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MLP/RBF Neural-Networks-Based Online Global
Model Identification of Synchronous Generator

Jung-Wook Park, Member, IEEE, Ganesh Kumar Venayagamoorthy, Senior Member, IEEE,
and Ronald G. Harley, Fellow, IEEE

Abstract—This paper compares the performances of a mul-
tilayer perceptron neural network (MLPN) and a radial basis
function neural network (RBFN) for online identification of the
nonlinear dynamics of a synchronous generator in a power system.
The computational requirement to process the data during the
online training, local convergence, and online global convergence
properties are investigated by time-domain simulations. The per-
formances of the identifiers as a global model, which are trained
at different stable operating conditions, are compared using the
actual signals as well as the deviation signals for the inputs of
the identifiers. Such an online-trained identifier with fixed optimal
weights after the global convergence test is needed to provide
information about the plant to a neurocontroller. The use of the
fixed weights is to provide against a sensor failure in which case
the training of the identifiers would be automatically stopped,
and their weights frozen, but the control action, which uses the
identifier, would be able to continue.

Index Terms—Global model, multilayer perceptron neural
network (MLPN), nonlinear dynamic system, online identifica-
tion, radial basis function neural network (RBFN), synchronous
generator.

I. INTRODUCTION

A synchronous generator in a power system is a nonlinear
fast-acting multiple-input multiple-output (MIMO) de-

vice [1], [2]. Due to its wide operating range, complex dy-
namics, nonlinearity, and the changing system configuration,
the entire system cannot be accurately represented by a fixed
model, which is then used for the design of conventional linear
system/controllers [3]. Both the model and the controller have
to change and adapt in order to achieve the best performance
by the controller as system conditions change. Artificial neural
networks (ANNs) offer an alternative. They are able to adap-
tively model or identify such a nonstationary nonlinear MIMO
process/plant online while the process is changing, and thereby
yield information that can be used by another ANN to control
the process.

This paper focuses on the identifier only. It makes a new
contribution by comparing the multilayer perceptron neural
network (MLPN) and a radial basis function neural network
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(RBFN) for the online identification of a synchronous generator
in an electric power system. It evaluates these two identifier
networks first when they use deviations of the measured signals
from their respective set points, and then when they use the ac-
tual measured signals. The paper also gives a more detailed ex-
planation of why the MLPN (rather than the RBFN) was used as
the model network (identifier) for the design of optimal neuro-
controllers based on the adaptive critic designs (ACDs), which
was reported in the authors’ recent technical papers [3]–[5].

In addition to the computational requirements to process the
data, the local and global convergence properties of the online
identifiers are evaluated after they have undergone continuous
online training for a period of time. Two training methods by
which the identifiers’ weights are trained using the actual sig-
nals as well as the deviation of signals from their set points over
a wide range of stable operating conditions [such an identifier
is called a global model identifier (GMI)] are presented (the
more detailed explanation for the term “global model” is given
in Section III-B).

II. ADAPTIVE NEURAL NETWORK IDENTIFIERS

FOR SYNCHRONOUS GENERATOR

A. Plant Modeling

In Fig. 1, the synchronous generator, turbine, exciter, and
transmission system are connected to a source of fixed voltage
magnitude and frequency (called an infinite bus) and form
the plant (dashed block in Fig. 1) that has to be identified.
Although, in practice, a power network is more complicated,
this simplified system in Fig. 1 is chosen to illustrate the
concepts described in this paper. The nonlinear seventh-order
dynamic model for the generator (G in Fig. 1) is described
by d−q axis equations, with the machine current, speed, and
rotor angle as the state variables, and has d−q damper windings
[1], [2]. These mathematical models are given in (1)–(3). For
voltage d−q equations

vd =Raid +
dλd

dt
− ωλq

vq =Raiq +
dλq

dt
+ ωλd

vfd =Rf if +
dλf

dt

vkd = 0 = Rkdikd +
dλkd

dt

vkq = 0 = Rkqikq +
dλkq

dt
(1)

0278-0046/$20.00 © 2005 IEEE
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Fig. 1. Plant model used for online identification: synchronous generator connected to an infinite bus, which represents all the other generators by a voltage
source Vb.

where

λd =Ldid + Lmdif + Lmdikd

λf =Lmdid + Lff if + Lmdikd

λkd =Lmdid + Lmdif + Lkkdikd

λq =Lqiq + Lmqikq

λkq =Lmqiq + Lkkqikq. (2)

The rotor angle, rotor speed, and electromagnetic torque are
described by

dδ

dt
=ω − ωo

dω

dt
=

1
J

(Ts − Te)

