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A nonlinear dynamics model and qualitative analysis are presented to study the key effective factors for coupled axial/torsional
vibrations of a drill string, which is described as a simplified, equivalent, flexible shell under axial rotation. Here, after dimensionless
processing, the mathematical models are obtained accounting for the coupling of axial and torsional vibrations using the nonlinear
dynamics qualitative method, in which excitation loads and boundary conditions of the drill string are simplified to a rotating,
flexible shell. The analysis of dynamics responses is performed by means of the Runge-Kutta-Fehlberg method, in which the rules
that govern the changing of the torsional and axial excitation are revealed, and suggestions for engineering applications are also
given. The simulation analysis shows that when the drill string is in a lower-speed rotation zone, the torsional excitation is the key
factor in the coupling vibration, and increasing the torsional stress of the drill string more easily leads to the coupling vibration;
however, when the drill string is in a higher-speed rotating zone, the axial excitation is a key factor in the coupling vibration, and
the axial stress in a particular interval more easily leads to the coupling vibration of the drill string.

1. Introduction

Thedrill string consists of several drill pipes, drill collars, sta-
bilizers, and connections (crossover sub), subjected to some
heavy and complex dynamic loadings caused by different
sources, such as bit and drill string interactions with the
formations, torque exerted by the rotary table or top drive,
buckling, and misalignment. By producing different states
of stress, these loads might result in excess vibrations and
lead to failure of the drilling tools. Moreover, rotation of the
rotary table or top drive on the surface might be transformed
into a turbulent movement in the downhole. Three forms of
vibrations that have been identified for the drill string are
axial, torsional, and lateral vibrations, as shown in Figure 1 [1].

The coupling vibration of the drill string can lead to severe
vibration, and this energy boosts the amplitude of the string
vibration, increases bending and impacts with the borehole,
and leads to the early fatigue of tools and the reduction of bit
life. Moreover, impacts with the borehole wall tend to form
an overgauge hole or produce problems with the directional

control of the well and also increase the surface torque [2].
An analytical approach has been the basis for early analyses
[3, 4]. Yigit and Christoforou [5, 6] modeled the drill string
based on the assumed mode method. Their models account
for the coupling between the axial and transverse vibrations
[5] and between the torsional and transverse vibrations [6].
Khan [7] employs the FDM (finite difference method) to
solve the axial and torsional vibrations of the drill string,
neglecting the added mass and damping effects. Shyu [8]
studied the coupling between the axial and lateral vibrations
and the whirling of the drill string using FDM. Christoforou
and Yigit [9] extended their previous work to analyze the
coupled axial/torsional/flexural vibrations of drill strings by
means of a simplified, lumped parameter differential system.
Trindade et al. [10] introduced a nonlinear, continuous beam
model to study the influence of geometrical nonlinearity in
coupled axial/transversal vibrations of drill strings, which
has shown that the nonlinear model has strong quantita-
tive and qualitative discrepancies with respect to a linear
model.
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Figure 1: Three forms of drill string vibration.

In accord with the geometric nonlinear characteristics of
drill strings, and by adopting the combination of nonlinear
dynamics and FEM (finite element method), Sampaio et al.
[11] established the mathematical coupling model of axial
and torsional vibrations by comparing it with a linear model,
finding that the nonlinear model more accurately reflected
the features of the vibration of the drill string. Hakimi and
Moradi [12] introduced a differential quadrature method
to analyze the vibration of the drill string. Ren et al. [13]
and Ren and Yao [14], taking into account the flexible and
geometric large deformation of the drill string, established
the mathematical model of bending nonlinear vibration for
the horizontal well. In addition, taking into account other
factors of drill-string vibration, scholars have carried out
some research, such as on the (a) displacement and force
of the drill bit [15], (b) critical speed of the drill string
[16], (c) nonlinear collision and friction contact between
the drill string and the borehole wall [17, 18], (d) theory
and experiments about coupled solids-liquids [19], and (e)
the weight on bit (WOB) and rotation speed of the drill
string [20–22]. Gonçalves and Del Prado [23] analyzed the
nonlinear vibrations and dynamic instability of axially loaded
circular, cylindrical shells under both static and harmonic
forces, based on Donnell shallow shell equations. The most
dangerous region in parameter space is obtained, and the
triggering mechanisms associated with the stability bound-
aries are identified [23]. Based on the Sanders-Koiter theory,
Strozzi and Pellicano [24] analyzed the nonlinear vibrations
of functionally graded, circular, cylindrical shells and found
that when these shells that were having an actual hardening
response were simulated with an insufficient expansion, their
behavior could appear spuriously softening.

