainties with respect to the historical earth-
quakes results from different frameworks, including assigned
MMIs, attenuation relations, and methods of computing mag-
nitude. We noted that the effect of various site responses on
estimating magnitude based on MMIs has historically been
ignored or oversimplified (e.g., uniform thickness of allu-
vium over infinitely large areas) by previous studies (Hough
et al., 2000; Kochkin and Crandell, 2004; Street et al., 2004).
Historic records suggest that most settlements of the early
1800s were situated along the major watercourses on low-
land alluvium, where seismic site response would signifi-
cantly elevate MMIs. However, it is not true of all sites. For
example, the site conditions in the urbanized boroughs of
present-day St. Louis, Missouri, are not on Holocene allu-
vium, but on much stiffer residual soils blanketing the up-
lands (Street et al., 2004). Street et al. (2004) pointed out
that the magnitude of the 1811–1812 events would be under-
estimated by overestimating the site responses. In an attempt
to understand the likely severity of the 1811–1812 events,
site response should be estimated by properly accounting
for local variances in depth, stiffness, and shear-wave veloc-
ities of the unconsolidated materials mantling each site.

In this study, we have attempted to account for site
effects caused by variations of local geology in southeast
Missouri, astride the NMSZ. Assuming the repeat of NM3,
we prepared DSHA maps of PGA and SA at 0.2 and 1.0 s
forMw 7.3 andMw 7.7 scenario earthquakes. We focused on
NM3 for two reasons: it was the largest earthquake, and its
rupture along the Reelfoot thrust was well documented at the
time by eyewitnesses (Johnston and Schweig, 1996; Hough
et al., 2000; Hough and Page, 2011). We then constrained the
plausible magnitude of NM3 by comparing the estimated
ground motions with the felt reports. To better constrain
the magnitude, we made a detailed compilation of subsurface
site conditions at 25 CEUS sites that were shaken during
NM3, then computed the threshold magnitudes to produce
their reported MMIs.

Study Area

The study area encompasses 15 counties in southeastern
Missouri in the upper Mississippi Embayment, west of the
Mississippi River. The elevation of the area ranges from
70 to 540 m (Fig. 1). The underlying Paleozoic rock is prin-
cipally composed of limestone and dolomite (Collinson et al.,
1988). The depths to the Paleozoic bedrock range from 6 to
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600 m or deeper (Toro and Silva, 2001). The upper Tertiary
strata are Claiborne (Eocene), Wilcox (Eocene–Paleocene),
and Midway (Paleocene) groups (Fig. 2; Van Arsdale et al.,
1995; Santi et al., 2002). An explanation of geologic units is
shown in Table A1.

This region is characterized by two geomorphic prov-
inces. The dissected uplands of the Ozark plateau form
the bluffs extending from Cape Girardeau to Poplar Bluff.
The southern area lies within the lowlands of the Mississippi
Embayment (Fig. 1). The lowlands are composed of
Quaternary alluvium deposited by the Mississippi and Ohio
Rivers. Crowley’s Ridge forms a long, narrow upland within
the alluvial plain of the embayment. The ridge has been

uplifted by Quaternary faulting and shaped by erosion of the
Mississippi River (Van Arsdale et al., 1995). Its surficial ma-
terials are composed of colluvium, capped by a thin loessal
layer (Whitfield, 1982; Whitfield et al., 1993). The Ozark
uplands contain residual soils with decreasing thicknesses
of loess moving away from the embayment (Fig. 3).

The NMSZ is a right-lateral system that cuts across the
upper end of the Mississippi Embayment and is believed to
be a failed intraplate rift dating back to the Precambrian.
Although some possibility exists that several of the 1811–
1812 epicenters may have been located outside of the NMSZ
(e.g., NM2 in White County, Illinois, according to Hough
et al., 2005), these events are widely believed to have

Figure 1. Location of study area, comprising 15 counties in southeastern Missouri, in the northern Mississippi Embayment and astride
the New Madrid seismic zone (NMSZ). A–A′ shows the cross section in Figure 2. The color version of this figure is available only in the
electronic edition.

Figure 2. Generalized geologic cross section of the upper Mississippi Embayment (modified from Santi et al., 2002). Location of the
cross section is shown on the right side of Figure 1. Detailed explanation of geologic units is shown in Table A1. The color version of this
figure is available only in the electronic edition.
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occurred on the following fault systems: NM1 along the
northeast-trending Cottonwood Grove strike-slip (right-
lateral) segment of the NMSZ, NM2 along the New Madrid
north fault, and NM3 along the northwest-trending Reelfoot
thrust (Fig. 3; Johnston and Schweig, 1996; Odum et al.,
1998; Mueller et al., 2004; Csontos and Van Arsdale, 2008;
Van Arsdale et al., 2013). Csontos and Van Arsdale (2008)
interpreted that the Reelfoot fault is divided into a north fault
(30° southwest dip) and a south fault (44° southwest dip) near
the Cottonwood Grove fault. They also suggested that the
Reelfoot south fault does not exhibit a surface scarp because
its focal depths are deeper than those of the North fault. The
1811–1812 earthquakes caused severe shaking, with MMIs
between VII and VIII (Hough et al., 2000). The recurrence
intervals of earthquakes large enough to trigger liquefaction
are estimated to be somewhere between 500 and 750 years
(Cramer, 2001; Tuttle et al., 2002; Hough and Page, 2011;
Frankel et al., 2012).

The Wabash Valley seismic zone (WVSZ) lies along the
border between Illinois and Indiana. It is believed to be
capable of triggering an earthquake of Mw 6:5� every
4000 years (Frankel et al., 1996). In this study, we excluded
the effects of the WVSZ in the seismic-hazard assessment of
southeast Missouri, because we assumed that the NMSZ trig-
gers the vast majority of significant earthquakes in the area of
NM3. As more paleoseismic data is developed for the WVSZ,
its relative contribution to the seismic hazard should be
included in future assessments.

Data

This section describes the maps of reference profiles and
bedrock depths (soil thickness) that influence site amplifica-
tions in the study area.

Reference Profiles

The dynamic properties of soils and rocks are consid-
ered controlling factors of site amplification, and their impact
is usually estimated by considering the shear-wave (VS)
velocities of these materials (Gomberg et al., 2003). A lim-
ited quantity of VS data has been collected for the study area,
so reference VS profiles were established to generate charac-
teristic models for the surficial geologic units (Fig. 4). For
sediments in the Mississippi Embayment, the variations of
VS values with depth were estimated by equally weighting
two previous studies of Romero and Rix (2001, 2005,
weighted 0.5) and Macpherson et al. (2010, 0.5). These
are shown in Figure 4a. For surficial soil cover in the Ozark
uplands, we compiled data from 33 VS in situ profiles and
standard penetration test (SPT)-based VS profiles. We used
the conversion equation (VS � 85:34N0:348) proposed by

Figure 3. Simplified geologic map showing surficial materials
(modified from Whitfield, 1982; Gray et al., 1991; Whitfield et al.,
1993). Approximated epicenters of the largest 1811–1812 NewMa-
drid earthquakes are shown with stars (modified from Williams
et al., 2010). Faults are delineated by solid lines (modified from
Johnston and Schweig, 1996; Csontos and Van Arsdale, 2008).
RF, Reelfoot thrust fault; CGF, Cottonwood Grove strike-slip fault
(axial fault); and NMNF, New Madrid North fault. The color
version of this figure is available only in the electronic edition. Figure 4. Reference shear-wave (VS) velocity profiles for the

surficial soils and unconsolidated sediments identified across the
study area. (a) The profiles for alluvial and colluvial deposits in
the Mississippi Embayment were modified from Romeo and Rix
(2001. 2005) and Macpherson et al. (2010). (b) The profiles for
residual soil deposits in the Ozark uplands were taken from in situ
velocity measurements and/or standard penetration test blow
counts. The color version of this figure is available only in the elec-
tronic edition.
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Ohta and Goto (1978) to estimate VS value from SPT blow
counts (N). The reference profiles for the upland residual
soils, loess, and colluvium are summarized in Figure 4b.

