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Abstract—Customer loads connected to electricity supply systems 
may be broadly categorized as either linear or nonlinear. 
Nonlinear loads inject harmonics in a power distribution 
network. The interaction of the nonlinear load harmonics with 
the network impedances creates voltage distortions at the point of 
common coupling (PCC) which in turn affects other loads 
connected to the same PCC. When several nonlinear loads are 
connected to the PCC, it is difficult to predict mathematically 
how each nonlinear load is affecting the voltage distortion level at 
the PCC. Typically, customers with nonlinear loads apply 
harmonic filtering techniques to clean up their current and avoid 
penalties from the utility. When corrective action is taken by the 
customer, one important parameter of interest is the change in 
the voltage distortion level at the PCC due to the corrective 
action of the customer. This paper proposes a new method based 
on neural networks to predict the change in the distortion level of 
the voltage at the PCC if the customer were to draw only 
fundamental current and filter out its harmonics. The benefit of 
the proposed method is that it would indicate the impact of the 
customer’s front end filters on the voltage distortion at the PCC 
without actually having to install the filters. This paper presents 
the results of the proposed method applied to actual industrial 
sites. 

Keywords-Harmonic analysis, Neural networks, Power system 
harmonics, Power quality, Source modeling 

I.  INTRODUCTION 
Harmonics are an important measurable parameter of 

power quality. The related economic aspects of harmonics [1] 
and deregulation [2] have all created a need for extensive 
monitoring of the power system harmonics. Customers with 
sensitive equipments use harmonic current monitoring to locate 
the source of harmonic related problems that might occur. On 
the other side, utilities try to meet the demands of their 
customers: they monitor the supply voltage to prove that the 
quality of the offered power is within the pre-specified 
standards and to obtain the necessary information for solving 
problems [3], [4]. The utility also reserves the right to measure 
the amount of the customer’s harmonic current injection at any 
time. These measurements are usually spot checks to locate 
harmonic sources. Finally, deregulation creates a challenging 
and competitive new environment, where power quality is a 

parameter which needs to be measured and monitored 
continuously. 

Typically in a power distribution system, the interaction of 
the load current harmonics with the network impedances 
creates voltage distortions. The voltage at the point of common 
coupling (PCC) is rarely a pure sinusoid due to many nonlinear 
loads in the system [5], [6]. When several loads are connected 
to a PCC, an important parameter of interest would be to be 
able to predict the change in the voltage distortion level at the 
PCC, if a particular nonlinear load were to filter out its 
harmonics. A neural network based tool is designed to predict 
the change in the distortion level of the voltage at the PCC, if 
the nonlinear load were to draw only fundamental current and 
no harmonics [7]. This paper demonstrates the functionality of 
the proposed method by using the data obtained from a plant 
startup wherein the load goes from no-load to full-load 
condition. 

II. PREDICTION OF PCC VOLTAGE DISTORTION 
Any nonlinear load distorts the voltage at the PCC which in 

turn affects other loads connected to the same PCC [8]. When 
several nonlinear loads are connected to the PCC, it is difficult 
to predict mathematically how each nonlinear load is affecting 
the voltage distortion level at the PCC. Typically, customers 
with nonlinear loads apply harmonic filtering techniques to 
clean up their current and avoid penalties from the utility. 
When corrective action is taken by the customer, one important 
parameter of interest is the change in the voltage distortion 
level at the PCC due to the corrective action of the customer. A 
novel method, based on neural networks, is proposed to predict 
the change in the distortion level of the voltage at the PCC if 
the customer were to draw only fundamental current and filter 
out its harmonics. The proposed method is called source 
modeling since method looks back to the source side from the 
load side and predicts the voltage distortion change at the PCC. 
The proposed source modeling method is a dual of the load 
modeling method presented earlier in this chapter. The source 
modeling method would indicate what would happen to the 
THD of pccv if the load added front end filters to remove it’s 
harmonics. 
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Figure 1.  Utility equivalent circuit looking back into the source 

As an example, Fig. 1 shows a typical power distribution 
network consisting of a three-phase supply network having a 
sinusoidal voltage source sv , network impedance sL , sR , a 
known nonlinear load and several other loads (which could be 
linear or nonlinear) represented by hi . Looking back into the 
utility side from the nonlinear load, the equivalent circuit now 
consists of all the other loads ( hi ) and the actual source voltage 
as indicated in Fig. 1.  

