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A Gray-Code Type Bit Assignment Algorithm for
Unitary Space-Time Constellations

Adam Panagos
Dynetics, Inc.
Huntsville, Alabama 35806
adam.panagos@dynetics.com

Abstract— Many techniques for constructing unitary space-
time constellations have been proposed. To minimize bit-error
rate (BER) in a wireless communication system, constellations
constructed using these techniques should be given a Gray-
code type bit assignment, where symbols which are close in
signal space have bit assignments which have small Hamming
distance. To the authors’ knowledge, no efficient general strategy
for making this bit assignment has been suggested. This work
proposes a prioritized distance (PD) algorithm for making this
assignment in an optimal manner by minimizing the probability
of bit error union bound. The algorithm can be used on constel-
lations constructed using any technique. Simulation results show
this algorithm significantly outperforms random searches and
achieves near globally optimum results with moderate complexity.

I. INTRODUCTION

Unitary space-time codes are a coding technique for
multiple-input multiple-output (MIMO) channels where nei-
ther the transmitter nor receiver have channel state informa-
tion [1]. The two design criteria of primary interest are the
diversity product and diversity sum. Constellations designed
for high signal-to-noise ratio (SNR) seek to maximize the
diversity product, while constellations designed for low SNR
seek to maximize the diversity sum.

Many techniques for constructing unitary space-time con-
stellations have been proposed [2]-[9]. The goal of these
techniques is to construct a set of L unitary matrices denoted
V = {V,V,...,Vr_1} with large diversity product or
diversity sum. For M transmitting antennas, V; is an M x M
unitary matrix, i.e. V,'V; = Ip; fori =0,...,L —1.

One of the first construction techniques proposed were
cyclic codes [2]. Other techniques and results can be found
in [3]-[9]. To the authors’ knowledge, Weak Group Givens
(WGQG) codes currently have the best known diversity product
and diversity sum for most constellation sizes and number of
transmitting antennas [10].

The goal of this paper is to develop a low complexity algo-
rithm that works with any unitary constellation construction
technique, and that yields optimal bit assignments in terms
of optimizing a design metric f(-). The problem of assigning
bits to unitary constellations has only been briefly addressed in
the open literature [11], [12]. We initially investigate a specific
form of f(-) given in (7), and later consider another metric
for comparison with other published results. The simulation
results presented in [11], [12] sufficiently demonstrate the
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significant impact the bit assignment selection can have on
the performance of iterative decoding systems.

Section II gives a mathematical formulation for assigning
bits to unitary constellations in an optimal manner. Strategies
for accomplishing this task are also discussed. Notation,
required functions, and general strategy of the PD algorithm
are discussed next. Numerical results demonstrating the per-
formance of the algorithm, and a comparison with existing
results is provided in Section IV.

II. PROBLEM FORMULATION

Throughout this work, constellations of size L = 2° where
b is an integer greater than one are assumed. Let b, denote
the L x 1 bit assignment vector containing the bit assignments
for the unitary constellation. Each element of b, is a b-bit
sequence, and b, (¢) represents the bits assigned to signal V;.
There are L unique b-bit sequences, and each can be used only
once. Thus, for a unitary constellation with L signals there are

L! unique choices for b,.
For a unitary constellation, the union bound of the bit-error
rate (BER) is well approximated by [13]

S b ) ()

- M
Post (p) ~ p—MN i#]

2L1og, L ’
ey

where d* (b, (i), b,(j)) is the Hamming distance between bits
b, (i) and b,(j), M is the number of transmitting antennas,
N is the number of receiving antennas, and p is the SNR at

the receiving antennas.
Taking the logarithm of P (p) yields the quantity ((b,)
defined as

—2N
S b0 ) ()

— M
¢(ba) £ log;, -

2L1og, L ’
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which is a function of b,, and is independent of p. For a unitary
constellation V constructed for an M x N MIMO system, we
wish to find b, to minimize ¢(-). Specifically, let S be the set
of all possible bit assignment vectors. Then |S| = L! and we
seek boP' € S where
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by = arg min ((b,). 3)

One approach to finding bSP' is exhaustive search. For
constellations of size L < 8 this works well. For constellations
of size L > 16, it is currently impractical to perform an
exhaustive search on typical desktop computers due to the
size of S.

Another approach to finding beP! is random search. Results
in Section IV show this technique can be effective for L < 16.
However, our results show that random searches do not work
well for larger constellations.

Cyclic unitary space-time codes have the special property
that signals offset by L/2 are maximally separated. Thus,
signals offset by L /2 are given complementary bit assignments
in [14]. Note that this strategy is valid only for the codes
of [14], and is not a general strategy for unitary constellation
bit assignment. The bit assignment strategy of [14] assigns
bits with large Hamming distance to dissimilar signals. This
strategy is reasonable, but results presented here show the
PD algorithm yields better results in terms of minimizing (2).
Unitary constellations constructed using other techniques do
not have this structure, and no bit assignment strategy for them
currently exists to our knowledge.

