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VARIABLE REGULARIZED FAST AFFINE PROJECTIONS

Deepak Challa, Steven L. Grant* AsifMohammad

University ofMissouri-Rolla
1870 Miner Circle, Rolla, MO 65409
[dkcy92, sgrant, ammq2](umr.edu

ABSTRACT

This paper introduces a variable regularization method for the fast
affine projection algorithm (VR-FAP). It is inspired by a recently
introduced technique for variable regularization of the classical,
affine projection algorithm (VR-APA). In both algorithms, the
regularization parameter varies as a function of the excitation,
measurement noise, and residual error energies. Because of the
dependence on the last parameter, VR-APA and VR-FAP
demonstrate the desirable property of fast convergence (via a
small regularization value) when the convergence is poor and
deep convergence/immunity to measurement noise (via a large
regularization value) when the convergence is good. While the
regularization parameter ofAPA is explicitly available for on-line
modification, FAP's regularization is only set at initialization. To
overcome this problem we use noise-injection with the noise-
power proportional to the variable regularization parameter. As
with their fixed regularization versions, VR-FAP is considerably
less complex than VR-APA and simulations verify that they have
the very similar convergence properties.

Index Terms- FAP, APA, regularization, adaptive filter,
affine projections

1. INTRODUCTION

A wide variety of adaptive filters are now available in the signal
processing community. Each has their advantages and
disadvantages. The affine projection algorithm (APA) [1,2] has
received considerable attention over the past 15 years or so
because it's attributes provide a nice compromise between
normalized least mean squares (NLMS) [3] and fast recursive
least squares (FRLS) [4]. NLMS is computationally quite
efficient and numerically stable, but converges rather slowly when
a colored excitation signal is used. FRLS, is less computationally
efficient and somewhat difficult to stabilize numerically, but has
fast convergence for colored excitation.

The NLMS coefficient update method may be viewed as a
one-dimensional affine projection in the parameter space. Under
this view, APA is a generalization ofNLMS in that it performs an
N-dimensional affine projection each sample period [2,5]. When
N is greater than or equal to the order of the source model that
creates the excitation signal, APA's convergence properties are
roughly the same as FRLS's [2]. Depending on the exact
implementation, APA generally enjoys a much greater degree of

numerical stability than FRLS algorithms - even the so-called
stabilized ones. However, depending on N, APA's computational
complexity can be higher than FRLS. To address this defect, the
fast affine projection (FAP) [2,5,6,7] was introduced in the early
1990's. FAP reduced the computational complexity to roughly
that ofNLMS.

As the affine projection order, N, increases from one, a
simple scalar inversion of the excitation vector's norm in NLMS
becomes an N-by-N excitation sample covariance matrix inversion
in APA. Often, with highly colored noise excitation, this sample
covariance is ill-conditioned and to prevent undue noise
amplification, a regularization parameter, 3 is added to the
matrix diagonal prior to inversion. In [8] a method for
dynamically estimating an optimal regularization parameter for
APA was described and the subsequent improvement in
convergence for stationary excitation signals was demonstrated.
In this paper we re-derive the optimal regularization for FAP.
Traditionally, FAP's regularization is implemented by way of an
initialization parameter that remains fixed thereafter; we
overcome this static-regularization problem by using only a very
small initial regularization and then using the noise-injection
technique to vary the regularization as determined by the VR
method.

This paper is arranged as follows: section 2 is a brief review
of APA and FAP, section 3 presents the derivation of the variable
regularization parameter for FAP and the use of the noise
injection method. Finally, simulation results are presented in
section 4 and conclusions in section 5.

2. REVIEW OF APA AND FAP

This section presents a brief review of APA and a review of FAP
to the extent that the VR algorithm for it may be derived. For a
complete derivation of FAP, see [2,5,6,7].

2.1 The Affine Projection Algorithm

The affine projection algorithm, in a relaxed and regularized
form, is defined as

e(n) = s(n) - XT (n)h (n -1) (1)

(2)

(3)

* formerly known as Steven L. Gay
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h(n) = [x (n)X(n) + *I] e (n)

h (n) = h (n -1)+ XT (n)r,(n)
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The excitation signal matrix, X (n), is L by N and has the

structure,
X (n) [x (n), x (n -1),, x (n -N + 1)] (4)

where the x(n) [x(n),---,x(n- L+1)]T. The adaptive tap
weight vector is h(n) = [ho(n),---,hL l (n)]t, where hi (n) is

the ith coefficient at sample period n. The N-length
vector, e (n), consists of background noise and residual echo left

uncancelled by the echo canceller's L-length adaptive tap weight
vector,h(n). The N-length vector,s(n), is the system output

consisting of the response of the echo path impulse response, hep

to the excitation and the additive system noise, y(n),

s (n) = XT (n)he + y (n) (5)
The scalar 3 is the regularization parameter for the sample
autocorrelation matrix inverse used in (2), the calculation of the
N-length normalized residual echo vector, £ (n). Where