A. Description of Proposed Method 
The schematic proposed for the implementation of source 

modeling method is shown as a single line diagram in Fig. 2, 
although it could be used on single as well as three phase 
systems. The source modeling method is the dual of the earlier 
proposed load modeling method [9]. 
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Figure 2.  Utility equivalent circuit looking back into the source 

The proposed method measures the instantaneous values of 
the three voltages abcv at the PCC, as well as the three currents 

abci at the thk  moment in time.  These values are fed to 
identification neural network (ANN1), which uses this to 
predict the values of  abcv  at time instant k 1+ , labeled ˆabcv  .  

When the k 1+  moment arrives (at the following sampling 
instant), and the actual values of abcv  are measured, these 
values are compared with the previously predicted ˆabcv  values, 
and the difference (or error e ) is used to train ANN1 or adjust 
its weights. Initially the weights have random values, but after 
several sampling steps, the training soon converges and the 
value of e  diminishes to an acceptably small value. 

If the nonlinear load were to draw a sinusoidal current, then 
the distortion level of the voltage at the PCC would change due 
to the absence of harmonic current. At any moment in time 
after the ANN1 training has converged, its weights are 
transferred to the estimation neural network (ANN2), and a 
sine wave current waveform computed in software, is applied 
to its input instead of the actual measured distorted current of 
the nonlinear load. The output of ANN2, called ˆabc linv − , gives 
the same information that could have been obtained if in reality 
the nonlinear load were replace by a similar sized linear load. 
In other words, ˆabc linv − represents the true voltage distortion at 
the PCC due to the removal of all harmonic current injection of 
the nonlinear load in question, except that it is not necessary to 
actually disconnect the nonlinear load and connect a pure 
current source to obtain this information. Any change in the 
voltage distortion levels between abcv  and ˆabc linv − can be 
attributed to the nonlinearity of the load in question. 

B. Neural Network Architecture 
ANN1 and ANN2 in Fig. 2 are multilayer perceptron neural 

networks (MLPN) with three layers [10]. Figure 3 shows a 
detailed structure of ANN1 and the training scheme. 
Structurally, ANN1 and ANN2 are identical. 
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Figure 3.  Structure of ANN1 and data flow path 

Data flows into the network through the input layer, passes 
through the hidden layer and finally flows out through the 
output layer. The network thus has a simple interpretation as a 
form of input-output model where the weights W and V  are 
updated through training. Essentially, ANN1 has three line 
currents as inputs and the three phase voltages as outputs. 
However, each input also requires the present value of the 
current vector and two time delayed values of the current 
vector, as well as a bias. So the actual number of inputs to 
ANN1 is ten. Initially the weights have random values. 
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C. Implementation of the Proposed Method 
The intended application area of the proposed method is 

utility scale power distribution systems which are three phase 
systems. The implementation of the source modeling scheme 
with one identification network and one estimation network for 
all the three phases is illustrated in Fig. 4. The size of an 
MLPN is typically defined as ( n m r× × ); where n  is the 
number of neurons in the input layer, m is the number of 
neurons in the hidden layer, and r is the number of neurons in 
the output layer. For this paper, the size of ANN1 is 
10 25 3× × . Backpropagation algorithm is used for training 
ANN1. The error vector 0e in Fig. 4 is a 3 element column 
vector and is calculated as; 

0 ˆ( 1) ( 1) ( 1)abc abce k v k v k+ = + − +                                    (1) 

 The error vector 0e is backpropagated through the network 
to update the network weights  W and V . 