Soil Thickness

Where soil caps exhibit a narrow range of VS velocities,
the soil thickness (bedrock depth) usually emerges as the
most important variable in estimating ground motion
(Cramer, 2006; Haase et al., 2010, 2011; Chung and Rogers,
2012a). The depth to bedrock overlying firm rock conditions
(NEHRP site class B/C with VS of 760 m=s) was estimated
from borehole data culled from the subsurface database pre-
pared by the Missouri Geological Survey (MODGLS, 2007).
The database included 2639 boring logs across the project
area (2038 in the uplands and 601 in the lowlands). The po-
sition of the bedrock surface was estimated as a depth be-
neath the existing ground surface rather than as an
absolute bedrock elevation (Chung and Rogers, 2012b).
To prevent over- or underestimation between different geo-
morphic provinces, we separately estimated bedrock depths
for the uplands and the lowlands using ordinary kriging then
compiled these data into a single map (Fig. 5).

The resultant map estimates that the depths to bedrock
range from 0 to 20 m in the uplands and gradually increase
toward the axis of the Mississippi Embayment, where it com-
monly exceeds 150 m. These values of the upper embayment
are in good agreement with the VS profiles with velocities of
760 m=s or greater, at depths between 100 and 160 m, which
corresponds to the late Paleocene–early Eocene strata (Fig. 2;
Santi et al., 2002; Romero and Rix, 2005; Bailey, 2008;
Macpherson et al., 2010). Ordinary kriging provided geostat-
istical measures of uncertainty associated with the depth to

bedrock estimates. In areas where fewer data points exist, the
kriging map assigns the greatest uncertainty.

Scenario Earthquake Hazards

The DSHA map shows PGAs at the ground surface and
SAs at 0.2 s (5 Hz) affecting one- and two-story structures
(with short fundamental periods, T) and 1.0 s (1 Hz) for
buildings (10� stories high) with longer fundamental
periods (T).

Approach

To evaluate deterministic hazards for earthquake scenar-
ios, the impact of site effects on seismic ground motion were
calculated at grid points spaced 1 km apart, across the study
area. Each grid point was assigned by the corresponding in-
put parameters, such as (1) the surficial geologic unit and its
reference VS soil profile with material properties (e.g., den-
sity and soil type with/at depth), (2) the thickness of the soil
profile overlying the bedrock, and (3) the attenuated rock
motion from an assumed source.

Scenario Earthquakes. Two events ofMw 7.3 and 7.7 were
employed for scenario earthquakes. These scenarios are sim-
ilar to those used in the models generated by the USGS for
the CEUS (Petersen et al., 2008). Petersen et al. (2008) ap-
plied lowest weight (0.15) for theMw 7.3 event and the high-
est weight (0.5) for theMw 7.7 event in developing the 2008
USGS maps. The scenario earthquakes assume ruptures
along the Reelfoot thrust, as most believe to have occurred
during NM3. This study employed a rupture length of 60 km
and a width of 10 km for theMw 7.3 scenario, and a width of
20 km for the Mw 7.7 event along the Reelfoot thrust,
suggested by Cramer (2001).

Attenuation Relations. The attenuation relations were used
to estimate the rock motion in seismic waves with increasing
distance from the seismic source. With several attenuation
relations previously developed for the CEUS, we employed
the USGS weighting scheme (Petersen et al., 2014): Toro
et al. (1997; weighted 0.11), Silva et al. (2002; 0.06), Frankel
et al. (1996; 0.06), Atkinson and Boore (2006; 0.22), Somer-
ville et al. (2001; 0.1), Campbell (2003; 0.11), Tavakoli and
Pezeshk (2005; 0.11), Atkinson (2008, 0.08), and Pezeshk
et al. (2011, 0.15). Figure 6 shows the weighted averages
of attenuation relations (hard rock) at PGA and 0.2 and
1.0 s SA as a function of distance for scenario earthquakes
(Mw 7.3 and 7.7). The weighted attenuation relations were
optimized for hard-rock sites (NEHRP site class A). We con-
sider firm-rock sites (NEHRP site class B/C) as the reference
points for estimating rock motions. To convert from hard-
rock to firm-rock site conditions, we applied the modification
factors suggested by Frankel et al. (1996): 1.52 for PGA, 1.76
for 0.2 s SA, and 1.72 for 1.0 s SA.

Figure 5. Interpolation of bedrock depths (soil thickness) in
southeast Missouri using ordinary kriging. The color version of this
figure is available only in the electronic edition.
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Time Histories. The input time histories forMw 7.3 and 7.7
events were simulated using Stochastic Method SIMulation
(SMSIM) v.2.3 code (Boore, 2005), in the absence of
recorded motions for large earthquakes (Mw >6:5) in the
CEUS (Atkinson and Beresnev, 2002; Ramírez-Guzmán
et al., 2012). The SMSIM time series are generated from
the transformation of empirical acceleration spectra of his-
toric earthquakes. Stochastic models assume that a fault at
a point source may radiate randomly for a certain duration,
which depends on the size and distance to the earthquake
(Boore, 2003). The total point-source spectrum of rock
motion was expressed as

Acc�M0; R; f � � CS�M0; f�D�R; f�I�f �;
in which Acc�f � is the total point-source spectrum of accel-
eration at bedrock; C is a scaling factor; S�f � is the source
spectrum; D�f � is the diminution function (geometrical
spreading and inelastic attenuation) to modify the spectral
shape; I�f � is a filter to shape the spectrum; M0 is seismic
moment; R is the distance from the source; and f is the fre-
quency.

Ten time histories were generated for input rock motions
from 0.05 to 1:5g, which were estimated from attenuation
relations.

Ground-Motion Estimates. The site-response analysis at
each grid point was performed using DEEPSOIL software
(Hashash et al., 2012). DEEPSOIL is appropriate to evaluate
site responses of thick sediments in the Mississippi Embay-
ment with 1D nonlinear or equivalent linear analysis of a
multilayer profile on a rigid half-space subjected to input
rock motion (Cramer, 2006; Hashash et al., 2012).