Based on the specific problem of the coupled vibration of
the drill string, scholars usually analyze the drill string to find
the relationship between the drilling process parameters and
the modal shapes and then change the drilling parameters
to avoid the resonance of the drill string, which is a very
practical control method; however, the key factor is to dis-
cover the relationship between the key dynamics parameters
and the coupled vibrations of the drill string. Considering
the complexity of the practical dynamics of the drill string
system and the comprehensiveness of the quantitative analy-
sis directly, this study employs the dimensionless method to
investigate themechanismof the coupled vibration of the drill
string qualitatively. This will reveal which key factors affect
the coupled vibration and how they function, which can be a
basis for the quantitative analysis of the coupling vibration of
the drill string.
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Figure 2: The mechanical model of the rotation, flexible shell.

2. Nonlinear Dynamics Motion Equation

During the process of drilling, the transverse vibration of
the drill string, which is intense at the bit in the bottom of
the well and attenuates quickly along the drill string, mainly
contributes to the bottom hole assembly (BHA); however, the
axial and torsional vibration affects the entire drill string.

In addition, several stabilizers support the lower portion
of the drill string and absorb most transverse vibration
energy. In other words, the transversemotion of the stabilized
section mainly contributes to the transverse dynamics at the
bit. The drill collars are assumed to be rigid for torsional
vibrations; that is to say, the torsional deformations are
assumed to take place only in the drill pipe, which can be
justified since the drill collars are much stiffer than the drill
pipe in torsion.Therefore, the transverse vibration of the BHA
is decoupled from the upper segments of the drill string, and
the entire drill string is assumed to be fixed at the top and free
at the bit for the axial and torsional motion [9].

Based on the above analyses, ignoring the transverse
vibration of the drill string, this work only analyzes the
mechanism of the coupled axial and torsional vibration of
the upper portion of the BHA. Here, assuming the centerline
of the shell before deformation as the axis, the drill string
is simplified to a flexible rotation shell instead of simply a
supported beam, which will ignore most torsional vibration.
The dynamics model is shown in Figure 2, where 𝑢

1
and

𝑢
2
are the displacement of axial 𝑥 and circumferential 𝑢,

respectively; ℎ is the thickness of the drill string; 𝐿 is the
length of the drill string; 𝜎

𝑥𝑥,0
is the initial axial stress, and

𝜎
𝜃𝜃,0

is the initial torsional stress.
To facilitate the calculation of the drill string strain, select

the arbitrary point displacement of the drill string as follows
[25]:

𝑢
1
= 𝑢, (1a)

𝑢
2
= V +

𝑧

𝑅

V, (1b)

where 𝑢 and V are arbitrary axial and circumferential dis-
placements of the drill string on the middle surface 𝑧 =

0, respectively; and 𝑅 is the middle radius of the drill
string.

Since the drill string cannot be thin, and the tangential
displacements 𝑢 and V of the drill string are not small,
the Flugge-Lur’e-Byrne nonlinear shell theory is selected, in
which two hypotheses are removed fromDonnell’s nonlinear
shell theory [26] in order to obtain more accurate nonlinear
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shell theories. One is the thinness assumption, and the other
is that the tangential displacements are infinitely small, which
leads to neglecting the nonlinear terms that depend on 𝑢 and
V.

Based on the nonlinear shell theory [25], the relationship
of the stress/displacement at any point on the drill string can
be expressed by

𝜀
𝑥𝑥

=

𝜕𝑢

𝜕𝑥

+

1

2

(

𝜕𝑢

𝜕𝑥

)

2

+

1

2

(

𝜕V
𝜕𝑥

)

2

+ 𝑧

1

𝑅

(

𝜕V
𝜕𝑥

)

2

, (2a)

𝜀
𝜃𝜃

=

1

𝑅

𝜕V
𝜕𝜃

+

1

2𝑅
2
(

𝜕𝑢

𝜕𝜃

)

2

+

1

2𝑅
2
(

𝜕V
𝜕𝜃

)

2

+

1

2𝑅
2
V2

−

1

𝑅
3
𝑧 (

𝜕𝑢

𝜕𝜃

)

2

,

(2b)