 

abcv

, ,an bn cnv v v

A B C N

Customer 
Transformer

Primary
12 kV

+

-

Weights

Estimation 
Neural 

Network
ANN2

Identification
Neural

Network 
(ANN1)

abc sinei −

ˆabcv

ˆabc linv −

PCC Voltage Predictor

0e

1z−

Feeder

, ,a b ci i i

Data
Acquisition

 
 

Figure 4.  Implementation of source modeling method 

III. SIMULATION SETUP FOR SOURCE MODELING 
To demonstrate the source modeling method, a simulation 

circuit with two nonlinear loads connected in parallel to a 
source through inductance sL  is setup in Simulink. The point 
of parallel connection is designated as the PCC. The loads are a 
thyristor controlled converter operated by breaker B1 and a 
diode bridge rectifier operated by breaker B2 as shown in Fig. 
5. The loads are balanced, so currents all three phases are 
similar. The measurements shown in this section are for the 
phase A. With breakers B1 and B2 ON, the voltage at the PCC 
is shown in Fig. 6.The THD of the voltage at the PCC is 
7.95%. This exceeds the limit set by IEEE 519 standard [11]. 

However at this point it cannot be ascertained if this is a 
violation of the IEEE 519 standard, since the standard states 
that the voltage distortion should be less than 5% if the load 
current distortion is within the prescribed limits. With both the 
breakers on, it is not possible to say, which of the two loads is 
affecting the voltage more severely.  

Thyristor 
Bridge

Diode 
Bridge

sL

SV

L

L

1B

2B

 

Figure 5.  Simulation circuit block diagram for validation of source modeling  

 

Figure 6.  Voltage at the PCC with both breakers B1 and B2 ON  

As a next step, the total current distortion at the PCC is 
measured. The current has a THD of 10.08% and the 
harmonics in this current includes the contributions from both 
the loads. The individual current distortion of the thyristor 
bridge is 30.29 % and the diode bridge is 7.61 %. Even though 
the current THD of the thyristor converter is 30.29%, the THD 
of the net current at the PCC is only 10.08%. This indicates the 
possibility that some amount of harmonic cancellation may 
have taken place, which results in a current with lower 
distortion at the PCC. 

This is the primary reason why utilities do not see a high 
distortion in the total current at the PCC, while individual loads 
connected to the PCC have high current distortions. Hence it is 
extremely important to be able to predict the actual amount of 
voltage distortion caused by the harmonics of a particular 
nonlinear load. With breaker B1 open, the thyristor converter is 
isolated from the network. The voltage and current distortion at 
the PCC are 4.81 % and 7.85 % (impact of the diode bridge). 
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The voltage THD at the PCC is now 4.81% which is within the 
limits of IEEE 519. Hence in this case, the thyristor load is 
distorting the voltage at the PCC. When the thyristor load is 
replaced by a similar sized current source with only 
fundamental current and no harmonics, the voltage THD at the 
PCC changed to 4.87%, which is still within the IEEE 519 
limits.  

A. Neural Network Training and Prediction 
In a real-life situation, loads with only fundamental current 

and no harmonics are impractical and probably do not exist. 
For determining the impact of a specific load on the voltage 
distortion, the only means the utility has is to disconnect the 
load and measure the voltage THD at the PCC. This is not a 
desirable action. This is where the merit of the proposed source 
modeling lies in that the effect of the nonlinear load harmonics 
can be evaluated on the voltage distortion without interrupting 
the load. 

To validate the source modeling method, the thyristor 
converter from the test circuit described in Fig. 5 is treated as 
the nonlinear load of interest. The phase A input current ai of 
the thyristor converter is used to train the neural network 
ANN1 until the output of ANN1 correctly tracks the voltage at 
the PCC av . The voltage waveform predicted by ANN1 ( ˆav ) is 
plotted along with the actual voltage at the PCC av . Figure 7 
indicates how well the training of ANN1 has converged since 
its output coincides with the actual voltage waveform at the 
PCC.  
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Figure 7.  ANN1 training convergence  

The weights of ANN1 are now transferred to ANN2.  The 
output of ANN2 ( ˆa linv − ) is obtained by using a mathematically 
generated sine wave current with zero distortion. The output of 
ANN2 thus predicts the voltage at the PCC if it were possible 
to disconnect the nonlinear load and replace it by a similar 
sized linear load which also has front end filters so that its 
current is purely sinusoidal. Any change in the THD of voltage 
at the PCC can now be attributed to the thyristor converter. 

Figure 8 show the output of ANN2 and the frequency 
spectrum. The voltage THD at the PCC turns out to be 5.41% 
instead of the 7.95% as measured in Fig. 6. A comparison of 

the individual harmonics between the actual measured current 
(normalized) and the output of ANN2 is shown in Table I. 

