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A Novel Approach to Interarea Oscillation
Damping by Unified Power Flow Controllers

Utilizing Ultracapacitors
Mahyar Zarghami, Member, IEEE, Mariesa L. Crow, Fellow, IEEE, Jagannathan Sarangapani, Senior Member, IEEE,

Yilu Liu, Fellow, IEEE, and Stan Atcitty

Abstract—This paper discusses a novel approach for damping
interarea oscillations in a bulk power network using multiple uni-
fied power flow controllers (UPFCs) utilizing ultracapacitors, also
known more generally as electrochemical capacitors (ECs). In this
paper, a new control is introduced to mitigate interarea oscillations
by directly controlling the UPFCs’ sending and receiving bus volt-
ages that better utilizes the stored energy in the ECs. The results of
this controller are compared with and without ECs. The proposed
control provides better interarea oscillation mitigation when ap-
plied to multiple UPFCs in the 118-bus IEEE test system.

Index Terms—Electrochemical capacitors (ECs), oscillation
damping, power system stability, unified power flow controller
(UPFC).

I. INTRODUCTION

I N addition to steady-state power flow control, damping
oscillations in a power network is one of the primary

applications of a unified power flow controller (UPFC). As
high-voltage power electronics become less expensive, flexible
ac transmission systems (FACTS) devices will become more
prevalent in the bulk transmission system to control active
power flow across congested corridors and ensure voltage secu-
rity. An added benefit of UPFCs deployed in the transmission
system is that they can also effectively control active power
oscillations that can damage generators, increase line losses,
and increase wear and tear on network components. Therefore,
developing suitable control strategies is a requirement before
UPFCs can be confidently utilized in the power system.

Mitigating power oscillations can be accomplished by rapidly
changing the power flow through the series part of the UPFC.
By controlling the amplitude and angle of the series-injected
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voltage, the active and reactive power flow in the transmission
line can be altered. Several authors have investigated utilizing
the UPFC to damp interarea oscillations utilizing a variety of
control approaches [1]–[10]. Some of this research is based on
a linear control analysis of the UPFC and power system [1]–[5],
whereas other authors consider nonlinear control systems theory
and Lyapunov energy functions [6]–[10]. Regardless of which
approach the control law is based upon, the UPFC controller
ultimately performs the control by commanding the appropriate
modulation amplitudes and angles of
the series and shunt voltages.

Further mitigation control can be achieved by the inclusion
of independent high-power-density energy storage. Ultracapaci-
tors [electrochemical capacitors (ECs)] can be used as rapid-dis-
charge energy storage for power applications. ECs have been
used extensively in pulsed power applications for high-energy
physics and weapons applications. Ideal power system appli-
cations for ECs are short-duration storage applications such as
power stabilization, power quality ridethrough applications, and
voltage flicker mitigation among other applications that require
high power density and rapid recharge. The major difference
between an EC compared to a conventional capacitor is that
the liquid electrolyte structure and porous electrodes give the
EC a high effective area that minimizes the distance between
the two plates. Additionally, unlike batteries, ECs have cells
that can be connected in series and parallel to obtain the de-
sired voltage level and capacitance [11]. The dc-link capacitor
of the UPFC voltage-source converter provides the ideal inter-
face for an EC. In steady-state, the dc-link capacitor serves as a
dc voltage from which the sinusoidal voltage waveform is con-
structed through pulsewidth modulation. The voltage of this ca-
pacitor is tightly controlled so that there is no degradation in the
staircase waveform. During small transients, the dc-link capac-
itor will charge or discharge to compensate for converter losses
in the UPFC. During large transients, however, the ability to ex-
change active power with the external power system is desirable
to aid in damping oscillations. In this situation, the energy stored
in the dc-link capacitor is inadequate to accomplish significant
damping without severe dc voltage degradation. By utilizing a
bidirectional dc-dc converter, the EC can be fully discharged
without significantly impacting the voltage across the dc-link
capacitor. For this reason, an EC is an attractive solution for
providing large amounts of short-term active power.