𝜀
𝑥𝜃

=

𝜕V
𝜕𝑥

+

𝜕𝑢

𝑅𝜕𝑥

+

1

2𝑅
2
(

𝜕𝑢

𝜕𝜃

)

2

+

1

𝑅

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝜃

+

1

𝑅

𝜕V
𝜕𝑥

𝜕V
𝜕𝜃

+ 𝑧𝜅
𝑥𝜃

,

(2c)

where

𝜅
𝑥𝜃

=

1

𝑅

𝜕V
𝜕𝑥

−

1

𝑅
2

𝜕𝑢

𝜕𝜃

−

1

𝑅
2

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝜃

−

1

𝑅
2

𝜕V
𝜕𝑥

𝜕V
𝜕𝜃

, (3)

where 𝜀
𝑥𝑥

and 𝜀
𝜃𝜃

are linear strain, 𝜀
𝑥𝜃

is shear strain, and
they are the dimensionless physical quantities. Here, (2a),
(2b), and (2c) make up most of the nonlinear term, which
avoids the nonlinear coupled axial and torsional terms in the
following analyses due to oversimplification.

Analogous to the case of plane stress, the stress in
thickness of the drill string is neglected [27]. Taking into
account the single material of the drill string, neglecting the
geometric imperfections, and subject to the initial axial and
torsional stress, the relationship between stress and strain can
be written as

𝜎
𝑥𝑥

= 𝐸
1
(𝜀
𝑥𝑥

+ 𝜅𝜀
𝜃𝜃

) + 𝜎
𝑥𝑥,0

, (4a)

𝜎
𝜃𝜃

= 𝐸
1
(𝜀
𝜃𝜃

+ 𝜅𝜀
𝑥𝑥

) + 𝜎
𝜃𝜃,0

, (4b)

𝜎
𝑥𝜃

= 𝐸
2
𝜀
𝑥𝜃

, (4c)

where 𝐸
1

= 𝐸/(1 − 𝜅
2
), 𝐸
2

= 𝐸/2(1 + 𝜅), 𝜅 is Poisson’s ratio,
and 𝐸 is the elasticity modulus.

Based on (2a), (2b), and (2c) and (4a), (4b), and (4c),
according to Hamilton’s principle, the dynamic equation of
the partial differential can be obtained as follows:

𝜌�̈� = (
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(5a)
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ℎ
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)
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ℎ
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+
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1
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−
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1
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+
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−

ℎ
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𝑅

,

(5b)

where 𝜌 is the density of the drill string, 𝐼 = ∫

1/2

−1/2
𝜌𝑑𝑧 is the

rotary inertia, and 𝐶
1
and 𝐶

2
are the damping coefficients of

the first modal and the second modal, respectively.
The modals of axial and torsional vibration are given as

[28]

𝑢 = 𝑤
1
(𝑡) sin(

𝜋𝑥

2𝐿

) cos 𝜃,

V = 𝑤
2
(𝑡) cos(2𝜋𝑥

𝐿

) sin 𝜃.

(6)

In the modals of the axial vibration and torsional vibration,
the number of longitudinal half-waves was equal to one and
two, respectively. In (6), when 𝑥 = 0 then 𝑢 = 0; when
𝑥 = 𝐿, then 𝑢 became the extreme value; when 𝑥 = 0 or
𝑥 = 𝐿 then V got the extreme value, all of which meet the
actual displacement boundary conditions of the drill string.
Substituting (6) into (2a), (2b), and (2c), and then substituting
the result into (4a), (4b), and (4c), produce𝜎

𝑥𝑥,𝑥=0
= 𝜎
𝑥𝑥,0

and
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𝜎
𝜃𝜃,𝑥=0

= 𝜎
𝜃𝜃,0

, which account for the boundary conditions of
the force.

Using the Galerkin method to disperse (5a) and (5b),
substituting (6) into (5a) and (5b), both sides of (5a) and (5b)
are multiplied by the mode of the right side of (6), integrated
in the circumferential and thickness direction. Making use
of modal orthogonality, the motion equation of the middle
surface displacement is obtained as follows:

�̈�
1
= 𝑎
1
𝐶
1
�̇�
1
+

𝑅ℎ𝜎
𝑥𝑥,0

2𝐿𝜌

−

ℎ𝜎
𝜃𝜃,0

2𝜌𝑅

𝑤
1
− 𝑎
2
𝑤
1
− 𝑎
3
𝑤
2

+ 𝑎
4
𝑤
1
𝑤
2

2
− 𝑎
5
𝑤
3

1
,

(7a)