 

Figure 8.  True phase A voltage waveform ( ˆa linv − ) as predicted by ANN2  

TABLE I.  COMPARISON OF MEASURED AND PREDICTED VOLTAGE 
HARMONICS AT THE PCC 

Harmonic Simulation 
Current 

ANN2 
Predicted Current Error 

DC 6.33E-04 5.25E-04 -1.08E-04 

1 0.9253 0.9284 3.10E-03 

5 0.0312 0.0211 -1.01E-02 

7 0.0142 0.0162 2.00E-03 

11 0.0128 0.0108 -2.00E-03 

13 0.0076 0.0064 -1.20E-03 

THD 4.87% 5.41%  
 

This result agrees well, though not entirely accurate, with 
the measured value of 4.87% which was obtained from 
simulation by replacing the nonlinear load with a similar sized 
current source. 

IV. SITE MEASUREMENTS 
This section demonstrates the functionality of the proposed 

source modeling method by using the data obtained from a 
plant startup wherein the load goes from no-load to full-load 
condition. This condition normally happens during a planned 
shutdown of plant. During restart, as the loads start coming on, 
there are sudden surges in the harmonics and then as all the 
other loads are operational, harmonic interactions between the 
different loads either result in an increase or decrease in the 
overall current harmonics.  The power system configuration at 
the measurement site is a 3 phase 4 wire wye connection. 
Waveforms of the three phase voltages (line-neutral) and the 
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line currents were acquired as 6 cycle snapshots, every 1 
minute, for a period of 7 hours. Each 6 cycle snapshot 
measurement is designated as an event. Hence there are 416 
events recorded. Data was acquired at the rate of 256 samples 
per cycle. Figure 9 shows the total harmonic distortion (THD) 
of the phase A voltage and current over the entire measurement 
period. Figure 10 shows the RMS values of the phase A 
voltage and current. Phases B and C exhibited similar 
characteristics. 
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Figure 9.  Phase A voltage and current THD  
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Figure 10.  Phase A voltage and current RMS values   

The system is balanced and voltage level is 14.4 kV. The 
voltage THD for all the three phases varied from 1.5% to about 
4.2% over the entire measurement period. The potential 
transducer (PT) output is a 120 V measurement of a 25 kV 
line-line service. Hence a PT ratio of 14400/120 is applied. 
Initially the current is about 120 A. After event 60, the current 
starts to increase and after event 110, it reaches a value of 
about 220A. For the remaining duration of measurement, the 
current remains at that level. The THD in current varied 
between 3% and 9% over the entire measurement period. 

V. FIELD EXPERIMENTAL RESULTS 
The meter used for data acquisition is a Metrosonics PA 9 

plus. The data is downloaded from the meter to a PC running 
the neural network software. The implementation of the 
proposed method requires one identification neural network 
and one estimation neural network for all three phases. The 
neural network structure now has three phase voltages as inputs 
and three currents as outputs. However, each input also 
requires the present value of the current vector and two time 
delayed values of the current vector, as well as a bias. So the 
actual number of inputs to the neural network is ten.  

 

Figure 11.  Phase  A current snapshot of event 397   

 

Figure 12.  Phase  A voltage snapshot of event 397  
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The training process begins with ANN1 predicting the 
phase voltages abcv  as a function of present and delayed current 
vector values. Initial weights of ANN1 are set to random values 
between 1± . Both ANN1 and ANN2 are multilayer perceptron 
neural networks and have 25 neurons in the hidden layer. 
ANN1 is trained with snapshots of data acquired at different 
times once the plant current has ramped up to its rated value, 
i.e., with randomly picked data from events 100 to 416. The 
snapshot data of the phase A current and voltage for event 397 
is shown in Figs. 11 and 12. 