In this paper, a new control methodology, specifically de-
signed to take advantage of the EC, is introduced for damping

0885-8950/$26.00 © 2010 IEEE
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interarea oscillations in which the sending and receiving end
voltages are controlled instead of the active and reactive powers.
This is based on a two-stage control scheme in which the con-
trolling UPFC voltages are first determined, and then the de-
sired sending and receiving end conditions are imposed upon
the UPFC dynamics to derive the controlling modulation am-
plitudes and angles. This approach effectively utilizes the en-
ergy stored in the EC by discharging (or charging) the EC by the
amount required to achieve the desired bus voltages and angles.
The control approach is validated using a full nonlinear system
simulation in the 118-bus IEEE test system. The resulting dy-
namics indicate that the proposed controller provides significant
damping.

II. UPFC MODEL

The UPFC is the most versatile FACTS device. It consists of
a combination of a shunt and series branches connected through
a dc capacitor, as shown in Fig. 1. The series-connected inverter
injects a voltage with controllable magnitude and phase angle in
series with the transmission line, thus providing real and reactive
power to the transmission line. The shunt-connected inverter
provides the active power drawn by the series branch plus the
losses, and can independently provide reactive compensation to
the system. The dc-link capacitor is connected to the EC through
a bidirectional dc-dc converter. The UPFC model is a combi-
nation of the static synchronous compensator (STATCOM) and
static synchronous series compensator (SSSC) models [12] (see
(1)–(6) at the bottom of the page, where the parameters are as
shown in Fig. 1). The currents and are the components
of the shunt current. The currents and are the compo-
nents of the series current. The voltages and are
the sending end and receiving end voltage magnitudes and an-
gles, respectively. The UPFC parameters are the following:

(synchronous) angular frequency;

shunt resistance and inductance;

series resistance and inductance;

dc-link voltage;

dc-link capacitance and resistance;

EC dc voltage;

EC capacitance and equivalent resistance.

The UPFC is controlled by varying the phase angles
and magnitudes of the converter shunt

and series output voltages , respectively. The EC
is connected to the dc-link capacitor of the UPFC through a
bidirectional dc-dc converter such as the SEPIC/Zeta converter
[13]. The steady-state dc-link capacitor voltage and the EC
voltage are related through the duty cycle ratio [13] as

(7)

The duty cycle is the percent of a switching cycle in
which the EC discharges. For example, if , then the EC
is in steady state and discharges (and charges) for half of each
cycle, and . If , then the EC discharges for
a greater portion of the switching cycle and drops (and
vice versa charges for ).

The power balance equations at bus 1 are given by

(8)

(1)

(2)

(3)

(4)

(5)

(6)
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Fig. 1. UPFC with EC Diagram.

(9)

and at bus 2

(10)

(11)

III. UPFC CONTROLLER DESIGN

For control development purposes, it is desired to isolate the
independent current injection points in the network; therefore,
several assumptions are initially made. The two simplifying as-
sumptions are that the system loads are modeled as constant
impedance loads and can therefore be absorbed into the bus ad-
mittance matrix. Second, the generators are modeled as the clas-
sical “transient reactance behind constant voltage” model. Note

that these assumptions are for control development only—the
proposed control is validated with the full nonlinear tenth-order
power system model given in the Appendix. Using the load
impedance model, the only points of current injection into the
network are the generator internal buses, and the UPFC sending
and receiving end buses. Furthermore, Kron reduction enables
the transmission network to be reduced to an admittance matrix
of size , where is the number of gener-
ator buses and is the number of UPFCs in the system. Fig. 2
illustrates the reduced system showing the points of current in-
jection. Each UPFC has two current injections and at the
sending and receiving ends, respectively. The generator current
injections are given by . The classical model for the reduced
network including the UPFCS is, therefore, given by (12) and
(13) at the bottom of the page, where is the voltage at
bus , is the element of the reduced admit-
tance matrix, and are the mechanical power, inertia
constant, and angular speed, respectively, of machine , and
is synchronous speed. The first summation represents the active
power injected at each generator bus, the second summation rep-
resents the active power injected at each UPFC sending bus, and
the third summation represents the active power injected at each
UPFC receiving bus.

(12)

(13)
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Fig. 2. Equivalent power system from the “voltage control” view.

This nonlinear system has states and intermediate con-
trol inputs defined as

(14)

(15)

(16)

(17)

where , and are the components of the
sending (1) and receiving (2) ends for the th UPFC, respec-
tively. This step describes the first stage of the two stage control.
Note that this stage is independent of the UPFC dynamics.