�̈�
2
= 𝑎
1
𝐶
2
�̇�
2
− 𝑎
6
𝑤
1
+

1

𝜌

ℎ𝜎
𝜃𝜃,0

𝑅

𝑤
2
+ 𝑎
7
𝑤
2
𝑤
2

1
− 𝑎
8
𝑤
3

2
, (7b)

where 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6
, 𝑎
7
, and 𝑎

8
are the constant

coefficients, as listed in the Appendix. From (7a) and (7b),
we know that the vibration is a nonlinear, coupled equation
of axial and torsional vibration and that unilaterally taking
into account the single direction of the vibration is obviously
much too simplified to describe the actual vibration.The axial
stress, as external excitation, directly affects the dynamics
response. The torsional stress 𝜎

𝜃𝜃,0
, as parameter excitation,

affects the vibration by changing the axial stiffness, thereby
affecting the natural frequency of the drill string. Assuming
the axial and torsional excitation frequencies are integer times
of the rotation frequency of the drill string, the equation
itself will have two linear natural frequencies. Due to the
existence of the coupling and nonlinear terms, there is
a great difference between the actual vibration frequency
and the linear, natural frequency. In addition, subharmonic
resonance, superharmonic resonance, bifurcation, and chaos
phenomena are possible in the vibration system with the
parameters changing and the energy translating between the
modals.

3. Nonlinear Dynamics Average Equation

To facilitate the analysis, replace the coefficients in (7a) and
(7b) by 𝑎

𝑖
, 𝑏
𝑗
and use the dimensionless transformation as

follows (in the following dimensionless equation, the asterisk
was removed for the convenience of expression):

𝑥
∗

1
=

𝑥
1

𝐿

,

𝑥
∗

2
=

𝑥
2

𝐿

,

𝑡
∗

=

𝑅

𝐿
2
√

𝐸

𝜌

𝑡,

𝜎
∗

𝑥𝑥,0
=

𝜎
𝑥𝑥,0

𝐸

,

𝜎
∗

𝜃𝜃,0
=

𝜎
𝜃𝜃,0

𝐸

.

(8)

The multiscale transformation is employed as follows:

𝑎
𝑖
→ 𝜀𝑎

𝑖
,

𝑏
𝑗
→ 𝜀𝑏

𝑗
,

𝑖 ̸= 1, 𝑗 ̸= 2,

(9)

where 𝜀 is a small parameter used as a perturbation parameter
for determining the approximate solution for the motion of
the drill string [22].

Substituting (9) into (7a) and (7b), one can obtain a
motion equation that includes the small parameter 𝜀. Here,
assume the form of the equation as follows:

𝑥
𝑖
(𝑡, 𝜀) = 𝑦

𝑖0
(𝑇
0
, 𝑇
1
) + 𝜀𝑦

𝑖
(𝑇
0
, 𝑇
1
) + ⋅ ⋅ ⋅ (𝑖 = 1, 2) , (10)

where 𝑇
0
= 𝑡 and 𝑇

1
= 𝜀𝑡.

Here, the differential operators are employed as in the
following form:

𝑑

𝑑𝑡

=

𝜕

𝜕𝑇
0

𝜕𝑇
0

𝜕𝑡

+

𝜕

𝜕𝑇
1

𝜕𝑇
1

𝜕𝑡

+ ⋅ ⋅ ⋅ = 𝐷
0
+ 𝜀𝐷
1
+ ⋅ ⋅ ⋅ , (11a)

𝑑
2

𝑑𝑡
2

= (𝐷
0
+ 𝜀𝐷
1
+ ⋅ ⋅ ⋅)
2

= 𝐷
2

0
+ 2𝜀𝐷

0
𝐷
1
+ ⋅ ⋅ ⋅ , (11b)

where 𝐷
0
= 𝜕/𝜕𝑇

0
and 𝐷

1
= 𝜕/𝜕𝑇

1
.