A novel approach to the bit assignment problem was
considered in [13]. Bits were pre-assigned to signal indices
before constellation design. The constellation was then con-
structed to minimize a function of the BER union bound. The
constellations constructed have diversity product and sum of
zero (which indicates poor performance in asymptotic SNR
regions), but results presented in [13] show this technique can
yield good performance at typical SNR values. While this is an
interesting approach to the bit assignment problem, a large col-
lection of constellations already exist with optimized diversity
product and diversity sum. These constellations were designed
without thought for how final constellation bit assignments
should be made. The PD algorithm solves this problem.

III. THE PRIORITIZED DISTANCE ALGORITHM

This section gives details of the prioritized distance algo-
rithm provided in block diagram form in Figure 1.

A. Notation and Initialization

Let D denote the L x L difference matrix. The (i,7)th
element of D contains the quantity

di; £ |det(Vi — V;)l, )

which is a measure of the similarity, or distance, between
signals V; and Vj.

Let b, denote the L x 1 bit assignment vector. This vector is
initialized to all zeros. Upon completion of the PD algorithm,
the signal V; is assigned the bits b, (7).

The dimensions of vector quantities g and v are modified
during execution of the the PD algorithm. The initial vector
dimensions are listed below.

Let v denote the L? x 3 priority vector. This vector is
constructed by sorting D in order of increasing values of d; ;.
The first column of v contains the distance value d; ;, the
second column contains the signal index 4, and the last column
contains the signal index j. This vector establishes the order
in which signals of the unitary constellation will be assigned
bits.

Let g denote the L x 1 Gray-code vector. It contains a
b-bit Gray-code sequence. This vector represents the bits that
still need to be assigned to signals in the unitary constellation.
Upon completion of the PD algorithm, this vector is empty.

Let u denote the L x 1 assignment vector. The assignment
vector is initialized to all zeros, i.e. Oz, indicating that no
bit assignments have been made. If signal 7 is assigned a bit
string, set u(i) = 1. When 25:1 u(k) = L the algorithm is
completed.

B. Functions

The function deleterows(a,r) deletes rows r (e.g. r =
[1,2, 5]) of vector a. The function P = calcpairs(g) calculates
all pairs of bits stored in g that have the smallest Hamming
distance. The indices of the pairs are stored in the matrix P.
As an example let

00
01
&=\ ®)
10
Then,
D1 1 2
_|p2| |1 4
P= ml =12 3 (6)
D4 3 4

since all pairs of bits p; listed in P have Hamming distance
one.

C. Strategy

The PD algorithm constructs a value of b, in an attempt
to minimize ((-). The bit assignment vector constructed is
not necessarily b%P*, but the value of b, obtained from the
algorithm does yield a value of { that is close to a global
minimum. See section IV for results that substantiate this
claim.

The PD algorithm secks to minimize ¢(-) by ensuring that
signal indices ¢ and j with small values of d; ; are assigned
bits with small Hamming distance.

More specifically, bits are assigned to the unitary constel-
lation based on the order in which signal indices appear in
the priority vector. The top row of the priority vector contains
signal indices ¢ and j that have the closest distance d; ;. If
both signals 7 and j have yet to be assigned, u(¢) and u(j)
are set equal to one. The pairs matrix P is calculated based
on the current value of g. The algorithm then searches over
all pairs of possible bit assignments stored in P and finds the
bit assignment that minimizes f(b,) where

4006
1930-529X/07/$25.00 © 2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.



START

Calculate D
Construct v, g
Initialize ba

\l[i):uﬁj]:1)\ XOR(u(). uli)) = 1
deleterows(v, [1]) IF u(i), uli
%: u(j) =0 J

Set u(i) = u(j) =1 k = max(iu (i), ju(j))
P = calcpairs(g) Set u(k) =1
i b min f(b
i f(ba) it f(ba)
z Update b, Update b,
; nk) <t deleterows(g, -) deleterows(g, -)
IF > L |

i!l%h =L
L =" e

Fig. 1. Block diagram of prioritized distance algorithm.

i
f(ba) = 2Llog, L

0

Use of the assignment vector u in (7) ensures only signals
that have been assigned bits are included in the summation.
Upon finding the bit assignments for signals ¢ and j that
minimize f(b,), these values are stored in b, and the cor-
responding rows are deleted from g.

If signal index ¢ has already been assigned, but not signal
index j, a search over the values in g to minimize b, is
performed. As before, the best bit assignment is stored in b,
and deleted from g.