Compared to nonlinear analyses, equivalent linear
analyses require less computation, because they consider

the isotropic soil stiffness and damping ratio of the soil layer.
Equivalent linear approaches approximate acceptable ground
motions for rock motions less than 0:2g and produce similar
results with nonlinear approaches, for rock motions sub-
jected to between 0.05 and 0:50g (Idriss, 1990; Electric
Power Research Institute, EPRI, 1993). The rock motion
of the study area lies mainly within 0:50g, except areas
<30 km from fault rupture. We chose to use the equivalent
linear approach because it requires simple process and pro-
duces reasonable results for the study area (Kramer, 1996;
Hashash et al., 2010).

Assuming soil stiffness and damping are most influ-
enced by shear strain, we employed an equivalent linear
approach in the frequency domain with a 5% damping ratio.
After calculations were made for various combinations of
reference VS profiles, bedrock depths, and rock motions, SAs
at PGA, 0.2 s, and 1.0 s were assigned to each grid point with
corresponding input parameters and amplification factors.
The values for the intervening areas between the 1 km grid
points were then interpolated using ordinary kriging to
produce the DSHA map incorporating the local geologic
conditions.

Seismic-Hazard Maps

The resultant maps (Fig. 7) of PGA, 0.2 s, and 1.0 s SA
suggests that the upper Mississippi Embayment exhibits a
range of SAs: PGA with 0:18–1:5g and 0:2–2:0g, 0.2 s SA
with 0:35–2:3g and 0:5–2:7g, and 1.0 s SA with 0:16–1:3g
and 0:2–1:7g for Mw 7.3 and 7.7 earthquakes, respectively.
The Ozark uplands exhibited PGA with 0:05–0:15g and
0:07–0:2g, 0.2 s SA with 0:1–0:25g and 0:12–0:5g, and
1.0 s SA with 0:05–0:15g and 0:06–0:17g for Mw 7.3
and 7.7 earthquakes, respectively.

MMI Maps. We also attempted to estimate MMI values
based on ground motions produced in this study. The
recorded or simulated ground-motion parameters have been
correlated to estimate MMI values. Recent studies (Kaka and
Atkinson, 2004; Atkinson and Kaka, 2007; Dangkua and
Cramer, 2011) developed predictive correlations for the
CEUS. For quantitative estimates of MMIs, the values of PGA
and 0.2 s SAwere converted into MMI values (Figs. 8 and 9,
respectively). For this procedure, we employed the empirical
relationships between MMI and PGA (Atkinson and Kaka,
2007; Dangkua and Cramer, 2011) and between MMI and
0.2 s SA (Kaka and Atkinson, 2004; Table 1). The MMI con-
tours for Mw 7.3 and 7.7 earthquakes were compared with
those delineated by Hough et al. (2000). The comparisons
are shown for PGA-based MMIs (Fig. 8) and for 0.2 s
SA-based MMIs (Fig. 9). The PGA-based MMIs are between
IVand VI in the Ozark uplands and between VII and X in the
upper Mississippi Embayment for theMw 7.3 (Fig. 8a) event;
they are between V and VI in the uplands and between VII
and X in the upper embayment for the Mw 7.7 earth-
quake (Fig. 8b).

Figure 6. The hard-rock attenuation relations for peak ground
acceleration (PGA) and 0.2 and 1.0 s spectral acceleration (SA) with
distance forMw 7.3 and 7.7 earthquakes. We adopted the U.S. Geo-
logical Survey weighted scheme (Petersen et al., 2014) for central
and eastern United States (CEUS) hard-rock attenuation. The color
version of this figure is available only in the electronic edition.
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Magnitude Estimation from MMI Contours. Hough et al.
(2000) generated an isoseismal map based on reported dam-
age to houses, including distressed chimneys, during NM3
(the only settlements in that area along the Mississippi River
at the time were New Madrid, Caruthersville, and Cape
Girardeau). The 0.2 s SA was selected among the ground-
motion parameters for comparison because it approximates
the fundamental period (T) of a two-story building. We then
matched our 0.2 s SA-based MMIs with the observation-
based MMIs, which is considered to be a close approxi-
mation.

The resultant map for an Mw 7.3 event shows MMIs of
VI–VII in the uplands and VII–IX in the embayment
(Fig. 9a), and the map of anMw 7.7 earthquake suggests that
the predominant MMIs are VII in the uplands and VIII–X in
the embayment (Fig. 9b). This suggests that the MMI esti-
mates for an Mw 7.7 event provide the best match with
the observations reported in 1812 (mostly VII for the uplands
and VIII for the embayment). We estimate that the magnitude
of the NM3 event was likely closer to 7.7 to generate ground
motions with extensive MMIs of VII and VIII in the uplands

and the embayment, respectively. This is consistent with the
previous interpretations of Atkinson and Beresnev (2002).
They noted that magnitudes of the 1811–1812 earthquakes
likely ranged between 7.5 and 8.0, based on their simulated
ground motions and subsurface data in the St. Louis and
Memphis metro areas.

Magnitude Estimates from Other CEUS Sites

To better quantify and constrain the likely magnitude of
NM3, we examined the local site conditions of 25 damaged
CEUS sites across the upper Embayment. We then attempted
to estimate the threshold magnitudes corresponding to the
reported MMIs, using the regression analysis for the CEUS.
This procedure included the following steps:

1. calculate the median values of interpreted MMIs for each
site during NM3,

2. examine soil amplification from VS30 values,
3. calculate 0.2 s SA and peak ground velocity (PGV) with

changing magnitudes,
4. convert these values into MMI values,

Figure 7. Deterministic seismic-hazard analysis maps for Mw 7.3 and 7.7 scenario earthquakes on the Reelfoot thrust with strike-slip
faults in the NMSZ, corresponding to the likely range of seismicity experienced in the 7 February 1812 New Madrid earthquake (NM3). The
color version of this figure is available only in the electronic edition.
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5. estimate the threshold magnitudes for correspond-
ing MMIs,

6. constrain the likely magnitude for NM3.

We used the MMIs to estimate the magnitude of NM3,
assuming that the reported MMI values were reliable

estimates of shaking intensity to calculate the magnitude
of the historical earthquake (Johnston, 1996; Hough et al.,
2000) based on the relationship between magnitude and
MMIs as a function of distance. However, the magnitude un-
certainty of the 1811–1812 earthquakes is tied to the MMI

Figure 8. Modified Mercalli intensity (MMI) maps for (a) the Mw 7.3 earthquake and (b) the Mw 7.7 earthquake on the Reelfoot thrust.
MMI contours were inferred from PGA calculated in this study (Fig. 7), based on MMI–PGA relationships (Atkinson and Kaka, 2007; Dangkua
and Cramer, 2011). The MMI contours of Hough et al. (2000) were used as a background for comparison. The solid line delineates the study
area, and the area bounding this is taken from Hough et al. (2000). Note that Hough et al. did not contour MMIs of IX–X in the embayment.
The color version of this figure is available only in the electronic edition.

Figure 9. MMI maps for (a) theMw 7. 3 earthquake and (b) theMw 7.7 earthquake. In this case, MMIs were inferred from 0.2 s SA (Fig. 7)
based on MMI–0.2 s SA relationships (Kaka and Atkinson, 2004). The MMI contours of Hough et al. (2000) were used as a background for
comparison. The color version of this figure is available only in the electronic edition.
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uncertainty, because many of the MMI values are inconsistent
with the reported distances to adequately constrain the mag-
nitude. Of MMI uncertainty, we point out that the different
site responses would have produced considerable variability
in reported MMI values, even at similar distances from the
earthquake source. Previous research (Hough et al., 2000;
Bakun and Hopper, 2004; Hough and Page, 2011) noted
that the site conditions of river valleys have increased the
reported MMIs during the 1811–1812 events. The MMIs
that are properly inferred by consideration of site effects
thus would reduce the magnitude uncertainty of historical
earthquakes.

