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Abstract 

Recurrent neural networks have the potential to per- 
form significantly better than the commonly used 
feedforward neural networks due to their dynami- 
cal nature. However, they have received less atten- 
tion because training algorithms/architectures have 
not been well developed. In this study, a recursive 
least squares algorithm to train recurrent neural net- 
works with an arbitrary number of hidden layers is 
developed. The training algorithm is developed as an 
extension of the standard recursive estimation prob- 
lem. Simulated results obtained for identification of 
the dynamics of a nonlinear dynamical system show 
promising results. 

1. Introduction 

Considerable attention is being focused on using neu- 
ral networks for identification and control of dynam- 
ical systems [l]. Neural networks are attractive be- 
cause they can be trained off-line with very high 
accuracy over a large input space without a priori 
knowledge of the system equations, and they can 
continue to learn (training and learning are used in- 
terchangeably here) during on-line application. 

Past studies on neural networks have concentrated 
on feedforward neural networks because of the 
existence of well developed training algorithms. 
On the other hand, recurrent neural networks 
have received less attention because training algo- 
rithms/architectures have not been well developed. 
Considerable motivation exists in developing this be- 
cause recurrent neural networks have the potential 
for better approximation ability, shorter training pe- 
riod, and wider range of dynamic behavior due to 
their dynamical nature. 

In this study, a recursive least squares (RLS) algo- 
rithm is developed to train recurrent neural networks 
with an arbitrary number of hidden layers. The RLS 
trainiig algorithm uses second derivative inform+ 
tion of the error function and presumably will result 
in faster learning. Simulated results are presented 
for the identification problem of a nonlinear dynam- 
ical system to show the effectiveness of the training 
method. 

2, Previous Research 

Although feedforward neural networks have been 
used successfully to solve a wide variety of problems, 
they are not without problems. One of the major 
problems is in the slow convergence resulting in ex- 
cessive training time. This h u  been confirmed by 
Hecht-Nielsen 121 who has shown that the error sur- 
face being minimized is very complicated with local 
minima and flat regions. 

A number of higher order training algorithms have 
been presented to accelerate convergence. Parker 
[3], Watrous [4] and Becker and le Cun (51 have 
used some form of Newton’s method to include 
second-order terms for learning. Kollias and Anas- 
tassiou [6] have developed an adaptive training al- 
gorithm based on an efficient implementation of 
the Marquardt-Levenberg least squares optimization 
technique. Singhal and Wu [7], Shah and Palmieri [8] 
and Jin, et al. (91 have used the extended Kalman 
filter algorithm to train feedforward neural networks. 

One common feature of the higher order training al- 
gorithms is that they are computationally intensive. 
The better the Convergence property, the more in- 
tense are the computations. Thus the advantage 
gained in the need to present the neural network with 
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the training set fewer times may be negated by the 
higher computational requirements. However, if the 
computations can be carried out in a parallel envi- 
ronment, there is potential for significantly decreas- 
ing the training time. 

Various approaches to train recurrent neural net- 
works have been presented. Rumelhart, e t  of. [lo] 
have presented the general framework for this prob- 
lem. The recurrent neural network is unfolded into 
a multilayer neural network that grows by one layer 
with each time step. Thus the storage and computa- 
tional requirements for a long training sequence can 
be prohibitive. Pineda [ll] has generalised the back- 
propagation technique to recurrent neural networks. 
This method requires a second dynamical system of 
the same size as the original system to implement 
the backward propagation equation in the weight up- 
date process. Pearlmutter (121 has extended Pineda's 
work to include time-dependent trajectories. Sud- 
harsanan and Sundareshan [ 131 have recently pre- 
sented an elegant approach which does not require 
the solution of a second dynamical system and re- 
sults in simplified training rules. The three-layer ar- 
chitecture (one input layer, one hidden layer and one 
output layer) resembles that of feedforward neural 
networks. Puskorius and Feldkamp (141 and Ku and 
Lee [ 151 have used similar feedforward type architec- 
tures. In these two studies, a discrete time formu- 
lation was used compared to the networks in Refs. 
[ 11-13] which evolve continuously in time according 
to a set of coupled differential equations. 

In this study, a RLS training algorithm is developed 
to train recurrent neural networks with an arbitrary 
number of hidden layers. The training algorithm is 
quite general, and is developed as an extension of the 
standard linear recursive estimation problem and is 
similar to the one obtained by Kollias and Anastas- 
siou 161 using the Marquardt-Levenberg least squares 
optimization method. The RLS training algorithm 
uses second derivative information of the error func- 
tion and presumably will result in faster learning. 
This study generalizes and extends the results pre- 
sented in Refs. [11-15]. 

