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Abstract

This research investigates two distinct issues related to
a resource allocation: its robustness and the failure rate of
the heuristic used to determine the allocation. The target
system consists of a number of sensors feeding a set of het-
erogeneous applications continuously executing on a set of
heterogeneous machines connected together by high-speed
heterogeneous links. There are a number of quality of ser-
vice (QoS) constraints that must be satisfied. A heuristic
failure occurs if the heuristic cannot find an allocation that
allows the system to meet its QoS constraints. The system
is expected to operate in an uncertain environment where
the workload, i.e., the load presented by the set of sen-
sors, is likely to change unpredictably, possibly invalidating
a resource allocation that was based on the initial work-
load estimate. The focus of this paper is the design of a
static heuristic that: (a) determines a robust resource allo-
cation, i.e., a resource allocation that maximizes the allow-
able increase in workload until a run-time reallocation of
resources is required to avoid a QoS violation, and (b) has
a very low failure rate.

This study proposes a heuristic that performs well with
respect to the failure rates and robustness to unpredictable
workload increases. This heuristic is, therefore, very desir-
able for systems where low failure rates can be a critical re-
quirement and where unpredictable circumstances can lead
to unknown increases in the system workload.

This research was supported by the DARPA/ITO Quorum Program through
the Office of Naval Research under Grant No. N00014-00-1-0599, and by
the Colorado State University George T. Abell Endowment. Some of the

1. Introduction

This paper investigates the problem of robust resource
allocation in a class of heterogeneous computing (HC) sys-
tems. An HC system in this class consists of heterogeneous
sets of sensors, continuously executing applications, ma-
chines, network links, and actuators, and has a number of
quality of service (QoS) constraints that must be satisfied
during the operation of the system. The system is config-
ured with an initial mapping (i.e., allocation of resources to
applications) that is used when the system is first started.
The initial mapping attempts to optimize a robustness cri-
terion while ensuring that all QoS constraints will be met
for a given initial system workload (i.e., the load associated
with the set of initial sensor outputs).

For the particular kind of HC system being considered
here, robustness of the initial mapping is an important con-
cern. Generally, these systems operate in an environment
that undergoes unexpected changes, e.g., in the system
workload, which may cause a QoS violation. Therefore,
even though a good initial mapping of applications may en-
sure that no QoS constraints are violated when the system
is first put in operation, dynamic mapping approaches may
be needed to reallocate resources during execution to avoid
QoS violations.

The general goal of this paper is to delay the first re-
mapping of resources required at run time to prevent QoS
violations due to variations in the amount of workload gen-
erated by the changing sensor outputs. This paper uses a
generalized performance metric that is suitable for evalu-

equipment used was donated by Intel and Microsoft.
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ating an initial mapping for such “robustness” against in-
creases in the workload (a formal definition of robustness
and a general procedure to derive it are given in [3]). The
initial mapping problem is defined as finding a static map-
ping (i.e., one found in an off-line planning phase) of a set
of applications onto a suite of machines to maximize the ro-
bustness against workload, where robustness is defined as
the maximum allowable increase in system workload until
run-time re-mapping of the applications is required to avoid
a QoS violation. The contributions of this research include
quantifying a metric for robustness, designing and develop-
ing heuristics for mapping the applications so as to optimize
the robustness, and evaluating the relative performance of
these heuristics for the intended dynamic distributed HC
system. The mapping problem has been shown, in general,
to be NP-complete [12, 13, 16]. Thus, the development of
heuristic techniques to find near-optimal mappings is an ac-
tive area of research, e.g., [5, 6, 9, 14, 19, 20, 21].

The remainder of this paper is organized in the follow-
ing manner. Section 2 develops models for the applications
and the hardware platform. Section 3 presents a quantita-
tive measure of the robustness of a given mapping of ap-
plications to machines. Three heuristics to solve the initial
mapping problem are described in Section 4. The simu-
lation experiments and the evaluation of the heuristics are
discussed in Section 5. A sampling of some related work is
presented in Section 6. Section 7 concludes the paper.