MMIs during NM3

Historical MMIs for NM3 have been interpreted with
felt reports accounting for structural damages to buildings
(Hough et al., 2000). Most structures constructed prior to
1811 in the central United States were one to two-and-a-half
stories high (Kochkin and Crandell, 2004), which are sensi-
tive to ∼0:2 s SA. This suggests that the fundamental period
of buildings damaged during NM3 is likely close to ∼0:2 s.
For this reason, 0.2 s SA would appear to be an appropriate
ground-motion parameter for estimating MMIs during NM3.
PGV is the preferred indicator of ground-motion parameters
to estimate MMI as well, because it correlates well with the
observed intensity for earthquakes (Wald et al., 1999; Boat-
wright et al., 2001; Kaka and Atkinson, 2004). The values of
PGV were converted into MMI values based on the empirical
relationships (Atkinson and Kaka, 2007; Dangkua and
Cramer, 2011; Table 1).

Macroseismic data of MMIs for NM3 have been revised
according to the damage descriptions. Interpreted MMIs at 25
sites were compiled from previous studies (Hough et al.,
2000; Bakun et al., 2002; Hough and Page, 2011). We se-
lected sites with MMIs ≥V for better constraint; magnitude
tends to be overestimated by MMIs lower than V, and it is

hard to differentiate low intensities based on the felt and
damage reports (Bakun and Wentworth, 1997; Wald et al.,
1999; Kaka and Atkinson, 2004). A set of MMIs at each site
consists of six values, including one from Hough et al.
(2000), one from Bakun et al. (2002), and four from Hough
and Page (2011). The median was then calculated from six
MMI values. Locations of the 25 sites are shown in Figure 10,
and the MMIs and their respective distances from the fault
rupture of NM3 are listed in Table 2.

Estimation of Magnitude

Based on magnitude, distance to fault, and site effects,
the 0.2 s SAs and PGV values were analyzed using the
Atkinson and Boore (2006) equations (see the Appendix).
These equations were developed to simulate ground motions
for hard rock and soil sites, based on CEUS seismographic
data and the extended finite-fault simulation (EXSIM) code.
Their equations provide good approximations of seismic
ground motions for eastern North America (Atkinson and
Boore, 2006).

Site Conditions. According to the equations of Atkinson
and Boore (2006), the local site conditions influencing the
site effects can be calculated from VS30 values. Previous in-
vestigators (Wald and Allen, 2007; Iwahashi et al., 2010)
validated the method for estimating VS30 values using digital
elevation models (DEMs). This method assumes that topo-
graphic gradients correlate with VS30 values; for example,
slope steepness is proportional toVS30. We previously mapped
VS30 values across the St. Louis metropolitan area using
∼1500 VS30 datasets (Chung and Rogers, 2012a). The DEM-
based site classifications for the St. Louis area (Allen and
Wald, 2009) are very similar to our results, suggesting that
DEMs can be used as a proxy for site conditions. From the
VS30 map server and Quaternary geologic maps of USGS
(see Data and Resources), we explored VS30 values and sur-
ficial materials for CEUS historic sites, by examining historic
maps from the early 1800s. As shown in Table 2, VS30 values
of each CEUS site vary locally. For instance, it was reported
that the settlements comprising St. Louis in the early 1800s
were along the banks of the Mississippi River (St. Louis City
Plan Commission, 1969; Faherty, 1990). Our examination of
these factors suggests that the site conditions (VS30) range be-
tween 305 and 509 m=s (Fig. 11a).

Magnitude for MMI. Using the prediction equation shown
in the Appendix, ground motions were also estimated as a
function of magnitude then converted to MMI, based on
the MMI–0.2 s SA and the MMI–PGV relationships (Table 1).
For each site, the threshold magnitudes corresponding with
MMIs for various VS30 site conditions were then estimated.

For instance, MMIs of VII were assigned for the
St. Louis area during NM3 (Table 2). Using the regression
equation in the Appendix, the calculated threshold magni-
tudes for MMI VII are Mw 7.7–9.0 for 0.2 s SA (Fig. 11b)

Table 1
Peak Ground Velocity (PGV), Peak Ground

Acceleration (PGA), and 0.2 s Spectral Acceleration
(SA) Ranges for Modified Mercalli Intensities

(MMIs)

MMI PGV (cm=s)* PGA (g)* 0.2 s SA (g)†

IV 0.6–2.9 0.008–0.041 0.005–0.016
V 2.9–5.2 0.041–0.067 0.016–0.028

V–VI 5.2–6.5 0.067–0.096 0.028–0.049
VI 6.5–9.5 0.096–0.114 0.049–0.085

VI–VII 9.5–13.8 0.114–0.151 0.085–0.147
VII 13.8–20.3 0.151–0.200 0.147–0.254

VII–VIII 20.3–29.6 0.200–0.265 0.254–0.439
VIII 29.6–63.4 0.265–0.465 0.439–1.315
IX 63.4–135.5 0.465–0.817 1.315–3.938
X >135:5 >0:817 >3:938

*Modified from Atkinson and Kaka (2007) and Dangkua and
Cramer (2011).

†Modified from Kaka and Atkinson (2004).
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and Mw 7.8–8.6 for PGV (Fig. 11c). Similarly, the threshold
magnitudes for other sites were calculated as a function of
site conditions, distance from seismic source, and the
assigned MMIs during NM3.

As shown in Table 2 and Figure 12, the threshold mag-
nitudes for assigned MMIs at each site vary, depending on the
respective site conditions. We attempted to constrain the
magnitude of NM3 with the magnitude satisfying the most
sites for 0.2 s SA and PGV. Of the 25 sites, Mw 7.6 was the
threshold magnitude with the largest frequency in estimated
values, with 13 sites for 0.2 s SA and 13 sites for PGV
(Figs. 12 and 13). Both the median and the mean are M 7.7
for 0.2 s SA andMw 7.7 for PGV. The mode, median, and the
mean that are measures of central tendency fall within
Mw 7.6–7.7 (Fig. 13), suggesting Mw 7.6 would be the
representative value of threshold magnitude without the
skewness in data distribution.

This suggests that the magnitude of NM3 would have
been at least Mw 7.6, and this value agrees well with
Mw 7.7, which was estimated from the simulated ground mo-
tions for southeast Missouri. Meanwhile, the median and the
mean with standard deviation of threshold magnitude, not
considering site effects (e.g., a single site condition as hard
rock), are Mw 8.1 and Mw 8:1� 0:5, respectively (Table 2
and Fig. 12). This suggests that the threshold value bereft
of considering site effects of the early 1800s communities

would be overestimated for the likely magnitude of NM3,
compared with those estimates considering site effects.

