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Relation between charge-dipole interactions and the
p
E-dependent

mobility in molecularly-doped polymers

P.E. Parris
Department of Physics, University of Missouri-Rolla, Rolla, MO 65409

Organic Photorefractive Materials and Xerographic Photoreceptors
SPIE Vol. 2850, 139 (1996)

ABSTRACT

Time-of-�ight measurements on a wide variety of molecularly-doped polymers reveal carrier mobilities that
exhibit an exponential dependence on the square root of the applied electric �eld. Recent attempts to explain
the observed �eld dependence have focused on the role played by spatial and energetic disorder. It has also been
conjectured that the charge-dipole interactions often identi�ed as the source of energetic disorder could be of
su¢ cient range to lead to correlations in the energies of neighboring hopping sites. We have analytically explored
the e¤ect of such correlations on high �eld carrier transport in random potentials, and discuss how particular
features of the correlations associated with charge-dipole interactions might lead to behavior similar to that seen
in experiment.

1 Introduction

High-�eld time-of-�ight experiments have been used for over two decades to characterize hopping mobilities
of photoexcited charge carriers in molecularly-doped polymers and amorphous molecular glasses.1{3 Numerous
measurements over a large range of �elds and temperatures have established several nearly universal features that
appear to characterize these materials. In particular, the �eld-dependent mobility � of these systems is typically
found to exhibit a thermally-activated behavior with a strong exponential dependence1{4

� = �0 exp

�
� �

kT

�
exp

h


p
E
i
; (1)

on the square root of the electric �eld E. In (1), T is the absolute temperature, k is Boltzmann�s constant, and
�0 is a prefactor that tends to reveal an exponential dependence

�0 = a0�
2e�2�=�0 (2)

upon the mean interdopant distance � = n�1=3. In a particular form of this phenomenological expression proposed
by Gill,5 the activation energy � is temperature independent, and the �Poole-Frenkel�factor is written


 = B(� � �0); (3)

where � = 1=kT ,and B and �0 = 1=kT0 are constants. 1
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Many recent theoretical attempts to explain this observed �eld dependence have explored the role played by
spatial and energetic disorder.2,6{8 Numerical simulations by Bässler and coworkers have focused on a Gaussian
disorder model (GDM), which seeks to describe the transport as a biased random walk among dopant molecules
having independent Gaussian-distributed random site energies.2 One result of extensive analysis and characteri-
zation of numerical work on the GDM, has been the introduction and widespread use of an empirical relation for
the mobility, formally identical to (1) except for a quadratic temperature dependence, i.e., �=kT = (2�=3kT )2;
and a slightly di¤erent parameterization of the Poole-Frenkel factor 
 = C(�2�2 � �2), where � is the width of
the energetic disorder, � is a constant characterizing the o¤-diagonal (spatial and orientational) disorder, and
C is a universal constant. Simulations based upon the GDM satisfactorily explain many features of experiment,
such as the time-of-�ight transients. Unfortunately, mobilities deduced from simulation on the GDM2,6 and other
numerical work which treats the spatial disorder in a somewhat di¤erent fashion8 predict a �eld dependence simi-
lar to (1) only in a relatively narrow range at rather large �elds (E > 105V/cm). By contrast, the experimentally
observed linear dependence of log � on

p
E has been clearly established9 down to some of the lowest �elds probed

experimentally (E � 8� 103 V/cm).

Simple theoretical arguments would suggest that, since the electric �eld enters the hopping rates only through
the combination eEr=kT; where e is the electronic charge and r the hopping distance, a strong �eld dependence
should be expected only when the potential drop F = eE` across a relevant length scale in the system is
comparable to kT . Identifying ` with a typical nearest-neighbor distance leads, through this simple argument,
to a �eld dependent mobility only at the relatively higher �elds where it is, in fact, observed in simulation. The
observation of a �eld-dependent mobility at lower �elds, on the other hand, seems to provide evidence for a larger
relevant length scale in the problem. Such a length scale, it turns out, arises naturally from one of the mechanisms
often proposed as the source of the energetic disorder in these materials.