2. System Model

The system consists of heterogeneous sets of sensors, ap-
plications, machines, and actuators. Each machine is ca-
pable of multi-tasking, executing the applications allocated
to it in a round robin fashion. Similarly, a given network
link is multi-tasked among all data transfers using that link.
Each sensor produces data periodically at a certain rate, and
the resulting data streams are input into applications. The
applications process the data and send the output to other
applications or to actuators. The applications and the data
transfers between them are modeled with a directed acyclic
graph, shown in Figure 1.

The figure also shows a number of paths (enclosed by
dashed lines) formed by the applications. A path is a
chain of producer-consumer pairs that starts at a sensor (the
driving sensor) and ends at an actuator (if it is a trigger
path) or at a multiple-input application (if it is an update
path). In the context of Figure 1, path 1 is a trigger path,
and path 2 is an update path. In a real system, application d
could be a missile firing program that produces an order to
fire. It needs target coordinates from application b in path
1, and an updated map of the terrain from application c in
path 2. Naturally, application d must respond to any output
from b, but must not issue fire orders if it receives an out-

path 1

path 2

path 3

path 4

S1

S2

S3

db

c

e

Figure 1. The DAG model for the applications
(circles) and data transfers (arrows). The di-
amonds and rectangles denote sensors and
actuators, respectively. The dashed lines en-
close each path formed by the applications.

put from c alone; such an output is used only to update an
internal database. So while d is a multiple input applica-
tion, the rate at which it produces data is equal to the rate at
which the “trigger” application b produces data. That rate,
in turn, equals the rate at which the driving sensor, S1, pro-
duces data. The problem specification indicates the path
to which each application belongs, and the corresponding
driving sensor.

Let P be the set of all paths, and Pk be the list of appli-
cations that belong to the k-th path. Note that an application
may be present in multiple paths. Let A be the set of appli-
cations.

The sensors constitute the interface of the system to the
external world. Let the maximum periodic data output rate
from a given sensor be called its output data rate. The
minimum throughput constraint states that the computation
or communication time of any application in Pk is required
to be no larger than the reciprocal of the output data rate
of the driving sensor for Pk. For application ai ∈ Pk, let
R(ai) be set to the output data rate of the driving sensor for
Pk. In addition, let T c

ij be the computation time for applica-
tion ai allocated to machine mj . The “c” in the superscript
denotes “computation.” Also, let T t

ip be the time to send
data from application ai to application ap. The “t” in the
superscript denotes “transfer.” Because both machines and
communications are assumed to be multi-tasked, T c

ij and
T t

ip will depend on the level of multi-tasking (i.e., the num-
ber of applications assigned to a machine or the number of
communications assigned to a link). See [1] for further de-
tails of the computation and communication models used
here.
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The maximum end-to-end latency constraint states that,
for a given path Pk, the time taken between the instant the
driving sensor outputs a data set until the instant the actuator
or the multiple-input application fed by the path receives the
result of the computation on that data set must be no greater
than a given value, Lmax

k . Let Lk be the actual (as opposed
to the maximum allowed) value of the end-to-end latency
for Pk. The quantity Lk can be found by adding the com-
putation and communication times for all applications in Pk

(including any sensor output or actuator input communica-
tions). Let D(ai) be the set of successor applications of ai.
Then,

Lk =
∑

i: ai∈Pk

p: (ap∈Pk)∧(ap∈D(ai))

[
T c

ij + T t
ip

]
. (1)