Discussion and Conclusions

This article presents earthquake hazard maps of ground
motions in southeastern Missouri that consider site effects
imposed by surficial geology on input rock motions, simu-
lating the New Madrid earthquake on 7 February 1812
(NM3). These hazard maps can be used to aid decisions
by building officials, urban planners, consultants, insurance
carriers, utilities, emergency response agencies, and state and
federal transportation authorities to better estimate the areal
distribution of shaking severity and earthquake hazards.
They are also useful in helping to assess paleoseismic aspects
of ground shaking and for estimating the likely magnitudes
of prehistoric and preinstrument earthquakes.

By considering reference VS profiles for each geologic
unit truncated by bedrock depths, DSHA maps were pro-
duced for Mw 7.3 and 7.7 scenarios, which are assumed to
bracket the New Madrid earthquake of 7 February 1812
(event NM3).

By using a 1D site response program, such as SHAKE
or DEEPSOIL (used in this study), the DSHA maps were
constructed using scenario seismicity as their primary
sources of input. This approach possesses inherent uncertain-

Figure 10. Location map showing the CEUS sites shaken during NM3. The MMI values for each site are listed in Table 2. The color
version of this figure is available only in the electronic edition.
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ties in input parameters (Cramer, 2001; Chapman et al.,
2006; Cramer et al., 2006), such as (1) input time histories,
(2) attenuation relations, and (3) reference VS soil profiles.
Of these input parameters, the input time histories and the
attenuation relations appear to be the most important param-
eters for site-response modeling (Newman et al., 2001; Des-

tegul, 2004; Karadeniz, 2008). A detailed sensitivity analysis
was beyond the scope of this article.

As a result of the lack of time histories of Mw 6:0�
events emanating from the NMSZ, we simulated base rock
earthquake records using the Boore (2005) code. More credi-
ble synthetic earthquake models need to be generated for the

Figure 11. (a) VS30 values of early 1800s settlement sites in the St. Louis area, Missouri. (b) Spatial threshold magnitudes for 0.2 s SA to
produce an MMI of VII. (c) Spatial threshold magnitudes for peak ground velocity (PGV) to produce an MMI of VII. The color version of this
figure is available only in the electronic edition.

Figure 12. Ranges of calculated threshold magnitude for (a) 0.2 s SA and (b) PGV to produce the reported MMIs at CEUS sites during
NM3. Threshold magnitude varies depending on local site amplification as a function of VS30 at a given MMI value.
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CEUS, because the region exhibits much higher impedance
contrasts than other seismic source zones near plate bounda-
ries (Rogers et al., 2007). Natural variations in stratigraphy
may also increase uncertainties of reference VS soil profiles
over a particular stratigraphic unit. This uncertainty can typ-
ically be reduced when subsurface geophysical and geotech-
nical data are available, and individual VS soil profiles are
derived from such data. Site-specific in situ data is always
preferable when performing site-response analyses rather
than using the reference profiles (Destegul, 2004; Cramer
et al., 2006).

For the magnitude uncertainty of NM3, we attempted to
estimate its size by reproducing the ground motions. The pre-
dicted MMI of VII–VIII generated by 0.2 s SA contours dur-
ing the scenario Mw 7.7 appear to be a better fit than the
lower Mw 7.3 scenario event to simulate the damages re-
ported in the wake of NM3. To further examine whether this
magnitude is an appropriate estimate of NM3, we expanded
the dataset to include 25 additional CEUS sites (of settle-
ments in the late eighteenth and early nineteenth centuries)
outside southeastern Missouri and researched their site con-
ditions. We calculated 0.2 s SA and PGV as a function of the
magnitudes and estimated the threshold magnitude to pro-
duce the reported MMIs during NM3. When site conditions
were considered and the mode of threshold magnitudes as-
sumed to be Mw 7.6, the best correlations with reported
MMIs were achieved. The median and the mean magnitudes
were found to be Mw 7.7. These results suggest that Mw 7.7
would be the most likely magnitude of NM3. The estimated
magnitude is the same as that of Cramer and Boyd (2014).
Our results also suggest that the magnitude of NM3 would be
overestimated from Mw 7.7 to 8.1 when soil amplification
effects are ignored.

Data and Resources

We obtained and analyzed data from the following
sources: VS data from D. J. Hoffman (personal comm.,
2008) of the University of Science and Technology, standard
penetration test profiles from C. M. Watkins (personal
comm., 2011) of the U.S. Geological Survey, digital eleva-
tion models from http://data.geocomm.com (last accessed
April 2013), interpolation using ArcGIS software v.9.3, Sto-
chastic Method SIMulation from http://daveboore.com (last
accessed February 2014), VS30 map from http://earthquake
.usgs.gov/hazards/apps/vs30/ (last accessed March 2014),
and Quaternary geologic maps from http://esp.cr.usgs.gov/
data/quatatlas/index.shtml (last accessed April 2014).

Acknowledgments

We wish to thank David J. Hoffman (Missouri University of Science
and Technology [Missouri S&T]) and Conor M. Watkins (U.S. Geological
Survey, Rolla, Missouri) for supplying subsurface data. The Missouri S&T
Karl F. Hasselmann Endowment funded this research. Chris Cramer (Uni-
versity of Memphis, Tennessee), an anonymous reviewer, and Associate Ed-
itor Mark W. Stirling significantly improved the article with their helpful
comments.

References

Allen, T. I., and D. J. Wald (2009). On the use of high-resolution topographic
data as a proxy for seismic site conditions (VS30), Bull. Seismol. Soc.
Am. 99, no. 2A, 935–943.

Atkinson, G.M. (2008). Ground-motion prediction equations for eastern North
America from a referenced empirical approach: Implications for episte-
mic uncertainty, Bull. Seismol. Soc. Am. 98, no. 3, 1304–1318.

Atkinson, G. M., and I. A. Beresnev (2002). Ground motions at Memphis
and St. Louis fromM 7.5–8.0 earthquakes in the New Madrid seismic
zone, Bull. Seismol. Soc. Am. 92, no. 3, 1015–1024.

Atkinson, G. M., and D. M. Boore (2006). Earthquake ground-motion
prediction equations for eastern North America, Bull. Seismol. Soc.
Am. 96, no. 6, 2181–2205.

Atkinson, G. M., and S. L. I. Kaka (2007). Relationships between felt
intensity and instrumental ground motion in the central United States
and California, Bull. Seismol. Soc. Am. 97, no. 2, 497–510.

Bailey, J. P. (2008). Development of shear wave velocity profiles in the
deep sediments of the Mississippi Embayment using surface wave
and spectral ratio methods, M.S. Thesis, University of Missouri,
Columbia, Missouri.

Bakun, W. H., and M. G. Hopper (2004). Magnitudes and locations of the
1811–1812 New Madrid, Missouri, and the 1886 Charleston, South
Carolina, earthquakes, Bull. Seismol. Soc. Am. 94, no. 1, 64–75.

Bakun, W. H., and C. M. Wentworth (1997). Estimating earthquake location
and magnitude from seismic intensity data, Bull. Seismol. Soc. Am. 87,
no. 6, 1502–1521.