In particular, it has been recently shown that a Gaussian-like density of states of the type assumed in the
GDM can arise from the interaction of charge carriers with a random distribution of permanent electric dipoles,
having magnitudes typical of those associated with the host and dopant molecules from which these materials are
typically formed.10{12 In the most general form of what has been referred to as the�dipolar disorder model�, these
permanent dipole moments are associated either with dopant molecules, with repeat units of the host polymer,
or with both. Considerable data and analysis establishing a relationship between carrier mobilities and group
dipole moments of molecular constituents has lent support to this view of charge-dipole interactions as the source
of energetic disorder in these systems.10{17

Although many recent investigations of the dipolar disorder model have focused on establishing its consistency
with speci�c assumptions and parameters of the standard Gaussian disorder model, it was pointed out recently
by Novikov and Vannikov17 from simulations of the �uctuating potential experienced by a charge in the presence
of randomly distributed dipoles, that the long-range nature of the charge-dipole interaction leads to positive
algebraic correlations among the energies of neighboring hopping sites. This is in contrast to one of the basic
assumptions of the GDM, in which site energies are treated as uncorrelated random variables. These ideas were
carried an important step further by Gartstein and Conwell18 who showed that �nite-range correlations imposed
upon the standard GDM push the regime over which the �eld dependence is described by (1) to lower �elds, in
better agreement with experiment.

In a recent paper,19 Dunlap, Parris, and Kenkre presented a simple analytical theory describing the e¤ects
that algebraic correlations of the type that arise in the dipolar disorder model have on carrier transport. In
particular, it was shown that the speci�c correlation that arises in the dipolar disorder model can lead, even at
relatively low �elds, to the speci�c

p
E �eld dependence of the mobility observed in experiment. In this paper

we review the arguments leading to that result.



2 Field-Dependent Mobility

We consider a simpli�ed model describing a photoexcited carrier migrating among dopant molecules as it
crosses a sample in the presence of an electric �eld E. We assume that the actual percolating path taken by
the carrier is determined primarily by the �uctuation in interdopant distances, upon which the hopping rates are
exponentially dependent. The resulting critical transport path will then be of reduced dimensionality relative to
a typical three dimensional random walk, with the next site to which the particle hops being, typically, one of the
two neighboring sites to which it is closest in real space. At this stage energetic considerations are less important,
since the energies of neighboring sites are strongly correlated. In the model, this correlation arises because the
energy of a carrier occupying any one of the molecular sites along this path will be a random variable arising
from the sum of the many long-range interactions that the particle experiences due to a �xed concentration n0 of
randomly distributed point dipoles, each with dipole moment ~p. Formally, we treat the concentration of dipoles
as being distinct from the concentration of dopant molecules among which the carrier moves. This is done for
two reasons: �rst, as discussed above, we envision situations in which there is a contribution due to the molecular
constituents of the host polymer, and secondly we recognize that the typical density of dopant molecules forming
the critical pathway may well di¤er from the actual dopant density itself. Thus, a carrier at the nth dopant
molecule experiences a random energy un of zero mean associated with an overall distribution of site energies of
signi�cant width � > kT .

Focusing only on those dopant molecules associated with the low dimensional path along which the carrier
drifts, we write a one-dimensional master equation

dPn
dt

= �(Wn�1;n +Wn+1;n)Pn + Wn;n�1Pn�1 +Wn;n+1Pn+1; (4)

for the probability Pn(t) of �nding the carrier at the nth site along this path. The hopping rates which appear
in this relation obey a detailed balance relation Wn�1;n=Wn;n�1 = exp[� 1

2�(un�1 � un � F )], where F = eE� is
the energy change induced between two sites by the �eld. (Because we are focusing on the e¤ects associated with
energetic correlations we ignore any �uctuations in the distances associated with neighboring sites.) Independent
of how this detailed balance condition is implemented, the one-dimensional aspect of the transport equation that
we have assumed allows the steady state drift velocity to be obtained exactly. In what follows we give a brief
derivation of the drift velocity similar to that originally given by Derrida.20 Seeking the bulk thermodynamic
properties, we periodically repeat the sample (assumed to be of length L = N�) and consider the steady-state
probability current �owing through the resulting in�nite system in response to the driving �eld. In steady state,
the net probability current J �owing through each bond in the chain must be the same, i.e., the quantity

J =Wn+1;nPn �Wn;n+1Pn+1: (5)

must be independent of n. Solving this di¤erence equation for

Pn =
J

Wn+1;n
+
Wn;n+1

Wn+1;n
Pn+1 (6)

and iterating N times gives

Pn = J

�
1

Wn+1;n
+ � � �+ Wn;n+1 � � �Wn+N�2;n+N�1

Wn+1;n � � �Wn+N�1;n+N�2

1

Wn+N;n+N�1

�
+

NY
j=1

Wj;j+1

Wj+1;j
Pn; (7)

where we have used a boundary condition Pn+N = PN valid for the periodically repeated system. Collecting
terms in Pn we obtain the relation

Pn

241� NY
j=1

Wj;j+1

Wj+1;j

35 = J

Wn+1;n

241 + N�1X
i=1

iY
j=1

�
Wn+j�1;n+j
Wn+j+1;n+j

�35 : (8)