Linearizing this reduced system results in a linear system of
the form

(18)

where represents the vector of the UPFC voltages. This
linear system can be stabilized through the feedback control

(19)

where is chosen using optimal LQR control processes to min-
imize speed and angle deviations in the generators. The and

matrices where chosen to be diagonal matrices. The ma-
trix was taken as the identity matrix. The diagonal elements of

corresponding to the generator rotor angles deltas are chosen

Fig. 3. Two-stage control design.

to be zero, since changes in are not penalized. The diagonal
elements of corresponding to are proportional to the inertia
constant .

If the original system were linear, this feedback control would
result in the optimal values of voltage magnitudes and angles at
both the sending and receiving buses of the UPFC to damp the
interarea oscillations.

The second stage of the control is to convert the control inputs
into the modulation gain, and phase angles and for each

UPFC. The first step in this stage is to find the values of currents
, and from the UPFC active and reactive power

balance equations at the sending and receiving end buses given
in (8)–(11).

If it can be assumed that the time scale difference between
the UPFCs and the generator dynamics is large (i.e.,

) and letting , then (1)–(4) can be rewritten as
their algebraic counterparts; see (20)–(23) at the bottom of the
page. Solving (20)–(23) together with (5) provides the values
of , and which are the true control inputs to the
UPFC. This procedure can be repeated for each UPFC indepen-
dently since the first stage of the control provides the network
coupling during the determination of the input (the sending
and receiving end voltages). Fig. 3 shows a flow chart that illus-
trates the two-stage control.

(20)

(21)

(22)

(23)
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Fig. 4. IEEE 118-bus test system.

The dc-link capacitor voltage is coupled to the EC through a
bidirectional dc-dc converter. Since switch level dynamics are
not appropriate for a system level study, the dc-dc converter be-
havior is captured through the effect of a single control where
the duty cycle ratio is controlled via a proportional-integral (PI)
control as

(24)

where and are the PI control gains. Note
that both and return to the same reference voltage

, since at steady-state, there is no energy exchange with the
EC, and the EC current is zero.

IV. TEST SYSTEM

The IEEE 118-bus test system has been used to compare the
two different controllers. The diagram of the network is shown
in Fig. 4. This system has 20 generators, each modeled with the
set of equations given in the Appendix. This system exhibits
two dominant low-frequency modes; therefore, two UPFCs are
deployed in the system. Preliminary studies showed that one
UPFC was not sufficient to damp the interarea oscillations. The
two UPFCs were installed in the system in lines 30–38 and
65–68 with the shunt (sending) parts on buses 38 and 68, respec-
tively. The placements of the UPFCs were chosen according
to the approach outlined in [15]. Several researchers have ad-
dressed the optimal placement of FACTS controllers. Larsen
et al. [16] used modal sensitivity to determine placement of
TCSCs. Eigenvalue shift is used as a placement strategy for

TABLE I
UPFC PARAMETERS (IN PU)

SVCs in [17]. Martins and Lima [18] focused on the determina-
tion of the best bus placement for SVCs to damp interarea os-
cillations. Another recent work addresses the use of modal con-
trollability indexes, specifically for FACTS placement for oscil-
lation damping [19].

The parameters of the UPFCs are given in Table I. The per
unit approach is the same as in [20] on a 100-MW, 100-kV
system.

V. CONTROLLER RESULTS AND COMPARISONS

In the highlighted example, a solid symmetrical fault has been
applied on bus 20 at 0.01 s and has been cleared in 0.11 s. The
location and duration of the fault were chosen to provide a sig-
nificant disturbance to the interior of the power system. The ini-
tial conditions of the system are such that the UPFCs are initially
quiescent.

A. With DC-DC Converter and EC

The frequencies of a selected set of generators is shown in
Fig. 5. Not all of the frequencies are shown due to space con-
straints, but the results are similar. The generator frequencies
with the proposed control (thick line) show significant damping
of both the low- and high-frequency content over the uncon-
trolled case (thin line). This figure shows a qualitative improve-
ment of the proposed control over the noncontrolled case. Since
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Fig. 5. Generator frequency (no control—thin line, proposed control—thick
line).