Taking into account the principal parameter resonance
and 2 : 1 internal resonance, the resonance relationship can be
expressed as follows:

𝜔
2

1
= 4𝜔
2
+ 𝜀𝜎
1
,

𝜔
2

2
= 𝜔
2
+ 𝜀𝜎
2
,

(12)

where 𝜔
1
and 𝜔

2
are the axial and torsional linear natural

frequencies, respectively.
Taking into account the vibration response caused by

the axial and torsional excitation in the case of the above
resonance, the dimensionless axial and torsional excitation
in the frequency domain can be expanded into the following
form, including the two resonance frequencies [29]:

𝜎
𝑥𝑥,0

= 𝑞
1
𝑒
𝑖𝑡

+ 𝑞
1
𝑒
−𝑖𝑡

+ 𝑞
2
𝑒
2𝑖𝑡

+ 𝑞
2
𝑒
−𝑖𝑡

, (13a)

𝜎
𝜃𝜃,0

= 𝑞
3
𝑒
𝑖𝑡

+ 𝑞
3
𝑒
−𝑖𝑡

+ 𝑞
4
𝑒
2𝑖𝑡

+ 𝑞
4
𝑒
−𝑖𝑡

, (13b)

where 𝑞
1
and 𝑞

2
are the amplitude of the low frequency and

high frequency of the initial, axial stress, respectively; and 𝑞
3

and 𝑞
4
are the amplitude of the low and high frequencies of

the initial, torsional stress, respectively.
Substituting (8)–(12) into (7a) and (7b) and comparing

the same step coefficient of the small parameter 𝜀 on both
sides of the equations, one obtains a differential equation in
the following form:

For 𝜀
0

𝐷
2

0
𝑦
10

+ 4𝑦
1
= 0. (14a)
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For 𝜀
1

𝐷
2

0
𝑦
20

+ 𝑦
2
= 0. (14b)

The plural form solutions of (14a) and (14b) can be expressed
as

𝑦
10

= 𝐴
1
(𝑇
1
) 𝑒
2𝑖𝑡

+ 𝐴
1
(𝑇
1
) 𝑒
−2𝑖𝑡

, (15a)

𝑦
20

= 𝐴
2
(𝑇
1
) 𝑒
𝑖𝑡

+ 𝐴
2
(𝑇
2
) 𝑒
−𝑖𝑡

, (15b)

where 𝐴
1
and 𝐴

2
are the conjugation of 𝐴

1
and 𝐴

2
, respec-

tively. The plural solutions of 𝐴
1
and 𝐴

2
are formed as

follows:

𝐴
1
=

1

2

𝑥
1
+

1

2

𝑖𝑥
2
,

𝐴
2
=

1

2

𝑥
3
+

1

2

𝑖𝑥
4
,

(16)

where 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
are the projections of the vibration

vector on the complex plane, which is equal to the vibration
vector described as the amplitude and the phase.

Substituting (15a) and (15b) into (13a) and (13b), one
obtains themotion equationwith the small parameter 𝜀; then,
making the long term equal to zero, one obtains the averaging
equation in the rectangular coordinate as follows:

�̇�
1
= −

1

2

𝑎
9
𝑥
1
−

1

8

𝑎
10

𝑥
2
(𝑥
2

3
+ 𝑥
2

4
)

+

3

16

𝑎
11

𝑥
2
(𝑥
2

1
+ 𝑥
2

2
) ,

(17a)

�̇�
2
= −

1

2

𝑎
9
𝑥
2
−

1

8

𝑎
10

𝑥
1
(𝑥
2

3
+ 𝑥
2

4
)

−

3

16

𝑎
11

𝑥
1
(𝑥
2

1
+ 𝑥
2

2
) −

1

2

𝑞
2
,

(17b)

�̇�
3
= −

1

2

𝑎
12

𝑥
3
+

1

2

𝑎
13

𝑥
4
+

1

4

𝑎
14

𝑥
4
(𝑥
2

1
+ 𝑥
2

2
)

+

3

8

𝑎
15

𝑥
4
(𝑥
2

3
+ 𝑥
2

4
) ,

(17c)

�̇�
4
= −

1

2

𝑎
12

𝑥
4
−

1

2

𝑎
13

𝑥
3
−

1

4

𝑎
14

𝑥
3
(𝑥
2

1
+ 𝑥
2

2
)

−

3

8

𝑎
15

𝑥
3
(𝑥
2

3
+ 𝑥
2

4
) − 𝑞
3
,

(17d)

where 𝑎
9
, 𝑎
10
, 𝑎
11
, 𝑎
12
, 𝑎
13
, 𝑎
14
, and 𝑎

15
are the constant

coefficients, listed in the Appendix.
The change rules for the amplitude and phase angles in

the motion equation are found in (17a), (17b), (17c), and (17d)
using the form of the differential equation. We find that 𝑞

1

and 𝑞
4
have disappeared in (17a), (17b), (17c), and (17d), and

the parameters that can affect the dynamics response are only
𝑞
2
and 𝑞
3
. We also know that 𝑞

2
is the high-frequency item of

the initial axial excitation, and 𝑞
3
is the low-frequency item of

the initial, torsional excitation, corresponding to the dynamic
response of the drill string in low- and high-rotation speed
areas, respectively. So, we try to reveal relationships between
the two parameters with the coupling vibration of the drill
string by numerical simulation.