S. Recursive Least Squares Paining 
Algorithm 

0 1  0 1  / o  

&-Jooo 

Input Layer Hidden Layer #I Hidden Layer #L-1 Output Layer 
(n,neumns) (n, neurons) (nL-, neurons) (n,neurons) 

Figure 1: Schematic of a Multilayer Recurrent Neural 
Network 

a dynamical neural network with sigmoidal process- 
ing elements. The dynamics of the network can be 
described by 

Tk k =-a + Wrk a (xk) +Wk a-1 

k = l ,  ..., L-1,  (1) 

Y = W L  % - 1, (2) 

where ~0 E Rno is the input vector, xk = 
[ q , k ,  z2,k, . . ., znk,k IT E R"k is a vector describ- 
ing the state of the neurons in the kth hidden layer, 
a(.) : ?Rnk --+ ?Rnk is a vector-valued function with 
sigmoidal elements for the kth hidden layer, wrk = 

. . ., Wink,rk 1' E Rnk denote the intra-layer connec- 
tion weights from neurons in the kth hidden layer to 
the ith neuron within the kth hidden layer, Wk = 

I' E 8 " k - l  denote the connection weights 
from neurons in the (k - 1)th layer to the i th neu- 
ron in the kth layer, Tk = diag[ TI,&, Tz,~, . . . , T n k , k ]  

E gZnkxnk is a diagonal matrix of time constants for 
the kth hidden layer, denotes the stable equi- 
librium state of the neurons in the (L - 1)th layer 
for the input ~ 0 ,  y = [ y1, ya,. . . , yn, 1' E 8"' 
is the output vector, and the over dot denotes time 
derivative. Note that under steady-state conditions, 
Eq. (1) can be written as 

[ Wl,rk, w2,rkj 8 *, wnk,rk IT, Wi,rk = [ Wil,rk, wi2,rk, 

[ ~ 1 , k r  W Z , ~ ,  - v wnk,k IT, wi,k = [ wil,k, W P , ~ ,  * 0 ,  

jik = Wrk a(&)+ Wk 2k-1, k = 1, . . - 9  L - 1, (3) 

As shown in Fig. 1, the input layer is layer 0 with 
neurons, layers 1 - L - 1 are hidden layere with nl - nh-1 neurons, respectively, and the output layer 
is layer L with n~ neurons. The hidden layers form 

where the input is now denoted by ji0, for conve- 
nience. It is assumed that for an input at the (q-1)th 
time instant, the neural network reaches steady state 
before the qth time instant. The finite amount of 
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time allowed for the system to reach steady state is 
to facilitate, for example, calculation of the steady- 

D~ = DWi,pk (i = 1,. . . , n k ,  k = 1,. , . ,L - 1) 

C (D3n - DYn) DLi , rk  state solution in real-time. D 6  = 
n= 1 The problem is to  find the connection weights such 

that the following error function is minimised. O a  = 

d=l n= 1 

where B is a weight factor or forgetting factor al- 
lowing a higher weight for the last training p&, fin 
and yn are the desired and actual outputs of the 
nth neuron in the output layer, respectively, and the 
leading superscript denotes the training p& num- 
ber. The error function in Eq. (4) can be minimised 
by setting its derivative with respect to  ~ i , ~ k  (i = 
1 ,..., n k ,  k =  1, ..., L - 1 )  andWi,k ( i = l , . . . , n k ,  
k = 1,. . . , L) to rero. A recursive method for solv- 
ing these equations for the connection weights can be 
formulated in the following manner. Note that with 
the exception of the partial derivative of D E  with 
respect to WL, the other equations are nonlinear. 
Therefore, the standard recursive estimation can be 
employed directly to obtain the weight update rule 
for the neurons in the Lth layer. But for the other 
partial derivatives, the equations are first linearized 
about D - l ~ i , r k  (i = 1 ,..., nk, k = 1 ,..., L - 1) 
and D-lWi ,k  (i = 1 ,... )nk, k = 1 ,..., L - 1). 
These weights minimbe D - l  E and are assumed to be 
known. Then, by following the procedure employed 
in standard recursive estimation, one can obtain the 
weight update rule for the remaining neurons of the 
network (see Xu, et al. [16] for details). The re- 
sulting recursive weight update rules for the neurons 
have the general form 

Dw = D - l ~  + q Dk D6,  (5) 
where q is a small learning rate, as in gradient de- 
scent, the recursive update rule for the Kalman gain 
Dk and the approximate error covariance matrix DP 
is given by 

I 'p, (7) 
Dp,-[1-D72 1 Dk DaT D-  

B 
and expressions for D 6 ,  O a  and D ~ 2  for the various 
layers are as follows: 

D~ = D w i , L  (i = I,. . . , nL) 

"6 = D a  D 

O a  = D ~ L - l  

D7= = 1 

Yn - Yn 

n=l 

n= 1 

Here dini,rk (k = 1,.  . . , L - 1) are the steady-state 
solution of 

nk 
d k i , r k = -  d h a i , r k + d , k x  wli,rk d hal,rk+Ek, (8) 

k 1  

where ck = cri'=";t' wli ,k+l  dhnl . r (k+l ) ,  for 
k = 1 ,..., L -  2, €k = w n i , ~ ,  for k =  L- 1, and 
d,k (a9i .k  (dZi,k)/a d 2 i , k )  I C , ~ , ~ = L ~ ~ , ~ .  Note that it 
is possible to tailor the sigmoidal function such that 
&,k in Eq. (8) is small. Under this condition, Eq. (8) 

simplifies to di;ni,rk = ek ,  and thus precludes the 
need for integrating F+q. (8), for example, to obtain 
the steady-state solution. This idea was exploited by 
Sudharsanan and Sundareshan [13] in deriving sim- 
plified learning rules for their recurrent neural net- 
work. 