Bakun, W. H., A. C. Johnston, and M. G. Hopper (2002). Modified Mercalli
intensities (MMI) for large earthquakes near New Madrid, Missouri, in
1811–1812 and near Charleston, South Carolina, in 1866, U.S. Geol.
Surv. Open-File Rept. 02-184, 31 pp.

Boatwright, J., K. Thywissen, and L. Seekins (2001). Correlation of ground
motion and intensity for the 17 January 1994 Northridge, California,
earthquake, Bull. Seismol. Soc. Am. 91, no. 4, 739–752.

Boore, D. M. (2003). Simulation of ground motion using the stochastic
method, Pure Appl. Geophys. 160, 635–676.

Boore, D. M. (2005). SMSIM–Fortran programs for simulating ground mo-
tions from earthquakes: Version 2.3—A revision of OFR 96-80-A,
U.S. Geol. Surv. Open-File Rept. OFR 00-509, Denver, Colorado.

Figure 13. Histograms of threshold magnitudes for both 0.2 s
SA and PGV shown in Figure 12. The mode is Mw 7.6. The median
and the mean both are Mw 7.7.

Seismic-Hazard Map of Southeast Missouri and Likely Magnitude of the 1812 New Madrid Earthquake 2231

http://data.geocomm.com
http://data.geocomm.com
http://data.geocomm.com
http://daveboore.com
http://earthquake.usgs.gov/hazards/apps/vs30/
http://earthquake.usgs.gov/hazards/apps/vs30/
http://esp.cr.usgs.gov/data/quatatlas/index.shtml
http://esp.cr.usgs.gov/data/quatatlas/index.shtml


Boyd, O. (2010). Earthquake hazards (timing/recurrence/probability of an
event), Proceedings of Preparing for a Significant Central United
States Earthquakes–Science Needs of the Response and Recovery
Community, U.S. Geol. Surv. Scientific Investigations Rept. 2010-
5173, 14–20.

Building Seismic Safety Council (BSSC) (2003). National Earthquake
Hazards Reduction Program Recommended Provisions and Commen-
tary for Seismic Regulations for New Buildings and Other Structures
(FEMA 450), Part 1: Provisions, Federal Emergency Management
Agency, Washington, D.C., 356 pp.

Campbell, K. W. (2003). Prediction of strong ground motion using the
hybrid empirical method and its use in the development of ground-
motion (attenuation) relations in eastern North America, Bull. Seismol.
Soc. Am. 93, no. 3, 1012–1033.

Chapman, M. C., J. R. Martin, C. G. Olgun, and J. N. Beale (2006).
Site-response models for Charleston, South Carolina, and vicinity de-
veloped from shallow geotechnical investigations, Bull. Seismol. Soc.
Am. 96, no. 2, 467–489.

Chung, J.-W., and J. D. Rogers (2012a). Seismic site classifications for the
St. Louis urban area, Bull. Seismol. Soc. Am. 102, no. 3, 980–990.

Chung, J.-W., and J. D. Rogers (2012b). Estimating the position and
variability of buried bedrock surfaces in the St. Louis metro area,
Eng. Geol. 126, 37–45.

Collinson, C., M. L. Sargent, and J. R. Jennings (1988). Illinois basin region,
in Sedimentary Cover-North American Craton, U.S., L. L. Sloss
(Editor), Vol. D-2, Geological Society of America, Boulder, Colorado,
383–426.

Cramer, C. H. (2001). A seismic hazard uncertainty analysis for the
New Madrid seismic zone, Eng. Geol. 62, nos. 1/3, 251–266.

Cramer, C. H. (2006). Quantifying the uncertainty in site amplification
modeling and its effects on site-specific seismic-hazard estimation
in the upper Mississippi Embayment and adjacent areas, Bull. Seismol.
Soc. Am. 96, no. 6, 2008–2020.

Cramer, C. H., and O. S. Boyd (2014). Why the NewMadrid earthquakes are
M 7–8 and the Charleston earthquake is ∼M 7, Bull. Seismol. Soc. Am.
104, no. 6, 2884–2903.

Cramer, C. H., J. S. Gomberg, E. S. Schweig, B. A. Waldron, and K. Tucker
(2006). First USGS urban seismic hazard maps predict the effects of
soils, Seismol. Res. Lett. 77, no. 1, 23–29.

Csontos, R., and R. Van Arsdale (2008). New Madrid seismic zone fault
geometry, Geosphere 4, no. 5, 802–813.

Dangkua, D. T., and C. H. Cramer (2011). Felt intensity versus instrumental
ground motion: A difference between California and eastern North
America? Bull. Seismol. Soc. Am. 101, no. 4, 739–752.

Destegul, U. (2004). Sensitivity analysis of soil site response modeling in
seismic microzonation for Laitput, Nepal, M.S. Thesis, International
Institute for Geo-Information Science and Earth Observation,
Enschede, The Netherlands.

Electric Power Research Institute (EPRI) (1993). Guidelines for Determin-
ing Design Basis Ground Motions, Electric Power Research Institute,
Vol. 1, EPRI TR-102293.

Faherty, W. B. (1990). St. Louis: A Concise History, St. Louis Convention
and Visitors Commission, St. Louis, Missouri.

Frankel, A. (2013). Comment on “Why earthquake hazard maps often fail
and what to do about it” by S. Stein, R. Geller, and M. Liu, Tectono-
physics 592, 200–206.

Frankel, A., C. Mueller, T. Bernard, D. Perkins, E. V. Leyendecker,
N. Dickman, S. Hanson, and M. Hopper (1996). National seismic-
hazard maps: Documentation June 1996, U.S. Geol. Surv. Open-File
Rept. 96-532.

Frankel, A., M. Petersen, C. Mueller, K. Haller, R. Wheeler, E. Leyendecker,
R. Wesson, S. Harmsen, C. Cramer, D. Perkins, and K. Rukstales
(2002). Documentation of the 2002 update of the national seismic
hazard maps, U.S. Geol. Surv. Open-File Rept. 02-420.

Frankel, A., R. Smalley, and J. Paul (2012). Significant motions between
GPS sites in the New Madrid region: Implications for seismic hazard,
Bull. Seismol. Soc. Am. 102, no. 2, 479–489.

Fuller, M. L. (1912). New Madrid earthquake, U.S. Geol. Surv. Bull.
494.

Gomberg, J., B. Waldron, E. Schweig, H. Hwang, A. Webbers, R.
VanArsdale, K. Tucker, R. Williams, R. Street, P. Mayne, et al.
(2003). Lithology and shear-wave velocity in Memphis, Tennessee,
Bull. Seismol. Soc. Am. 93, no. 3, 986–997.

Gray, H. H., N. K. Bleuer, J. A. Linebacker, W. C. Swadley, G. M. Rich-
mond, R. A. Miller, R. P. Goldthwait, and R. A. Ward (1991).
Quaternary Geologic Map of the Louisville 4 × 6 degrees quadrangle,
United States, U.S. Geol. Surv. Miscellaneous Investigations Series
Map I–1420 (NJ-16), scale 1: 1,000,000, Denver, Colorado.

Haase, J. S., and R. L. Nowack (2011). Earthquake scenario ground motions
for the urban area of Evansville, Indiana, Seismol. Res. Lett. 82, no. 2,
177–187.