Let λz be the output from the z-th sensor in the set of
sensors, and be defined as the number of objects present in
the most recent data set from that sensor. This system is
expected to operate under uncertain outputs from the sen-
sors, requiring that the resource allocation be robust against
unpredictable increases in the sensor outputs. The system
workload, λ, is the vector composed of the load values from
all sensors. Let λinit be the initial value of λ, and λinit

i be the

initial value of the i-th member of λinit.
The computation times of different applications (and the

communication times of different data transfers) are likely
to be of different complexities with respect to λ. Assume
that the dependence of T c

ij and T t
ip on λ is known (or can be

estimated) for all i, p. Then, T c
ij and T t

ip can be re-expressed
as functions of λ as T c

ij(λ) and T t
ip(λ), respectively. In

general, T c
ij(λ) and T t

ip(λ) will be functions of the loads
from all those sensors that can be traced back from ai. For
example, the computation time for application d in Figure 1
is a function of the loads from sensors S1 and S2, but that
for application e is a function of the S2 and S3 loads (but
each application has just one driving sensor: S1 for d and
S2 for e). Then Equation 1 can be used to express Lk as a
function of λ.

3. Performance Goal

This section quantifies the robustness of a mapping [3].
To simplify the presentation, but without loss of generality,
it is assumed that λ is a continuous variable, and that com-
putation and communication times are continuous functions
of λ. The change in λ can occur in different “directions”
depending on the relative changes in the individual compo-
nents of λ. For example, λ might change so that all compo-
nents of λ increase in proportion to their initial values. In
another case, only one component of λ may increase while
all other components remain fixed. Figure 2 illustrates some
possible directions of increase in λ. In Figure 2, λinit ∈ R2

is the initial value of the system load. The region enclosed
by the axes and the curve C gives the feasible values of λ,
i.e., all those values for which the system does not violate
a given QoS constraint. The element of C marked as λ∗

has the feature that the Euclidean distance from λinit to λ∗,
||λ∗−λinit||, is the smallest over all such distances from λinit

to a point on C. (The symbol || · || stands for the Euclidean
norm.) An important interpretation of λ∗ is that the value
||λ∗ − λinit|| gives the largest Euclidean distance that the
variable λ can move in any direction from an initial value
of λinit without incurring a QoS violation. This paper de-
fines ∆Λ = ||λ∗ −λinit|| to be the robustness of a mapping,
against the system workload, with respect to satisfying the
QoS constraints.

λ
init

init

*

2

λ1

λ2

λλ

λλ

C

robustness

Figure 2. Some possible directions of in-
crease of the system load λ, and the degree
of robustness.

A conceptual way of determining ∆Λ is now
given. Let LT

i be the set of all those λ val-
ues at which application ai equals its throughput
constraint, i.e., LT

i =
{
λ : T c

ij(λ) = 1/R(ai)
} ⋃

{
λ : ∀ap ∈ D(ai), T t

ip(λ) = 1/R(ai)
}

. The “T” in
the superscript denotes “throughput.” Let LT be the set of
λ values at which any application equals its throughput
constraint, i.e., LT =

⋃
ai∈A(LT

i ).
Similarly, let LL

k be the set of those λ values at which
path Pk equals its latency constraint, i.e.,

LL
k = {λ :

∑

i: ai∈Pk

p: (ap∈Pk)∧(ap∈D(ai))

[
T c

ij(λ) + T t
ip(λ)

]
= Lmax

k }.

The “L” in the superscript denotes “latency.” Let LL be the
set of λ values at which any path equals its latency con-
straint, i.e., LL =

⋃
Pk∈P(LL

k).
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Finally, let L be the set of λ given by LT ⋃LL. One
can then determine ∆Λ by determining the smallest value
of ||λ − λinit|| over all λ ∈ L. That is,

∆Λ = min
λ∈L

||λ − λinit||. (2)

This research assumes that the optimization problem
given in Equation 2 can be solved to find the global
minimum. An optimization problem of the form x∗ =
argminx f(x), subject to the constraint g(x) = 0, where
f(x) and g(x) are convex and linear functions, respectively,
can be solved easily to give the global minimum [8]. Be-
cause all norms are convex functions, the optimization prob-
lem posed in Equation 2 reduces to a convex optimization
problem if T c

ij(λ) and T t
ip(λ) are linear functions. If T c

ij(λ)
and T t

ip(λ) functions are not linear, then it is assumed that
heuristic techniques could be used to find near-optimal so-
lutions.