Fig. 6. UPFC dc voltages (in per unit)—thin lines, EC voltages (in per
unit)—thick lines.

the dynamic waveforms are highly nonlinear, the damping fac-
tors cannot be easily extracted, and a quantitative metric is not
readily available.

The dc-link voltages and the voltage of the ECs are shown
in Fig. 6. The proposed control is designed to hold the voltage
magnitudes at both UPFC terminals nearly constant. This
requires significant active power to be drawn from the EC while
maintaining a constant voltage across the dc-link capacitor
to preserve controllability. The active power is alternately
injected and absorbed by the UPFC in antipathy with the
active power oscillations in the system. The ECs are able to
discharge very quickly due to their high power density. They
are then recharged at a much slower rate so that the dc-link
voltages can be maintained. The ECs are fully recharged within
a minute after the fault. Because the dc-link voltages maintain
near-constant voltage throughout the fault and afterward, the
UPFC retains its full range of operation and controllability.

Fig. 7. UPFC injected shunt power (in per unit); UPFC 1—thin line, UPFC
2—thick line.

Fig. 8. UPFC injected series power (in per unit); UPFC 1—thin line, UPFC
2—thick line.

The active power injected by the shunt converter of each
UPFC is shown in Fig. 7. Note that the proposed control is
designed such that this active power is discharged from the EC
to stabilize the system. The active power injected by the series
converter of each UPFC is shown in Fig. 8. As expected, the
amount of active power is quite small, since the majority of the
EC active power is discharged through the shunt bus.

B. With EC, No DC-DC Converter

To better understand the full effectiveness of the proposed
control with the EC, the same fault is applied to the system
without the dc-dc converter linking the EC. The EC is attached
directly across the dc-link (electrolytic) capacitor. The system
is unable to regain stability after the fault is removed. A selec-
tion of voltages for the case with no dc-dc converter is shown in
Fig. 9. Several of the bus numbers are identified on the figure.
Note that the voltages on bus 65 and 68 are obviously diverging.
These are on opposite ends of UPFC 2. Without sufficient ad-
ditional active power injection, the UPFC itself constrains the
power flow through the system causing a surplus of active power
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Fig. 9. System voltages after fault without EC.

Fig. 10. Generator frequencies: no control—dotted line, proposed control with
20 pu EC and dc-dc converter—thick line, large 225 pu capacitor—thin line.

in one area and a dearth in the other, causing loss of synchro-
nism. The power flow is constrained through current limiters to
protect the hardware of the series portion of the UPFC. This por-
tion could potentially be bypassed, but then all corrective control
would be lost.

C. With Large Capacitance

The last comparison is a study to determine how large the
dc-link capacitance must be to be used without a dc-dc con-
verter. This is the same topology as reported previously, but the
capacitance is increased to a size that gives comparable results
to the EC with dc-dc converter. To achieve the same results,
the EC must be increased to 225 pu. This increase in size is
necessary to provide the required active power discharge while
maintaining the dc-link voltage. For comparison purposes, the
generator frequencies with and without the dc-dc converter are
shown in Fig. 10. Note that the control results are nearly in-
distinguishable between the large capacitance and the EC with
dc-dc converter.

Fig. 11. Dc-link voltage for the large EC/no dc-dc converter topology; UPFC
1—thin line, UPFC 2—thick line.

The dc-link voltage for the large capacitance topology is
shown in Fig. 11. Note that the dc-link voltages do not drop
significantly below 90%. This is the lowest allowable voltage
that can still produce a controllable output.

VI. CONCLUSION

This paper introduced a novel approach for damping interarea
oscillations in a bulk power network using UPFCs with ECs.
In this paper, a new multistage control had been proposed that
specifies the bus voltages (phase and magnitude) at the sending
and receiving ends of the UPFCs to damp the oscillations. These
desired voltages are then converted into the required switching
commands that directly control the UPFCs. Furthermore, the
proposed control is shown to be especially effective for UPFCs
that are interfaced with ECs through a dc-dc converter.

The results of this controller are compared with and without
ECs. The proposed control provides better interarea oscillation
mitigation when applied to multiple UPFCs in the 118-bus IEEE
test system.

APPENDIX

Two-Axis Generator Model

Assumption: and .
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IEEE Type I Exciter/AVR Model. See equation at the top
of the page.

Turbine Model

Speed Governor Model

Power Balance Equations
Generator Buses

Load Buses
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