Convergence in ANN1 training with data from event 397 is 
demonstrated by the fact that the neural network predicted 
voltage waveforms coincide with the actual voltage; they 
practically lie on top of each other as shown in Fig. 13. The 
value of the Mean Squared Error (MSE) shown in Fig. 14 for 
each phase is sufficiently low to indicate that the neural 
network is trained. 
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Figure 13.  Training result for ANN1 
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Figure 14.  Mean Squared Error voltage training  

The trained neural network is now supplied with the current 
waveform of event 28, and the predicted value of the voltages 
is compared with the actual voltages of event 28. Event 28 is 

chosen since at that instant the plant is in idling mode and the 
current harmonics are low, and hence impact of the harmonic 
volt drops on the PCC voltage is considerably reduced. Table II 
shows the comparison of the measured voltage THD at the 
PCC and the ANN2 predicted voltage at the PCC. Figure 15 
shows the ANN2 predicted phase A voltage waveform at the 
PCC for event 28. 

 

Figure 15.  Predicted phase A pcc voltage for event 28  

ANN2 is further supplied with a balanced 3 phase 
mathematically generated sine wave representing the load 
current with no harmonics. The ANN2 predicted result is 
shown in Fig. 16. 

 

Figure 16.  Predicted phase A pcc voltage with clean sinusoidal input current  
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The outputs of ANN2 are the predicted voltage waveforms 
that would be expected at the PCC if the customer were to 
apply filtering techniques to clean up the harmonic currents 
which it was injecting into the network. The predicted voltage 
waveforms are then compared with the actual measured 
voltages of event 28 to determine the difference that the load’s 
filtering action will have on the voltage distortion at the PCC. 
Figure 16 shows the ANN2 predicted phase A voltage 
waveform at the PCC with a clean sinusoidal input current. 

TABLE II.  COMPARISON OF VOLTAGE  DISTORTIONS  

 Measured 
PCC Voltage 
THD (Event 

28) 

ANN2 Predicted  
PCC Voltage THD 

(Event 28) 

ANN2 Predicted  
PCC Voltage 

THD with clean 
current 

Phase A 1.49 % 1.85 % 1.40 % 

Phase B 1.41 % 1.74 % 1.35 % 

Phase C 1.52 % 1.75 % 1.35 % 

 

The above results give us an indication of the impact of the 
harmonic filtering action by a load on the voltage THD at the 
PCC without actually having to install the harmonic filter [12], 
[13]. To give a quantitative meaning to the THD values 
predicted by ANN2, a percentage change is computed as; 

100( Measured VoltageTHD Pr edicted VoltageTHD ) %
Measured VoltageTHD

− ×         (2) 

For this particular site, the phase A voltage THD reduced 
by 6 %, phase B voltage THD reduced by 4.2 % and phase C 
voltage THD reduced by 11 %.  

The data acquisition process is illustrated in Fig. 17. Data 
preprocessing involves manipulating the data into a suitable 
form which can be processed further by the neural network. 
Due to the nature of the activation function, the inputs are 
limited to values between 1± .  
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Figure 17.  Data acquisition and export to a computer  

For carrying out the neural network computations, the data 
is downloaded from the PA 9 plus meter to the PC and 
preprocessed to fall within the limits of 1± . The scaling is 
done in software. The data is now suitable for training the 
neural network.  

VI. CONCLUSIONS 
The results from Table II show that the neural network 

predicted voltage THD’s values are close to the actual voltage 
THD values obtained from the field measurement. The neural 
network has not seen the values of event 28 during training; 
however it is able to approximate the actual voltage waveform. 
Furthermore, when the neural network is supplied with a clean 
sinusoidal current, the predicted voltage THD’s are even lower 
than that of event 28. Over the entire measurement period, it 
was observed that as the current THD decreased, the voltage 
THD also decreased.  

In general, this paper demonstrated the ability of the source 
modeling scheme to predict the change in the voltage 
distortion at the PCC due to the implementation of corrective 
filtering actions by a customer. The paper also shows the 
feasibility of applying the proposed scheme to actual field data 
and the possibility of training the neural network with 
snapshot data.  

The largest benefit of the source modeling scheme is that it 
is possible to obtain results and draw conclusions regarding the 
impact of a customer’s harmonic current injection without the 
need for the customer to actually take the corrective actions. 
Due to the phenomenon of harmonic cancellations, it is also 
possible that corrective actions by a customer may actually 
deteriorate the voltage distortion levels at the PCC. The source 
modeling scheme is designed in software and hence can be 
integrated into any commercially available power quality 
diagnostic instrument. 
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