Once an assignment is made, the algorithm deletes the top
row of the priority vector, examines the priority vector to find
the next indices to work with, and repeats the above process
until the algorithm end condition

> u(k) =1L, ®)
k=1
is satisfied.
A block diagram of the algorithm can be seen in Figure 1.
Upon completion of the PD algorithm, the bit assignment
vector b, contains the bits assigned to each signal in the
unitary constellation.

D. Complexity

The PD algorithm iterates until all signals have been as-
signed a bit sequence. The primary complexity during each

) (dH<ba<i>,ba<j>> (%) u<z’>u<j>>

iteration is performing the minimization min,,cp f(b,) or
ming, g f(bg) as this requires numerous evaluations of the
f(bg) function. While the algorithm is running, at any given
time the number of signals that have already been assigned
bits is Zézl u(k). The minimizations are thus performed over
spaces whose sizes are

L
gl =L - u(k), ©)
k=1

and

L
P < (L‘Zg—l “““). (10)

Since |g| < |P| when Zi:l u(k) > 3, the algorithm runs
quickest when optimizations are performed over g (i.e. when
the algorithm takes the XOR(u(z), u(y)) = 1 branch of the
block diagram). Let I.,;, be the lower bound on the total
number of f(b,) function evaluations. Since the first two
signals from the priority vector can be assigned from the first
two elements of the Gray-code vector, there are only L — 2
assignments to make. The lower bound is thus

Imin = (L —2)+ (L —3)+---+2
1?2 -3L
- 2{: k= —

The algorithm runs slowest when optimizations are per-
formed over P (i.e. when the algorithm takes the u(i) =
u(j) = 0 branch of the block diagram). Let I,.x be an
upper bound on the total number of f(b,) function evaluations
defined as

an

L/2—1

>

=0

(12)

I max —

L—2i\ 2L%+3L> 2L
2 )~ 24 '

A plot of the upper and lower bounds on the total number of
f(b,) function evaluations, along with the actual number of
calculations required for the constellations investigated here,
can be seen in Figure 2. For the same value of L, different
constellations had slightly different numbers of function f
evaluations required. However, in all cases, the actual com-
plexity is closer to the lower bound. Thus, the complexity of
the PD algorithm proposed here is approximately O(L?).

I'V. RESULTS
A. Design Metric (7)

The results presented in this section use one receive antenna
for simplicity although the algorithm works for any N. Cyclic
unitary space-time constellations [2] and Weak Group Givens
codes [10] were used to investigate the performance of the pro-
posed PD bit assignment algorithm. Recall that regardless of
the construction technique, the goal is to find a bit assignment
vector b, to minimize {(b,).
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Fig. 2. Complexity Analysis

Table I summarizes the performance of the PD bit assign-
ment algorithm, the performance of a random search, and in
the case of the cyclic codes, the performance of the L/2
assignment strategy. Different numbers of transmit antennas
and different constellations sizes were examined. The numbers
tabulated in the table are the values of ( obtained by each
respective method. For L = 8 it is possible to perform an
exhaustive search to find the global minimum. Thus, the value
of ( listed in the “Random” column is the global minimum
obtained from an exhaustive search. The P% column lists the
percentile of the value of ( found. For L = 8 and 16 the
percentile was calculated based on empirical data obtained
during the random search. For L = 32 and 64 the percentile
value found using the PD algorithm is much smaller than any
value found with the random search. Figure 3 shows that the
distribution of ¢ from the random search is approximately
Gaussian. The percentile was approximated using the tail of
the appropriate Gaussian distribution.

Results in Table I suggest that a random search works well
for L < 16, while the PD algorithm works well for L > 32.
For example, with M = 3, L = 32, and a cyclic code, the PD
algorithm finds a bit assignment vector that yields a value of ¢
that is approximately in the 3 x 10~22 percentile of a random
search. This suggests that using a random search to find an
optimal bit assignment vector for this constellation would be
very time consuming, if not impractical. It is also interesting to
note that in the case of cyclic unitary codes, the PD algorithm
yields bit assignment vectors that yield smaller values of ¢
than the L/2 assignment strategy originally suggested.

B. Another Design Metric

A similar bit assignment metric proposed in [11] is

1 b M
yba) =7 D> > lH(l —63n,z,k>] (13)