4. Heuristic Descriptions

This section develops three greedy heuristics for the
problem of finding an initial static allocation of applications
onto machines to maximize ∆Λ. Greedy techniques per-
form well in many situations, and have been well-studied
(e.g., [16]). One of the heuristics, Most Critical Task First
(MCTF), is designed to work well in heterogeneous sys-
tems where the throughput constraints are more stringent
than the latency constraints. The other heuristic, the Most
Critical Path First (MCPF) heuristic, is designed to work
well in heterogeneous systems where the latency constraints
are more stringent than the throughput constraints.

It is important to note that these heuristics use the ∆Λ
value to guide the heuristic search; however, the procedure
given in Section 3 for calculating ∆Λ assumes that a com-
plete mapping of all applications is known. During the
course of the execution of the heuristics, not all applications
are mapped. In these cases, for calculating ∆Λ, the heuris-
tics assume that each such application ai is mapped to the
machine where its computation time is smallest over all ma-
chines, and that ai is using 100% of that machine. Similarly
for communications where one or two of the applications is
unmapped, it is assumed that the data transfer occurs over
the highest speed communication link, and that the link is
100% utilized by the data transfer. With these assumptions,
∆Λ is calculated and used in any step of a given heuristic.

Before discussing the heuristics, some additional terms
are now defined. Let ∆ΛT be the robustness of the resource
allocation when only throughput constraints are considered,
i.e, all latency constraints are ignored. Then, ∆ΛT =
minλ∈LT ||λ−λinit||. Similarly, let ∆ΛL be the robustness
of the resource allocation when only latency constraints are
considered. Then, ∆ΛL = minλ∈LL ||λ − λinit||. In ad-
dition, let ∆ΛT

ij be the robustness of the assignment of ai

with respect to the throughput constraint, i.e., it is the largest
increase in load in any direction from the initial value that
does not cause a throughput violation for application ai, ei-
ther for the computation of ai on machine mj or for the
communications from ai to any of its successor applica-
tions. Then, ∆ΛT

ij = minλ∈LT
i
||λ − λinit||. Similarly, let

∆ΛL
k be the robustness of the assignment of applications in

Pk with respect to the latency constraint, i.e., it is the largest
increase in load in any direction from the initial value that
does not cause a latency violation for the path Pk. It is given
by minλ∈LL

k
||λ − λinit||.

Most Critical Task First Heuristic: The MCTF heuristic
makes one application to machine assignment in each itera-
tion. Each iteration can be split into two phases. Let M be
the set of machines in the system. Let ∆Λ*(ai,mj) be the
value of ∆Λ if application ai is mapped on mj . Similarly,
let ∆ΛT*(ai,mj) be the value of ∆ΛT

ij if application ai is
mapped on mj . In the first phase, each unmapped applica-
tion ai is paired with its “best” machine mj such that

mj = argmax
mk∈ M

(∆Λ*(ai,mk)). (3)

(Note that argmaxx f(x) returns the value of x that max-
imizes the function f(x). If there are multiple values of
x that maximize f(x), then argmaxx f(x) returns the set
of all those values.) If the RHS in Equation 3 returns a
set of machines, G(ai), instead of a unique machine, then
mj = argmaxmk∈ G(ai)(∆ΛT*(ai,mk)), i.e., the individ-
ual throughput constraints are used to break ties in the over-
all system-wide measure. If ∆Λ*(ai,mj) < 0, this heuris-
tic cannot find a mapping. The first phase does not make
an application to machine assignment; it only establishes
application-machine pairs (ai,mj) for all unmapped appli-
cations ai.