4. Numerical Simulation and
Qualitative Analysis

In the present section, the numerical simulation results
obtained from using the proposed model are discussed for
the upper portion of the BHA. The Runge-Kutta-Fehlberg
method with adaptive steps is employed to perform the
simulations, aiming at obtaining the dynamic response of the
coupled axial and torsional vibration in the case of resonance.
The geometric properties of the upper segment are the length
𝐿 = 1050m, themiddle diameter𝑅 = 0.1057m, the thickness
ℎ = 0.0171m, Poisson’s ratio 𝜅 = 0.26, the elastic modulus
𝐸 = 210GPa, the density 𝜌 = 7850 kg/m3, and the damping
coefficients, 𝐶

1
and 𝐶

2
, calculated from the considerations of

Spanos et al. [30]. The representative simulation results are
shown along with the changes in 𝑞

2
and 𝑞
3
.

4.1. Torsional Excitation. The Runge-Kutta-Fehlberg method
is employed to analyze the average of (17a), (17b), (17c), and
(17d), and bifurcations of the system under exciting forces are
obtained as shown in Figure 3.

From the bifurcation, along with the change in tor-
sional excitation 𝑞

3
, the response of the coupled axial

and torsional vibrations progresses through a cycle from
periodic motion to doubling periodic motion, to period-
multiplying motion, to quasiperiodic motion, while exhibit-
ing this unique phenomenon of nonlinear dynamics bifur-
cation. When the coupled vibration response is quasiperi-
odic motion, the amplitude of the drill string is obviously
higher than the period motion. With increasing amplitude
of the excitation, the responses change from quasiperiodic
motion to periodic motion; the amplitude of the vibration
does not increase. Instead, it decreases to a certain extent,
which is different from the results of the linear analysis
method.

By only increasing the torsional excitation until 𝑞
3

=

7.24 (see Figure 3) and leaving other initial conditions and
parameters the same, this creates the periodic responses
shown in Figure 4.

When 𝑞
3

= 7.26, the amplitude of the system increases
correspondingly accordingly.The period-doubling responses
of system are shown in Figure 5.

When 𝑞
3

= 7.5, the phase diagram of the coupled vibra-
tion changes; the jumping phenomenon is more obvious;
present period-multiplying responses are shown in Figure 6.

By increasing the value of 𝑞
3
so that 𝑞

3
= 7.68, the qual-

itative nature of the system response changes, presenting
corresponding quasiperiodic motions, as shown in Figure 7.
This shows that new, similar trajectories are derived from the
original trajectories of the phase diagram, and they represent
multifrequency vibration characteristics in the oscillogram
and vibration frequencies that are close to the state of
continuous change. Then, the system vibration is in a state
between the period vibration and the chaotic vibration qual-
itatively; the frequency bandwidth of the coupled vibration
also increases; the chaotic motions of the drill string aremore
likely to occur, which leads to violent vibration of the drill
string.



6 Shock and Vibration

x
1

7 8 9 1110
q3

1.2

1.4

1.6

1.8

(a) Bifurcation diagram of the axial modal

x
3

10 118 97

q3

−0.5

0.0

0.5

1.0

(b) Bifurcation diagram of the torsional modal

Figure 3: Bifurcations of the system under torsional excitation.

It is well-known that the torsional vibration of the drill
string is mainly generated from the rotational speed change
of the bit when breaking rock intermittently. The excitation
frequency is related to the rotation speed, stiffness of the
drill string, and characteristics of the rock. The higher the
rock hardness, the bigger the torsional stress and the greater
the torsional amplitude. We know from (17a), (17b), (17c),
and (17d) that torsional stress strongly affects the coupling
vibration when in low-frequency excitation, but when in
high-frequency excitation, the torsional stress does not effec-
tively contribute to the coupling vibration. So, in the practical
drilling process, when the drill string is in a high-rotation
speed zone, the torsional stress will not lead to coupling
vibration; however, when the drill string is in a low-rotation
speed zone, more attention should be paid to the torsional
stress and appropriate drilling process parameters should be
adopted to reduce the torsional stress, especially when stick-
slip vibration occurs. This is necessary because, at this time,
the drill string is in low torsional excitation and large torsional
stress, where it is more prone to produce a coupling vibration
of the drill string, as suggested by Christoforou and Yigit [9].