U, eV k=1 Lm=1

TABLE 1
PD ALGORITHM OUTPERFORMS RANDOM SEARCH FOR L > 32

| M ‘ L ” Construction | PD Algorithm | Random | L/2 ‘ P% ‘
2 8 Cyclic 1.2583 1.2583 1.2583 0
8 WGG 0.8293 0.7871 NA 7
16 Cyclic 2.5943 2.5550 2.6001 | 0.008
16 WGG 1.7156 1.7021 NA 3
32 Cyclic 3.9664 4.0195 4.0046 | 2e-12
32 WGG 2.6686 2.6858 NA 4e-10
64 Cyclic 4.9311 5.0735 5.0236 | 7e-79
64 WGG 3.6305 3.7248 NA 3e-91
3 8 Cyclic 2.0329 2.0329 2.1274 0
8 WGG 0.2539 0.2407 NA 6
16 Cyclic 3.3583 3.3067 34526 | 0.04
16 WGG 1.7865 1.7787 NA 0.08
32 Cyclic 5.4788 5.5861 5.7681 | 3e-22
32 WGG 3.4901 3.5103 NA 2e-9
64 Cyclic 7.1426 7.2889 7.2753 | 3e-74
64 WGG 4.3155 4.3943 NA 2e-53
where ¥ = {¥,, Uy,..., ¥, 1} is the size L constellation

of, T' x M unitary matrices, and d,, is the mth singular
value of \i/;\I/l in which the bit assignment labels of \i/l and
U, differ in only the kth bit position. When performing the
sum of equation (13) for a given signal ¥; and bit position k,
there is only one other signal that differs from ¥; in only
the kth bit position. This signal is denoted U,. These are
the M singular values that are calculated and used in the
product of equation (13). The optimal bit assignment is one
that maximizes this design metric.

This bit labeling metric can be easily used in the PD
algorithm by letting

f(ba) =~(bg)u(l) (14)
and
o -1
di,j = (H (1 — a?n,z’,j)) (15)
m=1
where o0, ;; for m = 1,..., M are the singular values of
Uiy,

The authors of [11] derive an optimal bit mapping for
a unitary constellation derived from an orthogonal design,
namely the unitary constellation

T
1 1 -1 exp j%’rk —exp (—jap)
2{1 1 exp(—j%gk)

where 1 <[ < L, @ is a positive integer such that Q*=1,
and the integers k and p satisfy k = (I — 1)div Q and p =
(I—1) mod Q.

For the special case of L = 16, M = 2, they take advantage
of similarities between this constellation and a 4-dimensional
hypercube to derive an upper bound of y(b,) < 43/64. They
then devise a bit labeling scheme that meets this upper bound,
proving the optimality of this mapping.

\Ill = - 27
exp (5P
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Fig. 3. Distribution of {(b,) using random search for M = 3, L = 64 and
cyclic construction. The red line is a Gaussian approximation to the empirical
distribution (blue line). The value of ¢(bg) obtained using the PD algorithm
is the black dot at &~ 7.14 and is significantly better than values found with
the random search.

The PD algorithm also generates an optimal bit mapping
for this constellation. The mapping is different from that
provided in [11], but still meets the upper bound. The mapping
for this constellation obtained from the PD algorithm is
{Uy, ¥y,..., P15} — {0000, 0011, 0110, 0101, 1001, 1010,
1111, 1100,0111, 0100, 0001, 0010, 1110, 1101, 1000, 1011}.

For L = 64, M = 4, the unitary constellation shows strong
similarities to a 6-dimensional hypercube [15]. The optimal
mapping in this case gives v(¥,b,) = 0.568544. Use of the
PD algorithm yields a mapping with v(¥, b,,) = 0.522055, or
92% of the optimal value.

Exploiting the geometric structure of a code to devise op-
timal bit mappings is clearly a preferred technique. However,
most unitary constellations do not have an easily identifiable
structure (or any organized structure at all).

In this case, the past approach [11], [12] has been to
use numerous trials of a greedy binary switching algorithm
(BSA). For the systematic code U = [1, 2, 5, 12] a mapping is
found via the BSA algorithm with (¥, b,) = 25.701/64 ~
0.401578 [11]. Using the PD algorithm we attain a value
of v(¥,b,) = 0.379576, which although slightly less, was
obtained using a deterministic algorithm that requires only a
few seconds to run, significantly faster than performing 10°
trials of the BSA algorithm.

V. CONCLUSION

A prioritized distance algorithm for assigning bits to unitary
space-time constellations in an optimal manner has been
proposed, and its performance has been investigated through
various examples. The PD algorithm returns a bit assignment
vector b, that minimizes a design metric f(-). A probability
of bit error union bound design metric was chosen initially,
but results of Section IV show the PD algorithm can be
easily changed to accommodate other design metrics. These
results also show the algorithm can achieve a significant
fraction of the globally optimum solution. This algorithm can

be used regardless of the technique used to construct the
unitary constellation. A block diagram of the algorithm can
be seen in Figure 1. Numerical results show that a random
search for the optimal bit assignment vector works well when
L < 16. However, for L > 32, the PD algorithm significantly
outperforms a random search. For the case of cyclic unitary
constellations, the PD algorithm also outperforms a previously
proposed L /2 assignment strategy. A complexity analysis was
performed and the algorithm has a reasonable complexity on
the order of O(L?).
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