The second phase makes an application to machine as-
signment by selecting one of the (ai,mj) pairs produced
by the first phase. This selection is made by determining
the most “critical” application (the criterion for this is ex-
plained later). The method used to determine this assign-
ment in the first iteration is totally different from that used
in the subsequent iterations.

Consider the motivation for the special first iteration. Let
∆Λg be the value of ∆Λ at the end of the g-th iteration.
Before the first iteration of the heuristic, all applications are
unmapped, and the system resources are entirely unused.
With the system in this state, the heuristic selects the pair
(ax,my) such that

(ax,my) = argmin
(ai,mj) pairs from

the first phase

(∆Λ*(ai,mj)).

The application ax is then assigned to the machine my . It is
likely that if the assignment of this application is postponed,
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it might have to be assigned to a machine where its maxi-
mum allowable increase in the system load is even smaller.
(The discussion above does not imply that an optimal map-
ping must contain the assignment of ax on my .) Experi-
ments conducted in this study have shown that the special
first iteration significantly improves the performance.

The criterion used to make the second phase applica-
tion to machine assignment for iterations 2 to |A| is dif-
ferent from that used in iteration 1, and is now explained.
The intuitive goal is to determine the (ai,mj) pair, which
if not selected, may cause the most future “damage,” i.e.,
decrease in ∆Λ. Let Mai be the ordered list, 〈mai

1 ,
mai

2 , · · · , mai

|M|〉, of machines such that ∆Λ*(ai, mai
x ) ≥

∆Λ*(ai, mai
y ) if x < y. Note that mai

1 is the same as ai’s
“best” machine. Let v be an integer such that 2 ≤ v ≤ |M|,
and let r(ai, v) be the percentage decrease in ∆Λ*(ai,mj)
if ai is mapped on mai

v (its v-th best machine) instead of
mai

1 , i.e.,

r(ai, v) =
∆Λ*(ai, mai

1 ) − ∆Λ*(ai, mai
v )

∆Λ*(ai, mai
1 )

.

Additionally, let T (ai, 2) be defined such that,

T (ai, 2) =
∆ΛT*(ai, mai

1 ) − ∆ΛT*(ai, mai
2 )

∆ΛT*(ai, mai
1 )

.

Then, in all iterations other than the first iteration, MCTF
maps the most critical application, where the most critical
application is found using the pseudo-code in Figure 3. The
technique shown in Figure 3 builds on the idea of the Suf-
ferage heuristic given in [19].

Two-Phase Greedy Heuristic: This research also pro-
poses a modified version of the Min-min heuristic. Variants
of the Min-min heuristic (first presented in [16]) have been
studied, e.g., [1, 9, 19, 21], and have been seen to perform
well in the environments for which they were proposed.
Two-Phase Greedy (TPG), a Min-min style heuristic for the
environment discussed in this research, is shown in Figure
4.

Most Critical Path First Heuristic: The MCPF heuris-
tic explicitly considers the latency constraints of the paths
in the system. It begins by ranking the paths in the order
of the most “critical” path first (defined below). Then it
uses a modified form of the MCTF heuristic to map appli-
cations on a path-by-path basis, iterating through the paths
in a ranked order. The modified form of MCTF differs from
MCTF in that the first iteration has been changed to be the
same as the subsequent iterations.

The ranking procedure used by MCPF is now explained
in detail. Let Λ̂L(Pk) be the value of ∆ΛL

k assuming that
each application ai in Pk is mapped to the machine mj

where it has the smallest computation time, and that ai

(1) initialize: v = 2; F = the set of (ai,mj) pairs
from the first phase

(2) for v = 2 to |M|
(3) if argmax(ai,mj)∈ F (r(ai, v)) is a unique

pair (ax,my)
(4) return (ax,my)
(5) else
(6) F = the set of pairs returned by

argmax(ai,mj)∈ F (r(ai, v))
(7) end for

/* program control reaches here only if no */
/* application, machine pair has been */
/* selected in Lines 1 to 7 above. */
/* F is now the set of (ai,mj) pairs from */
/* the last execution of Line 6*/

(8) if argmax(ai,mj)∈ F (T (ai, 2)) is a
unique pair (ax,my)

(9) return (ax,my)
(10) else
(11) arbitrarily select and return an application,

machine pair from the set of pairs given
by argmax(ai,mj)∈ F (T (ai, 2))

Figure 3. Selecting the most critical applica-
tion to map next given the set of (ai,mj) pairs
from the first phase of MCTF.