XT (n)X(n)may have eigenvalues close to zero, creating

problems for the inverse, XT (n)X(n)+,31 has 3 as its

smallest eigenvalue which, if large enough, yields a well behaved
inverse. The step-size parameter pu is the relaxation factor. As in

NLMS, the algorithm is stable for 0 < pu < 2.
If we define the coefficient error vector as

Ah (n) = hep - h (n) then the error vector, e (n) may be written

e (n) = XT (n) Ah (n) + y (n) (6)
Note that if N is set to one, relations(1), (2), and (3) reduce

to the familiar NLMS algorithm. Thus, APA is a generalization of
NLMS.

2.2 The Fast Affine Projection Algorithm

The complexity of APA is 2LN + Kin,N2 multiplies per sample

period, where Kin, is a constant associated with the complexity
of the inverse required in (2). FAP performs a complete N-
dimensional APA update each sample period with 2L + O(N)
multiplies per sample [2,5,6,7]. The development of FAP
involves reducing the computational complexity of each of the
steps in equations (1), (2), and (3). For the variable
regularization derivation in section 3 we only need to review
FAP's computational reduction of equation (3).

2.3 Fast Adaptive Coefficient Vector Calculation

The "trick" used in FAP to reduce the computational complexity
of the coefficient update equation for h (n) is to introduce an

alternate coefficient vector, h (n), whose update each sample
period consists only of adding a weighted version of the last
column of X (n). This requires only L multiplications as opposed

to NL for the update of equation (3). FAP also provides a method

for calculating e (n) from h (n) which is not shown in this paper.

From (3) the APA tap update is,

h (n) = h (n -1) + p,r,n (n) (7)
One can also express the current echo path estimate, h (n), in

terms of the original echo path estimate, h (0), and the

subsequent X(i)'s and £(i)'s,
n-I

h (n) = h (0) + u X(n -i)r,(n -i)
'=0

Now, expanding the vector/matrix multiplication,
n-I N-1

h(n) = h(0) + x(n j i)j (n -i)
i=O j=0

Assuming that x (n) = 0 for n < 0, (9) can be rewritten as,
N-1 k

h k(n)N=h(0)+ x(n-k) j(n-k+j)
k=O j=O

n-I N-1

+AE x(n -k)y,j (n -k +j).
k=N j=O

(8)

(9)

(10)

If the first term and the second pair of summations on the right
side of (10) are defined as

n-I N-1

h (n -1) = h(O) + ,u x (n -k)Y£j (n -k +j) (1
k=N j=0

and the first pair of the summations in (10) are recognized as a
vector-matrix multiplication,

N-1 k

X(n)E(n)v= herx(ne-k),rj(n-k+ (12)
k=O j=O

where,

CN1(n)+, (n-(1)t).+£ (n (N

then, (10) can be expressed as

h(n) = (n-1)+ux(n)E(n)
It is easily seen from (11) that

h(n) = h(n -)+
N-1

+ux(n-(N- ))yE£j (n-N+lI +
j=O

(13)

1))

(14)

1). (15)

Or,
h(n) = h (n - I) + ,Cx(n - (N -1))EN-, (n) (16)

Where EN-1 (n) is the last element of E(n) (note we number

the elements from 0 to N-1).

I - 90

co (n)

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 23, 2009 at 15:20 from IEEE Xplore.  Restrictions apply.



3. VARIABLE REGULARIZATION FOR FAP

We now make the regularization parameter variable with time,
explicitly denoting it as 5(n). In the following derivation we

will assume that the relaxation parameter, u = 1. Similar to the

approach in [6] we chose as our optimization criterion that 3(n)
which minimizes the cost function,

J=E( h(n) -E( Ah(n 1) 2) (17)

where

Ah(n) = hep -h(n) (18)
is the FAP coefficient error vector. Applying (18) to (16) we
have

Ah (n) = A (n -1) - x(n -N + 1)EN (n - 1) (19)
From (13), we see that

EN-1 (n) = c,_1 (n) + EN-2 (n-1) + £o (n-(N-1)) (20)
Defining,

S(n) = [X (n)X(n)+311] 1, (21)
we now make the simplifying assumption that the sample
covariance matrix, XT (n)X(n) is fixed and equal to LR,
where Rx is the correlation matrix of x(n). This is a reasonable

assumption when N<<L. This implies that
S [LRX + 31]-l (22)

where we have removed the time index to emphasize the
assumption that S is now non-time-varying. Under these
assumptions (2) becomes