Te =
(
−ωo

2

)
[idiq(Ld − Lq) + if iqLmd

+ iqikdLmd − Lmqikqid] . (3)

In (1) and (2), (vd/vq, id/iq) and (vkd/vkq, ikd/ikq) are the
d−q axis components of (voltage, current) in the armature and
damper windings, λd/λq and λkd/λkq are the d−q axis compo-
nents of armature and damper flux linkages, and λf and if are
the field flux linkage and field current. Ra, Rf , and Rkd/Rkq

are resistances of armature, field, and d−q damper windings,
respectively. Ld/Lq, Lkkd/Lkkq, and Lmd/Lmq are the d−q-
axes components of self-inductance, damper self-inductance,
and mutual inductance, respectively. In (3), δ is the rotor angle
with reference to the infinite bus, ωo is the synchronous speed

in steady state, Ts and Te are turbine output shaft torque and
generator electromagnetic torque, and J is the polar moment
of inertia. By substituting the flux linkage d−q equations in (2)
into the voltage equations in (1), and using the equations in (3),
the seventh-order set of differential equations can be found [1]
and [2] for the dynamic model of the generator (G).

The voltage equations for the transmission system (in Fig. 1)
are given in (4), which are derived from the methods of circuit
and Park’s transformation theory [1], [2]

vtd =Vbd sin δ − Reid − Le
did
dt

+ ωLeiq

vtq =Vbq cos δ − Reiq − Le
diq
dt

− ωLeid (4)

where vtd and vtq are the d−q-axes components of terminal
voltage, Vbd and Vbq are the d−q-axes components of the
infinite bus voltage, and Re and Le are the resistance and
inductance of the transmission line. Furthermore, the general
IEEE exciter and turbine models are used for the plant in Fig. 1.
Their transfer functions and block diagrams are given in [2].
The exciter is represented by a simple first-order model. The
third-order turbine model provides for reheating between the
high pressure and intermediate pressure stages; the output of
the turbine is limited between 0% and 120%. The nonlinear
equations given in (1)–(4), together with the general IEEE
exciter and turbine model in [2], are used to describe the
dynamics of the plant in order to generate the data by simulation
for the ANN identifiers [3]. (In practice, these data would be
measured on the physical system).

In the plant, Pt and Qt are the real and reactive power at
the generator terminals, respectively. Ze is the transmission line
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Fig. 2. MLPN.

impedance, Pm is the mechanical input power to the generator,
Vfd is the generator field voltage, Vb is the infinite bus voltage,
∆ω is the generator speed deviation, ∆Vt is the generator
terminal voltage deviation, Vt is the terminal voltage, ∆Vref

is the reference voltage deviation, Vref is the terminal voltage
reference value, ∆Pin is the turbine input power deviation,
and Pin is the turbine input power. The ∆Pin and ∆Vref

signals (inputs) in Fig. 1 are small pseudorandom binary signals
(PRBSs) [3] applied to perturb the plant in order to measure
the speed deviation (∆ω) and terminal voltage deviation (∆Vt)
(outputs) responses. These outputs are important indicators of
generator damping performance. The same sequence of PRBSs
is injected to both the MLPN and RBFN identifiers in order
to ensure a fair comparison. The magnitude of these PRBSs is
limited to a maximum of ±10% of their nominal values.

B. Multilayer Perceptron Neural Network

In this paper, the MLPN consists of three layers of neurons
(input, hidden, and output layers as shown in Fig. 2) inter-
connected by the input and output weight matrices W and
V, respectively. The weights of the MLPN are obtained using
the backpropagation algorithm [6]. The activation function
for neurons in the hidden layer is the following sigmoidal
function

h(x) =
1

1 + exp(−x)
. (5)

During online training, the MLPN starts with small random
initial values for its weights, and then computes a one-pass
backpropagation algorithm at each time step k, which consists
of a forward pass propagating the input vector through the
network layer by layer, and a backward pass to update the
weights by the gradient descent rule. The output layer neurons
are formed by the inner products between the nonlinear regres-

Fig. 3. RBFN.

sion vector from the hidden layer and the output weight matrix
V. The inner weights (W) for the MLPN are updated by (6)

∆Wl =
∂J

∂Wl
=

∂J

∂tA

∂tA
∂pL

∂pL

∂qL

∂qL

∂pl

∂pl

∂ql

∂ql

∂Wl

=


{h(ql) (1 − h(ql)) X}

ml∑
j=1

1 · WL


 (6)

where
J(k) = (1/2)

∑
j [Ej(k)]2, where E(k) is the error vector

between outputs of the plant and MLPN, and k
indicates discrete sampling time;

tA target value;
L, l output and hidden layers, respectively;
ml number of neurons in the hidden layer;
p output of the activation function for a neuron;
q regression vector as the activity of a neuron;
X input vector of the MLPN.
The function h is the sigmoidal function in (5).
By trial and error, 14 neurons in the hidden layer are opti-

mally chosen for the online identification. These values depend
on a tradeoff between convergence speed and accuracy.