Training using the RLS algorithm is begun by ini- 
tialising the P-matrices to be equal to the identity 
matrix multiplied by a large constant. Then, for 
each training pair, Eq. (1) is integrated to obtain 
the stable equilibrium state of the network. Follow- 
ing this, Eq. (8) is integrated to obtain the steady- 
state d k i , r k  ( k  = I,. .. , L  - 1) values. Finally, the 
k-vector, P-matrix and weights for each neuron are 
updated. After one pass through the training set, 
another pass is begun. This is repeated until the 
error at the output is within desirable bounds. 

Due to the higher order nature, the RLS training 
algorithm is much more computationally intensive. 
For a single update of the network weights, the RLS 
algorithm requires exactly the same calculations of 
response and backpropagated errors as gradient de- 
scent. In addition, the RLS algorithm requires the 
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Figure 2: Response of the System 

calculation and storage of a P-matrix for each neuron 
in the network. Although these calculations are com- 
putationally intensive, an important point to note is 
that they can be done independently. This can be 
exploited in a parallel environment. In fact, in Ref. 
[17] it has been shown that the computation time 
of the RLS algorithm approaches that of standard 
backpropagation, the latter not being parallelisable, 
as more processors me applied to the matrix calcu- 
lations in a multiple processor machine, such as the 
Intel iPSC/2 multicomputer. 

Pineda [18] has noted that training a recurrent neu- 
ral network requires O(mN) calculations, where m 
is the number of time steps required to integrate the 
network differential equations, and N is the number 
of connection weights. The standard backpropaga- 
tion training of a feedforward neural network, on the 
other hand, requires O ( N )  calculations. Although 
training the recurrent neural network is computa- 
tionally more intensive than a feedforward neural 
network, one can argue that the recurrent neural net- 
work will generally need to be presented with the 
training set fewer times. Thus the overall comput- 
ing time will be less, resulting in faster learning. Of 
course, this can be further improved upon by solving 
the network differential equations and implementing 
the RLS training algorithm on a parallel computer. 

4. Simulated Results 

The effectiveness of the RLS training algorithm will 
be shown by solving the identification problem for a 
nonlinear dynamical system. The dynamical system 

1 00 10' 1 0 2  10" 
Training Cycles (Log Scale) 

Figure S: Learning Curves 

considered is given by the difference equation [13] 

Y(k + 1) = f[+), Y(k)l, (9) 

where z(.) is the input, y(.) is the system output, 
and k is the discrete time instant. A recurrent neural 
network is trained to identify the unknown function 

dom numbers between fl were chosen for the input 
t(k). Training sets of 100 points each were created. 
The recurrent neural network was trained using these 
training sets starting with random values between 
f O . l  for the connection weights, r)=0.25, @=0.96, 
and O P = l @  I. The forward and backward propa 
gation equations were numerically integrated using a 
4th-order Runge-Kutta method with sero initial val- 
ues. The input layer included one bias neuron with 
its value set equal to 1 and two hidden layers with 3 
neurons each were chosen. The diagonal elements of 
TI and T2 were chosen to be 1/400 and the sigmoidal 
function chosen was g(z) = -1 + 2/(1 + e-=). 
Figure 2 shows the desired and actual outputs for the 
tenth training cycle (set). As can be seen, the two 
curves are almost identical showing that the recur- 
rent neural network has been trained to identify the 
nonlinear system dynamics. The sum of the squared 
error in this case was calculated to be 8 x Fig- 
ure 3 shows that the sum of the squared error de- 
creases rapidly during the first few training cycles. 

To evaluate the performance of the recurrent neu- 
ral network, the identification problem was solved 
by training a 4-layer feedforward neural network 
(3-6-5-1 neurons) using the standard backpropaga- 
tion (BP) algorithm. The same parameters as in the 
recurrent neural network case were chosen. Figure 3 

f[~(k), ~ ( k ) ]  = l.lsin(cos(y(k))) + 1.5 ~(k). Ran- 
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shows the training results. It is clear that a very 
large number of training cycles (in excess of 2000) 
are required to reduce the sum of the squared error 
to the level achieved by the recurrent neural network 
in a small number of training cycles. 

6. Concluding Remarks 

A recursive least squares algorithm to train recur- 
rent neural networks with an arbitrary number of 
hidden layers is developed in this study. Simulated 
results obtained for identification of the dynamics 
of a nonlinear dynamical system show that the pro- 
posed training scheme could potentially reduce the 
training time considerably. Parallel implementation 
of the RLS training algorithm on an Intel iPSC/2 
multicomputer is currently being investigated. 
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