£ (n) Se (n) (23)
Since we have also assumed that the step-size, u = 1, from [5]
we know that FAP sets

e (n) = [e (n), OT _IT (24)
where Ok is an k-length all zero vector. Thus,

£ (n)> Spoe(n) (25)

where Pk [o , 1, O -k- ]T < k < N -1. By careful

inspection we observe that

EN Ik (n- k)>z pN-1kSpoe(n -k). (26)
Thus, with some manipulation we can rewrite (20) as

EN (n- 1) = pTSe (n) (27)
where the R in the superscript of e (n) denotes the "reverse" of

the vector and

e(n) =[e(n) e(n-1) ... e(n-N +1)], (28)
is a history of the N most recent FAP residual errors - not to be
confused with e (n) of (1) and certainly not that of (24). We can

now express (19) as

Ah(n) = A(n- 1)-x(n- N+1)pTSeR (n). (29)
Using (29) in (17) we write the cost function as,

J =E(x(n-N+1)|| (pSeR (n)))

-E (2Ah (n-1)x(n-N + 1)p SeR (n))

Assuming the excitation signal is white, we have

S~';:Z~ 1 I
35 (n) + Lc<2

Then

TSeR (n) e-1OR (n)
PO 5(n)+Lc<

e(n -N+1)

*5 (n) + Lcr<

(30)

(31)

(32)

Assuming that AhT (n -1) changes slowly enough that

AlIT (n -1) AlT (n - N) and we are close enough to

convergence that AhT (n - N) AhT (n - N) , then

AhT (n - 1)x(n -N +1)>; AhT (n -N)x(n- N+1) (33)
Using this in (6) at the sample period n-N + 1 we have

AhT (n -1)x (n -N + 1)

y(n-N +1)+e(n- N+1)
Applying (31) and (34) to (30), and assuming

||x (n -N + 1)|| LQr,
The performance index is approximately

272 L07>239(n)()Lc ( '+ 2 E (e2 (n -N +1)) (35)

Minimizing J with respect to 3(n), we find
2 2

3(n) L% 2 (36)

E(e2(n-N+1)) 7

As in [8] we estimate E (e2 (n -N + 1)) with a time average. In

our simulations we find that a time average of length L is
sufficient.

The regularization of (36) is applied to FAP via the
technique of noise injection. Noise injection is a method of
regularizing a signal's covariance by adding Gaussian white
noise. The standard deviation of the noise is set to the square root
of the desired regularization value. In VR-FAP, this noise is only
added in the excitation signal input to the sliding window FRLS
part where the calculation of the forward and backward linear
predictors and their estimation error energies are calculated
[2,5,6,7].

4. SIMULATIONS

Figure 1 shows a comparison of the convergence of FAP, VR-APA
and VR-FAP. The excitation signal was white Gaussian noise.
The length of the echo path was set to L=512. The projection
order, N=2 and the additive noise, y(n), was set 30dB down
from the echo signal. The initial,3 for VR-FAP was set

I- 91
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to(.OO1)crx. For FAP the fixed regularization was 3 = (5)crx
For VR-APA the parameter y (referred to as 3 in [8]) was set to
0.05. VR-FAP performs very well when compared to FAP; the
VR-FAP coefficient error goes below -50dB while FAP bottomed-
out at -29dB. VR-APA and VR-FAP have similar initial
convergence rate but VR-APA only reaches -43dB.

Figure 2 shows the convergence curves of the FAP, VR-APA
and VR-FAP for colored noise input. The colored noise was
generated using and auto regressive model with one pole at z-
0.95, AR1(0.95). The echo path considered was of length, L=512
and the additive noise, y (n), was set to 30dB lower than the

echo. The order of the projection, N was 2. 3 for VR-FAP and
FAP are the same as above. y for VR-APA is set to 0.08. The
performance of the proposed algorithm is significantly improved
over FAP. VR-FAP has fast initial convergence rate and finally
converges to a value around -32dB where as FAP settles down at
around -17dB. For all the simulations the sampling frequency was
considered to be 8000Hz.

5. CONCLUSIONS

This paper introduced a variable regularization method for the fast
affine projection algorithm (VR-FAP). The regularization
parameter varies as a function of the excitation, measurement
noise, and residual error energies. Because of the dependence on
the last parameter, VR-FAP demonstrates the desirable property
of fast initial convergence and deep convergence/immunity to
measurement noise. Conventionally, FAP's regularization is only
set at initialization. To overcome this we used noise-injection
with the noise-power proportional to the variable regularization
parameter. As with their fixed regularization versions, VR-FAP is
considerably less complex than VR-APA and simulations verify
that they both have similar convergence properties.
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