C. Radial Basis Function Neural Network

For a fair comparison, the RBFN also consists of three layers
(see Fig. 3). However, the input signals are each assigned
to a node in the input layer and then passed directly to the
hidden layer without weights. The hidden layer nodes are
called radial basis function (RBF) units, defined by a parameter
vector called the “center” and a scalar called the “width.” The
Gaussian density function is used in the hidden layer as an
activation function. The linear weights vji between the hidden
and output layers are solved or trained by a linear least squares
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Fig. 4. Demonstration for 2-D clustering centers by the batch mode k-means
clustering algorithm.

optimization algorithm [6], [7]. The overall input–output map-
ping for the RBFN f̂ : X ∈ Rn → Y ∈ Rm is

yi = bi +
h∑

j=1

vji exp

(
−‖X − Cj‖2

β2
j

)
(7)

where X is the input vector, Cj ∈ Rn is the jth center of the
RBF unit in the hidden layer, h is the number of RBF units,
bi and vji are the bias terms and the weight between hidden
and output layers, respectively, and yi is the ith output in the
m-dimensional space. Once the RBF centers are established,
the width βi of the ith center in the hidden layer is calculated as

βi =


 1

h

h∑
j=1

n∑
k=1

(‖cki − ckj‖)




1
2

(8)

where cki and ckj are the kth value of the center of the
ith and jth RBF units. In (7) and (8), ‖ · ‖ represents the
Euclidean norm. There are the following four different ways
for input–output mapping using the RBFN, depending on how
the data is fed to the network [8]:

1) batch mode clustering of centers and batch mode gradient
descent for linear weights;

2) batch mode clustering of centers and pattern mode gradi-
ent descent for linear weights;

3) pattern mode clustering of centers and pattern mode
gradient descent for linear weights;

4) pattern mode clustering of centers and batch mode gradi-
ent descent for linear weights.

The suitability of each of the four methods is discussed below.
1) Centers of RBF Units: The pattern mode clustering of

centers is not feasible for the online identification because of
excessive memory and computational complexity, since the
center vectors and their widths have to be adapted with chang-
ing input patterns. Hence, the batch mode k-means clustering
algorithm is used for determining the centers off-line, instead

Fig. 5. Memory allocation structure considered for determination of output
weights using the RBFN.

TABLE I
GLOBAL CONVERGENCE TEST

TABLE II
NUMBER OF FLOATING-POINT OPERATIONS AND ELAPSED TIME

REQUIRED DURING 0.2 s IN SIMULATION

of the recursive k-means algorithm [7], [9]. The batch mode
k-means clustering algorithm can be described as follows.

Step 1) A large amount of data (referred to as the data
set) is generated by simulating the plant (in Fig. 1)
behavior at many different operating conditions (see
Fig. 6) over the targeted operating range for feature
extraction. At each operating condition, 5000 sam-
ples are stored for subsequent training of the neural
network.

Step 2) Initialize the center of each cluster to represent a
different randomly selected data set in step 1).

Step 3) Assign each data set to the cluster nearest to it.
This is done by calculating the Euclidean distances
between training patterns and centers.

Step 4) When all the data sets are assigned, the mean (aver-
age) position is calculated for each cluster center.

Step 5) Repeat steps 3) and 4) until the cluster center
changes become acceptably small according to the
previously chosen stopping criterion.

Fig. 4 illustrates how the batch mode k-means clustering al-
gorithm forms the ten cluster centers, and each center (indicated
by “+”) represents the locally supported grouping data set from
the 500 data samples (indicated by “o”) in a two-dimensional
(2-D) space.
2) Output Weights: After the vector of cluster centers and

the width of each center are calculated off-line, the values of the
weights, vji in (7) can subsequently be updated during online
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Fig. 6. Synchronous generator capability limits in the P−Q plane.

training by using the linear least square algorithm based on
the pattern mode, or the pseudoinverse technique based on the
batch mode in the orthogonal least squares (OLS) algorithm.
The pseudoinverse technique takes less time for learning and
will be more effective for one-step ahead prediction perfor-
mance than the pattern mode least square algorithm. However,
the pseudoinverse technique has a drawback for the general-
ization or global minimum convergence without further weight
updates, as explained below.