Summing over n and invoking an arbitrary normalization
P

n Pn = 1 appropriate to a carrier density of one
independent particle per N sites yields the current density J = v=N; where

v =

h
1�

QN
n=1

Wn;n+1

Wn+1;n

i
1
N

PN
n=1

1
Wn+1;n

h
1 +

PN�1
i=1

Qi
j=1

�
Wn+j�1;n+j
Wn+j+1;n+j

�i (9)

is the associated drift velocity. This expression can be simpli�ed if we assume symmetric hopping rates Wn�1;n =
�0 exp[� 1

2�(un�1 � un � F )], for which the last expression reduces, after some work, to
19

v =
�0�e

�F
2

�
1� e��NF

�
1
N

PN�1
m=0 e

�m�F PN
n=1 e

��une�un+me��n+m
(10)

in which 2�n = un+1�un. The exponential e��NF in the numerator is entirely negligible, with �NF representing
the ratio of the potential drop across the sample to the mean thermal energy. In the limit that the energy di¤erence
between neighboring sites is small compared to kT (as will tend to occur when the energies of those sites are
positively correlated) we ignore factors involving �n+m, so that

v =
�0�e

�F
2PN�1

m=0 e
�m�F he��une�un+mi

; (11)

where we have identi�ed the sum

he��une�un+mi = 1

N

NX
n=1

e��une�un+m (12)

over the macroscopic crystal (N ! 1) with the ensemble average of the associated exponentials. Focusing on
�elds small enough that the �eld-induced potential drop across a nearest-neighbor distance is small, i.e., �F < 1,
we approximate the exponential in the numerator of (11) by unity, and approximate the remaining sum in the
denominator by an integral, to obtain an expression for the �eld dependent mobility19

� = v=E =
�0

�
R1
0
dy e��yhe��U(0)e�U(y)i

(13)

which involves the Laplace transform of the correlation function (12), with U(y) representing the zero-�eld
energy of a site at y, the Laplace variable � = �eE representing the applied �eld, and the prefactor �0 = ��0e�

2.
(Obviously, for signi�cantly larger �elds, Eq. (11) can still be used to numerically evaluate the drift velocity,
and thus the mobility, once the associated correlation function has been evaluated). We note, in passing, the
interesting structure of Eq. (13), which relates the nonlinear (i.e., high �eld) response of the system in the presence
of a driving �eld to the Laplace transform of an equilibrium correlation function of the undriven system. This is
reminiscent of the familiar Kubo relation which relates the linear response of a system to the Fourier transform
of a di¤erent equilibrium correlation function.

3 Dipolar Disorder

Equation (13) is applicable to any disordered one-dimensional chain with su¢ cient correlations that the
underlying variation in the potential between neighboring sites is small compared to the thermal energy. We now
consider, within the context of the dipolar disorder model, evaluation of the correlation function he��U(0)e�U(y)i
= he��y i appearing in (13), where �y = U(y) � U(0) represents the spatially-�uctuating energy di¤erence
between two sites separated by a displacement y. As we have noted, numerical investigations suggest that the
overall distribution of site energies is well approximated by a Gaussian. The mean energy di¤erence h�yi between



all sites separated by a distance y is easily shown to vanish. We assume, as in the lattice calculations of Novikov
and Vannikov,17 that the distribution of energy di¤erences is, for each value of y; also well-approximated by a
Gaussian, so that the correlation function of interest can be described by a relation

he��y i = e 12�
2h�2

yi (14)

involving only the second moment h�2yi. To calculate this latter quantity we compute the potential energy

U(~r0) = �
X
m

~pm � ~E~r0(~rm) (15)

of a carrier of charge e located at a point ~r0 in a medium containing independently distributed and randomly
oriented point dipoles ~pm: In (15),

~E~r0(~r) =
e

4��

~r � ~r0
j~r � ~r0j3

(16)

is the �eld at ~r due to the charge at ~r0. Equation (15) can be rewritten exactly in the form

U(~r0) = �
Z
d3r ~p(~r) � ~E~r0(~r); (17)

where ~p(~r) =
P

m ~pm�(~r � ~rm) represents a �uctuating polarization density. We exclude the interaction energy
of the charge with the molecule on which it is sitting, which will be the same for all similar dopant molecules, by
excluding from the region of integration a volume of some radius a comparable to the size of a dopant molecule.
This is mathematically equivalently to treating the �eld in (16) as arising from a uniformly charged sphere of
radius a; inside of which the �eld vanishes. The energy di¤erence �y = U(~y)�U(0) between two points separated
by an arbitrary displacement ~y then becomes,