Haase, J. S., Y. S. Choi, T. Bowling, and R. L. Nowack (2011). Probabilistic
seismic-hazard assessment including site effects for Evansville,
Indiana, and the surrounding region, Bull. Seismol. Soc. Am. 101,
no. 3, 1039–1054.

Haase, J. S., C. H. Park, R. L. Nowack, and J. R. Hill (2010). Probabilistic
seismic hazard estimates incorporating site effects—An example from
Indiana, U.S.A, Environ. Eng. Geosci. 16, no. 4, 369–388.

Hashash, Y. M. A., D. R. Groholski, C. A. Philips, D. Park, and
M. Musgrove (2012). Deepsoil: V5.1. User Manual and Tutorial,
University of Illinois, Urbana-Champaign, Illinois, 107 pp.

Hashash, Y. M. A., C. Philips, and D. Goholski (2010). Recent advances in
non-linear site response analysis, Fifth Int. Conf. on Recent Advances
in Geotechnical Earthquake Engineering and Soil Dynamics,
Paper Number OSP 4, San Diego, California, 24–29 May 2010.

Hough, S. E., and S. Martin (2002). Magnitude estimates of two large
aftershocks of the 16 December 1811 New Madrid earthquake, Bull.
Seismol. Soc. Am. 92, no. 8, 3259–3268.

Hough, S. E., and M. Page (2011). Toward a consistent model for strain
accrual and release for the New Madrid seismic zone, central United
States, J. Geophys. Res. 116, no. 3, B03311, doi: 10.1029/
2010JB007783.

Hough, S. E., J. G. Armbruster, L. Seeber, and J. F. Hough (2000).
On the modified Mercalli intensities and magnitudes of the 1811–
1812 New Madrid earthquakes, J. Geophys. Res. 105, no. B10,
23,839–23,864.

Hough, S. E., R. Bilham, K. Mueller, W. Stephenson, R. Williams, and J.
Odum (2005). Wagon loads of sand blows in White County, Illinois,
Seismol. Res. Lett. 76, no. 3, 373–386.

Idriss, I. M. (1990). Response of soft soil sites during earthquakes, Proceed-
ings of the Symposium to Honor Professor H. B. Seed, Berkeley, Cal-
ifornia, 2 May 1990, 273–289.

Iwahashi, J., I. Kamiya, and M. Matsuoka (2010). Regression analysis of
VS30 using topographic attributes from a 50-m DEM, Geomorphology
117, nos. 1/2, 202–205.

Johnston, A. C. (1996). Seismic moment assessment of earthquakes in stable
continental regions–III. NewMadrid 1811–1812, Charleston 1886 and
Lisbon 1755, Geophys. J. Int. 126, no. 2, 314–344.

Johnston, A. C., and E. S. Schweig (1996). The enigma of the New Madrid
earthquakes of 1811–1812, Annu. Rev. Earth Planet. Sci. 24, 339–384.

Kaka, S. I., and G. M. Atkinson (2004). Relationships between instrumental
ground-motion parameters and modified Mercalli intensity in eastern
North America, Bull. Seismol. Soc. Am. 94, no. 5, 1728–1736.

Karadeniz, E. (2008). Ground motion sensitivity analyses for the greater St.
Louis metropolitan area, M.S. Thesis, Missouri University of Science
& Technology, Rolla, Missouri.

Kochkin, V. G., and J. H. Crandell (2004). Survey of historical buildings
predating the 1811–1812 New Madrid earthquakes and magnitude
estimation based on structural fragility, Seismol. Res. Lett. 75,
no. 1, 22–35.

Kramer, S. L. (1996). Geotechnical Earthquake Engineering, Prentice Hall,
Upper Saddle River, New Jersey, 653 pp.

Krinitzsky, E. L. (2002). How to obtain earthquake ground motions for
engineering design, Eng. Geol. 65, 1–16.

2232 J. Chung and J. D. Rogers

http://dx.doi.org/10.1029/2010JB007783
http://dx.doi.org/10.1029/2010JB007783


Macpherson, K. A., E. W. Woolery, Z. Wang, and P. Liu (2010). Three-
dimensional long-period ground-motion simulations in the upper
Mississippi Embayment, Seimol. Res. Lett. 81, no. 2, 391–405.

Middendorf, M. A. (2003). Geologic Map of Missouri (Sesquicentennial
Edition), Missouri Department of Natural Resources, Divisions of
Geology and Land Survey.

Missouri Department of Natural Resources Division of Geology and Land
Survey (MODGLS) (2007). Missouri Environmental Geology Atlas-
2007, Missouri Department of Natural Resources Division of Geology
and Land Survey, Rolla, Missouri, CD-ROM.

Missouri Department of Natural Resources Division of Geology and Land
Survey (MODGLS) (2014). The New Madrid Seismic Zone, Missouri
Department of Natural Resources Division of Geology and Land
Survey, Fact Sheet, 26.

Mueller, K., and J. Pujol (2001). Three-dimensional geometry of the Reel-
foot blind thrust: Implications for moment release and earthquake
magnitude in the New Madrid seismic zone, Bull. Seismol. Soc.
Am. 91, no. 6, 1563–1573.

Mueller, K., S. E. Hough, and R. Bilham (2004). Analyzing the 1811–1812
New Madrid earthquakes with recent instrumentally recorded after-
shocks, Nature 429, 284–288.

Newman, A., J. Schneider, S. Stein, and A. Mendez (2001). Uncertainties in
seismic hazard maps for the New Madrid seismic zone and implica-
tions for seismic hazard communication, Seismol. Res. Lett. 72, no. 6,
647–663.

Odum, J. K., W. J. Stephenson, K. M. Shedlock, and T. L. Pratt (1998). Near-
surface structural model for deformation associated with the February
7, 1812, New Madrid, Missouri, earthquake, Bull. Geol. Soc. Am. 110,
no. 2, 149–162.

Ohta, Y., and N. Goto (1978). Empirical shear wave velocity equations in
terms of characteristic soil indexes, Earthq. Eng. Struct. Dynam. 6,
no. 2, 167–187.

Petersen, M. D., A. D. Frankel, S. C. Harmsen, C. S. Mueller, K. M. Haller,
R. L.Wheeler, R. L. Wesson, Y. Zeng, O. S. Boyd, D. M. Perkins, et al.
(2008). Documentation for the 2008 update of the United States
national seismic hazard maps, U.S. Geol. Surv. Open-File Rept.
2008-1128, 61 pp.

Petersen, M. D., M. P. Moschetti, P. M. Powers, C. S. Mueller, K. M. Haller,
A. D. Frankel, Y. Zeng, S. Rezaeian, S. C. Harmsen, O. S. Boyd, et al.
(2014). Documentation for the 2014 update of the United States
national seismic hazard maps, U.S. Geol. Surv. Open-File Rept.
2014-1091, 243 pp.

Pezeshk, S., A. Zandieh, and B. Tavakoli (2011). Hybrid empirical ground-
motion prediction equations for eastern North America using NGA
models and updated seismological parameters, Bull. Seismol. Soc.
Am. 101, no. 4, 1859–1870.