Based on the above simulation analysis, we also found
that torsional excitation will affect both torsional and axial
vibration simultaneously. Torsional and axial vibration are
similar qualitatively and in the nature of the vibration and
are synchronous in form, proving that energy can transfer
between the torsional and the axial vibration modal.

4.2. Axial Excitation. The above analysis accounts for the
impact of torsional excitation on the coupling of the axial and
torsional vibrations. Here, the impact of axial excitation will
be investigated.

Thebifurcation diagram (Figure 8) shows the preliminary
resonance tendency. The system undergoes a loop from
chaos to periodic motion, then to period-three motion,
then to period-multiplying, and back to chaos, showing

the nonlinear dynamic phenomenon of the period-doubling
bifurcation and chaos.

Increasing axial excitation until 𝑞
2

= 0.5025 and keep-
ing the remaining other initial conditions and parameters
unchanged, the system prevents period-doubling responses
as shown in Figure 9.

When 𝑞
2

= 0.635, the system presents period-three
responses as shown in Figure 10.

When 𝑞
2
= 0.7725 the phase diagram changes drastically

and presents a jumping phenomenon; then, the system
responds chaotically, as shown in Figure 11.

When 𝑞
2

= 0.79 the qualitative nature of the coupling
vibration of the drill string changes; the present period-
doubled responses are shown in Figure 12. Here, the original
phase trajectory of the chaotic motion (Figure 11) contracts
for two trajectories and presents vibration characteristics
of frequency-doubling in the phase diagram. The system
vibration turns from chaotic vibration into doubling periodic
motion, and the stability of the system increases.

As can be seen from the above qualitative analysis of the
axial excitation of the coupling vibration, we find the same
phenomenon as in the torsional excitation analysis for the
coupling vibration, namely, that axial excitation affects both
torsional and axial vibration simultaneously and is similar
qualitatively and also synchronous in form.

Along with the increase in the axial excitation, the system
coupling vibration turns from period-doubling to period-
three, to chaotic, and, finally, to period-doubling. So, the axial
excitation parameter leads to a coupling vibration in some
special zone. In the process of practical drilling, the axial
jump mainly contributes to the axial excitation. The higher
the rotation speed, the higher the excitation frequency. The
larger the WOB becomes, the larger both the axial amplitude
and the axial stress will be. We know from (17a), (17b), (17c),
and (17d) that the axial excitation contributes to the coupling
vibration when the drill string is in a high-rotation speed
zone. Therefore, in the process of automation drilling with
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Figure 4: Period responses of the system (𝑞
3
= 7.24).
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Figure 5: Period responses of the system (𝑞
3
= 7.26).
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Figure 6: Period responses of the system (𝑞
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= 7.5).
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Figure 7: The almost-periodic responses of the system (𝑞
3
= 7.68).
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Figure 8: Bifurcation of the resonance frequency-multiplier.

a constant WOB, in the case of a lower-rotation speed and
lower rock hardness, high drill efficiency can be attained by
properly increasing the WOB. In the case of high-rotation
speed, the coupling vibration is sensitive to the axial stress,
so the proper WOB should be adopted to avoid the coupling
vibration of the drill string based on geological parameters.

5. Conclusions

In this paper, wemodeled and analyzed drill-string vibrations
by focusing on the coupled axial/torsional vibrations by
means of nonlinear dynamics and qualitative analysis, aiming
at revealing the key, effective factors influencing the coupled
vibrations. Here, the drill string was described as a simplified,
equivalent, flexible shell under axial rotation, in which the
excitation loads and boundary conditions of the drill string
were simplified. After dimensionless processing, we built the
dynamics motion equation and the average equation.

We found that the low-frequency amplitude expression
of the torsional excitation and the high-frequency amplitude
expression of the axial excitation in the average equation are
the factors that determine the coupling vibration. Based on
this procedure, numerical simulations were carried out with
adaptive steps using the Runge-Kutta-Fehlberg method to
discover the response of the system vibrations. Further, we
found that a change in the torsional or the axial excitation
affects both the torsional and the axial vibration simultane-
ously and that it is similar qualitatively and synchronous in
form.