(1) do until all applications are mapped
(2) for each unmapped application ai, find

the machine mj such that
mj = argmaxmk∈ M(∆Λ*(ai,mk));
resolve ties arbitrarily

(3) if ∆Λ*(ai,mj) < 0, this heuristic
cannot find a mapping

(4) from the (ai,mj) pairs found above, select
the pair(s) (ax,my) such that (ax,my) =
argmax(ai,mj) pairs(∆Λ*(ai,mj));
resolve ties arbitrarily

(5) map ax on my

(6) enddo

Figure 4. The TPG heuristic.

can use 100% of mj . Similarly for the communications
between the consecutive applications in Pk, where one or
two of the applications is unmapped, it is assumed that the
data transfer between the applications occurs over the high-
est speed communication link, and that the link is 100%
utilized by the data transfer. The heuristic ranks the paths in
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an ordered list 〈Pcrit
1 ,Pcrit

2 , · · · ,Pcrit
|P|〉 such that Λ̂L(Pcrit

x ) ≤
Λ̂L(Pcrit

y ) if x < y.
For an arbitrary HC system, one is not expected to know

if the system is more stringent with respect to latency con-
straints or throughput constraints. In that case, this research
proposes running both MCTF and MCPF, and taking the
better of the two mappings. The Duplex heuristic executes
both MCTF and MCPF, and then chooses the mapping that
gives a higher ∆Λ.

Other Heuristics: To compare the performance of the
heuristics proposed in this research (MCTF and MCPF),
five other greedy heuristics were also implemented. These
included: TPG, Two-Phase Greedy X (TPG-X), and two
fast greedy heuristics. TPG-X is an implementation of the
Max-min heuristic [16] for the environment discussed in
this research. TPG-X is similar to the TPG heuristic ex-
cept that in Line 4 of Figure 4, “argmax” is replaced with
“argmin.” The first fast greedy heuristic, denoted FGH-L,
iterates through the unmapped applications in an arbitrary
order, assigning an application ai to the machine mj such
that (a) ∆Λ*(ai,mj) ≥ 0, and (b) ∆ΛL is maximized (ties
are resolved arbitrarily). The second fast greedy heuristic,
FGH-T, is similar to FGH-L except that FGH-T attempts to
maximize ∆ΛT.

An Upper Bound: An upper bound, UB, on the ∆Λ
value is also calculated for comparing the absolute perfor-
mance of a given heuristic. The UB is equal to the ∆Λ
for a system where the following assumptions hold: (a) the
communication times are zero for all applications, (b) each
application ai is mapped on the machine mj where ∆ΛT

ij is
maximum over all machines, and (c) that each application
can use 100% of the machine where it is mapped. These
assumptions are, in general, not physically realistic.

5. Simulation Experiments and Results

In this study, several sets of simulation experiments were
conducted to evaluate and compare the heuristics. Experi-
ments were performed for different values of |A| and |M|,
and for different types of HC environments. For all experi-
ments, it was assumed that an application could execute on
any machine.