Ramírez-Guzmán, L., O. S. Boyd, S. Hartzell, and R. A. Williams (2012).
Seismic velocity model of the central United States (version 1):
Description and simulation of the 18 April 2008 Mt. Carmel,
Illinois, earthquake, Bull. Seismol. Soc. Am. 102, no. 6,
2622–2645.

Rogers, J. D., D. Karadeniz, and C. K. Kaibel (2007). Seismic response
modeling for Missouri River highway bridges, J. Earthq. Eng. 11,
no. 3, 400–424.

Romero, S., and G. J. Rix (2001). Regional variations in near surface shear
wave velocity in the greater Memphis area, Eng. Geol. 62, nos. 1/3,
137–158.

Romero, S., and G. J. Rix (2005). Ground motion amplification of soils in
the upper Mississippi Embayment, Mid-America Earthquake Center,
University of Illinois at Urbana-Champaign, Illinois, 461 pp, Report
No. GIT-CEE/GEO-01-1.

Santi, P. M., E. J. Neuner, and N. L. Anderson (2002). Preliminary
evaluation of seismic hazards for emergency rescue route, U.S. 60,
Missouri, Environ. Eng. Geosci. 8, no. 4, 261–277.

Seed, H. B., and J. I. Sun (1987). Relationship between soil conditions and
earthquake ground motions in Mexico City in the earthquake of Sept.
19, 1985, Earthq. Spectra 4, no. 4, 687–730.

Seed, H. B., M. P. Romo, J. I. Sun, A. Jaime, and J. Lysmer (1988). The
Mexico earthquake of September 19, 1985: Relationships between soil
conditions and earthquake ground motions, Earthq. Spectra 4, 687–729.

Seed, H. B., C. Ugas, and J. Lysmer (1976). Site-dependent spectra for earth-
quake-resistant design, Bull. Seismol. Soc. Am. 66, no. 1, 221–243.

Silva, W., N. Gregor, and R. Darragh (2002). Development of regional hard
rock attenuation relations for central and eastern North America, Tech-
nical Report, Pacific Engineering and Analysis, El Cerrito, California,
57 pp.

Somerville, P., N. Collins, N. Abrahamson, R. Graves, and C. Saikia (2001).
Ground motion attenuation relations for the central and eastern United
States, Final Report to U.S. Geol. Surv., 38 pp.

St. Louis City Planning Commission (1969). History: Physical Growth of
the City of St. Louis, St. Louis City Planning Commission, St. Louis,
Missouri.

Street, R., D. Hoffman, and J. Kiefer (2004). Comment on “Survey of his-
torical buildings predating the 1811–1812 New Madrid earthquakes
and magnitude estimation based on structural fragility” by Vladimir
G. Kochkin and Jay H. Crandell, Seismol. Res. Lett. 75, no. 6,
744–746.

Tavakoli, B., and S. Pezeshk (2005). Empirical-stochastic ground-motion
prediction for North America, Bull. Seismol. Soc. Am. 95, no. 6,
2283–2296.

Toro, G. R., and W. J. Silva (2001). Scenario earthquakes for Saint Louis,
MO, and Memphis, TN, and seismic hazard maps for the central
United States region including the effect of site conditions, Final Tech-
nical Report to the U.S. Geol. Surv., Risk Engineering, Inc., Boulder,
Colorado.

Toro, G. R., N. A. Abrahamson, and J. F. Schneider (1997). Model of strong
ground motions from earthquakes in central and eastern North
America: Best estimates and uncertainties, Seismol. Res. Lett. 68,
no. 1, 41–57.

Tuttle, M. P., E. S. Schweig, J. D. Sims, R. H. Lafferty, L. W. Wolf, and
M. L. Haynes (2002). The earthquake potential of the New Madrid
seismic zone, Bull. Seismol. Soc. Am. 92, no. 6, 2080–2089.

Van Arsdale, R. B., D. Pryne, and W. Edward (2013). Northwestern exten-
sion of the Reelfoot north fault near New Madrid, Missouri, Seismol.
Res. Lett. 84, no. 6, 1114–1123.

Van Arsdale, R. B., R. A. Williams, E. S. Schweig, K. M. Shedlock, J. K.
Odum, and K. W. King (1995). The origin of Crowley’s Ridge,
northeastern Arkansas: Erosional remnant or tectonic uplift? Bull.
Seismol. Soc. Am. 85, no. 4, 963–986.

Wald, D. J., and T. I. Allen (2007). Topographic slope as a proxy for seismic
site conditions and amplification, Bull. Seismol. Soc. Am. 97, no. 5,
1379–1395.

Wald, D. J., V. Quitoriano, T. Heaton, and H. Kanamori (1999). Relation-
ships between peak ground acceleration, peak ground velocity, and
modified Mercalli intensity in California, Earthq. Spectra 15, 557–
564.

Whitfield, J. W. (1982). Surficial materials map of Missouri, Missouri
Geological Survey, Rolla, Missouri.

Whitfield, J. W., R. A. Ward, J. E. Denne, D. F. Holbrook, W. V. Bush, J. A.
Lineback, K. V. Luza, K. M. Jensen, W. D. Fishman, G. M. Richmond,
and D. L. Wiede (1993). Quaternary Geologic Map of the Ozark
Plateau 4 × 6 degrees quadrangle, United States, U.S. Geol. Surv.
Miscellaneous Investigations Series Map I–1420 (NJ-15), Denver,
Colorado, scale 1: 1,000,000.

Williams, R. A., R. L. Dart, and C. M. Volpi (2010). Bicentennial of the
1811–1812 New Madrid earthquake sequence December 2011–
2012, U.S. Geol. Surv. General Information Product 118, Denver,
Colorado.

Appendix

To calculate 0.2 s spectral acceleration and peak ground
velocity, we employed the regression equation derived by
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Atkinson and Boore (2006) for the central and eastern United
States:

log PSA � c1 � c2M � c3M2 � �c4 � c5M�f1
� �c6 � c7M�f2 � �c8 � c9M�f0
� c10Rcd � S; �A1�

in which PSA is pseudospectral acceleration with 5% damp-
ing;M is moment magnitude; Rcd is distance to the fault (km);
f0 � max�log�10=Rcd�; 0�; f1 � min�logRcd; log 70�;
f2 � max�log�Rcd=140�; 0�; and S is the soil amplification
factor (e.g., hard-rock sites = 0). Refer to Atkinson and Boore
(2006) equation (5) and table 6 for c coefficients, and equa-

tions (7a–8d) and tables (8–9) for soil amplification factors.
The geologic units are described in Table A1. The generalized
geologic cross section (west to east) of the upper Mississippi
Embayment is shown in Figure 2.
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Table A1
Geologic Units in the Study Area

Era Period Geologic Unit Material

Cenozoic Quaternary Alluvium Clay, silt, sand, and gravel
Tertiary Claiborne Sand, silt, and clay

Wilcox sandstone Sandstone, clay, and gravel
Midway group Clay and sand

Mesozoic Cretaceous McNairy formation Sandstone with clay and gravel
Paleozoic Ordovician Powell dolomite Silty cherty dolomite and chert with sandstone beds

Jefferson City dolomite
Roubidoux formation Sandstone, chert, and dolomite
Gasconade dolomite Cherty dolomite

Cambrian Eminence dolomite Dolomite with chert

Modified from Middendorf (2003).
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