�y =

Z
d3r ~p(~r) � ~E(~r) (18)

where we have introduced a hypothetical �eld ~E(~r) = ~E0(~r) � Ey(~r); which can be mathematically interpreted
as the �eld due to a positive sphere of radius a located at the origin and a negative sphere located at ~y. This
interpretation is useful for evaluating h�2yi, which may now be written as the double integral,

h�2yi =
Z
d3r

Z
d3r0 ~E(~r) � h~p(~r) ~p(~r0)i � ~E(~r0): (19)

Evaluation of the average
h~p(~r) ~p(~r0)i =

X
n;m

h~pm~pmih�(~r � ~rn)�(~r0 � ~rm)i (20)

over the random orientations and positions of the independently distributed dipoles is straightforward, insofar as
orientational and spatial averages can be performed separately. Since the orientationally-averaged dipole moment
vanishes, i.e., h~pmi = 0; the average reduces to

h~p(~r) ~p(~r0)i = h~pm~pmi
X
m;n

�nmh�(~r � ~rn)�(~r0 � ~rm)i = h~pm~pmi�(~r � ~r0)h
X
n

�(~r � ~rn)i: (21)

The average of the last sum just gives the mean dipole density n0; while the orientational average of the dyadic
product h~pm~pmi yields 1

3p
21, where 1 represents the unit tensor of second rank. With this result, (19) can be

expressed in the form

h�2yi =
2p2n0
3�

Z
d3r

1

2
� j ~E(~r)j2; (22)

which is now easily identi�ed at the energy needed to set up the �eld ~E(~r) = ~E~r0(~r) � E~y(~r) of two oppositely
charged spheres of radius a separated by a distance y. Provided the two spheres do not overlap this is a textbook
electrostatics problem, with the result17,19

h�2yi =
2p2n0
3�

�
e2

4��a
� e2

4��y

�
= 2�2

�
1� a

y

�
; (23)



in which � =
�
e2p2n0=12��

2a
�1=2

. Thus, for y > 2a, the correlation function (14) takes the form

he��y i = exp
�
�2�2

�
1� a

y

��
: (24)

We now substitute (24) into (13) and evaluate the resulting Laplace transform to obtain21,19

� =
�0e

��2�2

2�� (�eEa)
1=2
K1

h
2�� (�eEa)

1=2
i ; (25)

where K1(z) is the �rst-order modi�ed Bessel function of the third kind. Finally, for 2�� (�eEa)
1=2

> 1; the
Bessel function in (25) is well represented by its asymptotic expansion [see, e.g., Ref. 21, p. 963.] K1(z) �

p
�=2z

exp(�z) ; leaving a mobility19

� = �0 (E) exp
�
��2�2

�
exp

�
2��

p
�eEa

�
(26)

which displays the characteristic �eld dependence observed in molecularly-doped polymers, in which �0(E) =

�0
�
���

p
�eEa

�1=2
is a prefactor that is slowly varying relative to the exponential factors. Note that the �eld

independent prefactor exp
�
��2�2

�
supports the quadratic temperature dependence associated with the GDM,

but omits the factor 2=3 that appears in that model.

The simple analysis presented above and in Ref. 19 allows a number of conclusions to be drawn regarding
charge transport in disordered systems. First, it provides an analytical con�rmation of the idea that site energy
correlations, when present, can play an important role in determining the precise �eld dependence of the mobility.
The magnitude and concentration of the dipole moments associated with dopant molecules in typical molecularly-
doped polymers insures that, at the very least, they will provide a background of correlated energetic disorder
su¢ ciently strong that it cannot be legitimately neglected in describing these systems. The speci�c correlations
that arise in the charge-dipole model lead, in this simple one-dimensional model, to the precise �eld dependence
observed in the molecularly-doped polymers. We note in passing that the analysis presented here can be easily
extended to treat other types of correlations arising, e.g., from induced dipole interactions, and charged defects.
It remains to be seen whether the agreement in form suggested by Eq. (25) will be quantitatively validated
in terms of the dopant dependence of the mobility observed in a wide variety of physical systems. While the
general relationship observed between dipole moments of dopant molecules and the inferred activation energies is
captured in the calculation presented above [Note the relation between the strength of the energetic disorder and
the properties of the dipole distribution implicit in the expression following Eq. (23)], it is not yet clear whether
the concentration dependence of the activation energy predicted from the present calculation can be quantitatively
reconciled with that deduced in experiment. In addition, while we have made plausible arguments regarding the
potential applicability of our analysis to describe the bulk behavior of a system, the rigorous extension of these
ideas to three-dimensional transport remains an important area for future theoretical studies.
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