The following simplifying assumptions were made for
performing the experiments. Let ns be the total number of
sensors. The computation time function, T c

ij(λ), was as-
sumed to be of the form

∑
1≤z≤ns

bijzλz , where bijz = 0
if there is no route from the z-th sensor to application ai.
Otherwise, bijz was sampled from a Gamma distribution
with a given mean and given values of “task heterogene-
ity” and “machine heterogeneity.” (See [4] for a descrip-
tion of the method used in this study for generating random
numbers with given mean and heterogeneity values.) The

communication time functions, T t
i(λ), were similarly gen-

erated. The mean and heterogeneity parameters for commu-
nication times were kept the same as those for the compu-
tation times, because communication times in the particular
target HC system [2] are of the same order as computation
times.

For a given set of computation and communication
time functions, the experimental set-up allowed the user to
change the values of output rates and end-to-end latency
constraints so as to change the “tightness” of the through-
put and latency constraints. The reader is directed to [1] for
details.

An experiment is characterized by the set of system pa-
rameters (e.g., |A|, |M|, application and machine hetero-
geneities) it investigates. Each experiment was repeated 90
times to obtain good estimates of the mean and standard de-
viation of ∆Λ. Each repetition of a given experiment will
be referred to as a trial. For each new trial, a DAG with |A|
nodes was randomly regenerated, and the values of T c

ij(λ)
and T t

i(λ) were regenerated from their respective distribu-
tions.

Results from a typical set of experiments are shown in
Figure 5. The first bar for each heuristic, titled “∆ΛN,”
shows the normalized ∆Λ value averaged for all those trials
in which the given heuristic successfully found a mapping.
The normalized ∆Λ for a given heuristic is equal to ∆Λ for
the mapping found by that heuristic divided by ∆Λ for the
upper bound defined in Section 4. The second bar, titled,
“δλN,” shows the normalized ∆Λ averaged only for those
trials in which every heuristic successfully found a map-
ping. These figures also show, in the third bar, the value of
the failure rate for each heuristic. The failure rate or FR is
the ratio of the number of trials in which the heuristic could
not find a mapping to the total number of trials. The interval
shown at the tops of the first two bars is the 95% confidence
interval [17].

Figure 5 shows the relative performance of the heuris-
tics for the given system parameters. In this figure, FGH-T
and FGH-L are not shown because of their poor failure rate
and ∆Λ, respectively. It can be seen that the ∆Λ perfor-
mance difference between MCTF and MCPF is statistically
insignificant. The traditional Min-min and Max-min like
heuristics, i.e., TPG and TPG-X, achieve ∆Λ values signif-
icantly lower than those for MCTF or MCPF. To make mat-
ters worse, the FR values for TPG and TPG-X are signifi-
cantly higher than those for MCTF or MCPF. Even though
Duplex’s ∆Λ value is statistically no better than that of
MCTF or MCPF, its FR value, 12%, is about half that of
MCTF or MCPF (23%).

Additional experiments were performed for various
other combinations of |A|, |M|, and tightness of QoS con-
straints, and the relative behavior of the heuristics was sim-
ilar to that in Figure 5. Note that all communication times
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were set to zero in Figure 5 (but not in all experiments).
Given the formulation of UB, it is expected that if the com-
munication times are all zero in a given environment, then
UB will be closer to the optimal value, and will make it eas-
ier to evaluate the performance of the heuristics with respect
to the upper bound.
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Figure 5. The relative performance of heuris-
tics for a system where |M| = 6, |A| = 50.
Number of sensors = number of actuators =
7. Task heterogeneity = machine heterogene-
ity = 0.7. All communication times were set
to zero. A total of 90 trials were performed.

6. Related Work

A number of papers in the literature have studied the is-
sue of robustness in distributed computing systems (e.g.,
[2, 7, 10, 11, 15, 18]). These studies are compared below
with our paper.

The study in [2] is similar to the one in this paper. How-
ever, the robustness measure used in [2] makes a simpli-
fying assumption about the way changes in λ can occur.
Specifically, it is assumed that λ changes so that all com-
ponents of λ increase in proportion to their initial val-
ues. That is, if the output from a given sensor increases
by x%, then the output from all sensors increases by x%.
Given this assumption, for any two sensors σp and σq,
(λp − λinit

p )/λinit
p = (λq − λinit

q )/λinit
q = ∆λ. For this par-

ticular definition of an increase in the system workload, any
function of the vector λ is in reality only a function of the
single scalar parameter, ∆λ (because λinit is a constant vec-
tor). This research does not make this simplifying assump-
tion; as a result, the approach taken in this paper is quite
different from that in [2].