The results of the simulation analysis show that when the
drill string is in a lower-speed rotation zone, the torsional
excitation mainly contributes to the coupling vibration,
increasing the torsional stress of the drill string that more
easily leads to the coupling vibration.When in a higher-speed
rotating zone, the axial excitation mainly contributes to the
coupling vibration; so, in a particular interval, it is more likely
to cause the coupling vibration of the drill string.

Appendix

Consider

𝑎
1
= −

1

2𝐿𝜌𝜋

,

𝑎
2
=

1

𝜌

(

1

12

ℎ
3
𝐸
2

𝑅
3

−

ℎ𝐸
2

𝑅

−

1

4

𝜋
2
𝑅ℎ𝐸
1

𝐿
2

) ,

𝑎
3
=

1

𝜌

(

8

45

ℎ
3
𝐸
2

𝐿𝑅
2

−

32

15

ℎ𝐸
2

𝐿

−

32

15

ℎ𝜅𝐸
1

𝐿

) ,

𝑎
4
=

1

𝜌

(

1

4

𝜋
2
ℎ
3
𝜅𝐸
1

𝐿
3
𝑅
3

−

13

16

𝜋
2
ℎ𝜅𝐸
1

𝐿
2
𝑅

−

1

4

ℎ𝐸
2

𝑅
3

−

1

16

𝜋
4
𝑅ℎ𝐸
1

𝐿
4

) ,

𝑎
5
=

1

𝜌

(

1

384

𝜋
2
ℎ
3
𝐸
2

𝐿
2
𝑅
3

−

9

512

𝜋
4
𝑅ℎ𝐸
1

𝐿
4

−

3

32

ℎ
3
𝐸
2

𝑅
5

−

9

32

ℎ𝐸
2

𝑅
3

−

1

32

𝜋
2
ℎ𝐸
1

𝐿
2
𝑅

−

1

64

𝜋
2
ℎ𝜅𝐸
1

𝐿
2
𝑅

) ,

𝑎
6
=

13ℎ𝜅𝐸
1

15𝜌𝐿

,

𝑎
7
=

1

𝜌

(

1

4

𝜋
2
ℎ
3
𝜅𝐸
1

𝐿
2
𝑅
3

+

13

16

𝜋
2
ℎ𝜅𝐸
1

𝐿
2
𝑅

−

1

4

ℎ𝐸
1

𝑅
3

+

1

16

𝜋
4
𝑅ℎ𝐸
1

𝐿
4

+

3

4

ℎ𝐸
1

𝐿
3

+

1

24

𝜋
2
ℎ
3
𝐸
2

𝐿
2
𝑅
3

+

9

2

𝜋
4
𝑅ℎ𝐸
1

𝐿
4

) ,

𝑎
8
=

1

𝜌

(

1

2

𝜋
2
ℎ𝐸
2

𝐿
2
𝑅

+

3

2

𝜋
4
ℎ
3
𝐸
1

𝐿
4
𝑅

+

𝜋
2
ℎ𝜅𝐸
1

𝐿
2
𝑅

+

3

4

ℎ𝐸
1

𝐿
3



12 Shock and Vibration
x
2

−1.0

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0−1.0

x1

(a) Phase diagram of the axial modal

−1.0

−0.5

0.0

0.5

1.0

x
1

1020 1040 1060 10801000
t

(b) Oscillogram of the axial modal

−2

−1

0

1

2

x
4

1.5 2.0 2.5 3.01.0
x3

(c) Phase diagram of the torsional modal

1.0

1.5

2.0

2.5

3.0
x
3

1020 1040 1060 10801000
t

(d) Oscillogram of the torsional modal

1

0 0

1
1

2

3

−1−1

x
3

x
2 x 1

(e) Three-dimensional phase diagram

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x
2

0.50.0 1.0 1.5−1.0 −0.5−1.5

x1

(f) Poincare section

Figure 9: Period responses of the system (𝑞
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= 0.5025).
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Figure 10: Period responses of the system (𝑞
2
= 0.635).
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Figure 11: Period responses of the system (𝑞
2
= 0.7725).
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Figure 12: Period-doubled responses of the system (𝑞
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= 0.79).
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