Given an allocation of a set of communicating applica-
tions to a set of machines, the work in [7] investigates the
robustness of the makespan against uncertainties in the es-
timated execution times of the applications. The paper dis-
cusses in detail the effect of these uncertainties on the value
of makespan, and how to find more robust resource allo-
cations. Based on the model and assumptions in [7], sev-
eral theorems about the properties of robustness are proven.
The robustness metric in [7] was formulated for errors in
the estimation of application execution times; our measure
is formulated for unpredictable increases in the system load.
Additionally, the formulation in [7] assumes that the execu-
tion time for any application is at most k times the estimated
value, where k ≥ 1 is the same for all applications. In our
work, no such bound is assumed on the system workload.

The research in [10] considers a single-machine schedul-
ing environment where the processing times of individual
jobs are uncertain. The system performance is measured
by the total flow time (i.e., the sum of completion times
of all jobs). Given the probabilistic information about the
processing time for each job, the authors determine the nor-
mal distribution that approximates the flow time associated
with a given schedule. A given schedule’s robustness is then
given by 1 minus the risk of achieving substandard flow
time performance. The risk value is calculated by using the
approximate distribution of flow time. Our problem domain
considers multiple machines and communication links.

The studies in [11] and [15] explore slack-based tech-
niques for producing robust resource allocations. While
[11] focusses on a job-shop environment, [15] focusses on
real-time systems. The central idea is to provide each task
with extra time (defined as slack) to execute so that some
level of uncertainty can be absorbed without having to re-
allocate. However, it has been shown that when application
times are known as a function of the workload, slack is not
a good measure of robustness [3].

The work in [18] develops a mathematical definition for
the robustness of makespan against machine breakdowns
in a job-shop environment. The authors assume a certain
random distribution of the machine breakdowns and a cer-
tain rescheduling policy in the event of a breakdown. Given
these assumptions, the robustness of a schedule s is defined
to be a weighted sum of the expected value of the makespan
of the rescheduled system, M , and the expected value of
the schedule delay (the difference between M and the orig-
inal value of the makespan). However, the problem domain
in [18] is different from ours.

7. Conclusions

Two distinct issues related to a resource allocation are in-
vestigated: its robustness and the failure rate of the heuris-
tic used to determine the allocation. The system is expected
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to operate in an uncertain environment where the workload
is likely to increase unpredictably, possibly invalidating a
resource allocation that was based on the initial workload
estimate. The focus of this work is the design of a static
heuristic that: (a) determines a maximally robust resource
allocation, i.e., a resource allocation that maximizes the al-
lowable increase in workload until a run-time reallocation
of resources is required to avoid a QoS violation, and (b)
has a very low failure rate. This study proposes a heuristic,
called Duplex, that performs well with respect to the failure
rate and the robustness towards unpredictable workload in-
creases. Duplex was compared under a variety of simulated
heterogeneous computing environments, and with a number
of other heuristics taken from the literature. For all of the
cases considered, Duplex gave the lowest failure rate, and a
robustness value much better than that of TPG or TPG-X.
Duplex is, therefore, very desirable for systems where low
failure rates can be a critical requirement and where unpre-
dictable circumstances can lead to unknown increases in the
system workload.
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[7] L. Bölöni and D. C. Marinescu. Robust scheduling of
metaprograms. Journal of Scheduling, 5(5):395–412, Sept.
2002.

[8] S. Boyd and L. Vandenberghe. Convex Optimization,
available at http://www.stanford.edu/class/
ee364/index.html.

[9] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Mah-
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