Consider the memory allocation structure given in Fig. 5.
Window 1 contains the system data from time step nT to (n +
p)T , and window 2 contains data from (n + p)T to (n + 2p)T .
When the pseudoinverse technique is used, the RBFN identifier
processes all the data in each window as a single set such that
training for one-step ahead prediction is fast. From Fig. 5, the
drawback of the pseudoinverse technique is that it does not have
a learning mechanism for generalization, because the weights
calculated in each window represent the system information for
only that particular window. In other words, information in one
window for weights is lost in the other windows. Moreover,
the use of data in all windows is not possible for online
identification because of memory limitations. Consequently, the
batch mode k-means clustering algorithm for the centers of
RBF units is computed off-line, and the pattern mode gradient
descent algorithm for output weights is calculated online.

III. GLOBAL MODEL ONLINE MLPN/RBFN IDENTIFIERS:
SIMULATION STUDIES

In this paper, the GMIs are trained using the actual signals
as well as the deviation signals at a number of different stable
operating points before testing their usefulness. The computa-
tional requirement required to process data and local/global
convergence properties are used to evaluate the convergence
performance of the two MLPN- and RBFN-based online iden-
tifiers. After having trained online for a period of time, the
training error should have converged to a value so small that
if training were to stop due to loss of input signals, and
the weights frozen, then the neural networks would continue

to identify the plant correctly while the operating condition
remains fixed; this means that the ANNs have reached local
convergence. Furthermore, the training of ANNs is said to have
reached global convergence when, after changing the operating
conditions as well as freezing the weights, the network’s re-
sponse is still reasonably acceptable [10] in terms of some pre-
defined convergence error metric. At this point, the ANN-based
identifiers are evaluated as to how well they have converged
by measuring the average absolute convergence error (EA) and
the mean square convergence error (MSE) in (9)

e(k) = y(k) − ŷ(k)

EA =
1
N

N∑
k=1

|e(k)|

MSE =
1
N

N∑
k=1

e(k)2 (9)

where N is the number of training data samples and e(k) is
the error variable between the output (y) from the plant and
estimated output (ŷ) from the identifiers at each sample k. As
an illustration, the simulation results during training (carried
out for the test of Section III-B) are given in Table I.

A. Number of Floating-Point Operations

During 200 ms of online training time (with the actual
sampling time of 20 ms), the computational requirement of the
identifiers (MLPN/RBFN) to process the data set in simula-
tion is measured by calculating the number of FLoating point
Operations Per Second (FLOPS) and the elapsed computer
time needed for the calculation. For the RBFN, the number
of FLOPS depends on the number of RBF unit centers, which
contain information about the targeted entire operating range.
In Table II, the RBFNs with 10, 12, 15, and 21 centers are
denoted RBFN10, RBFN12, RBFN15, and RBFN21, respec-
tively, for convenience of presentation. These results clearly
show that the RBFNs require less FLOPS and less time than
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TABLE III
OPERATING CONDITIONS DATA SET FOR GLOBAL MODEL

the MLPN. Further simulations, which are not included in
Table II (in order to save space), show that a further increase
in the number of RBF centers does not necessarily yield better
performance with online training.

The absolute value of time used in the practical imple-
mentation by dedicated digital signal processor hardware will
be much less than the values shown in Table II. By trial and
error, the online identification performance by the RBFN12
showed the best results in terms of mean square error compared
to RBFNs with 10, 15, and 21 RBF centers. Therefore, the
RBFN12 is now chosen for a further comparison with the
MLPN, which has 14 neurons in the hidden layer, in the fol-
lowing evaluations.

B. Global Model Identifiers Trained by Deviation
Signal Inputs

For the deviation signal inputs based online identifiers, the
following associated vectors with the variables of the non-
linear autoregressive moving average with exogenous inputs
(NARMAX) model [3], [6], [10] are used:

1) reference vector into the plant, Ref(k) = [Pin(k),
Vref(k)];

2) input vector to the plant or identifiers, U(k) = [∆Pin(k),
∆Vref(k)];

3) output vector of the plant, Y (k) = [∆ω(k),∆Vt(k)];
4) input vector to the identifiers, X(k) = [Y (k − 1) U(k −

1) Y (k − 2) U(k − 2) Y (k − 3) U(k − 3)]T;
5) output vector of the identifiers, Ŷ (k) = [∆ω̂(k),

∆V̂t(k)].
The P−Q plane enclosing all the safe operating modes

within the specified limits of field current, stator current, prime
mover power, and steady-state stability [11] is shown in Fig. 6,
showing the approximate training boundary region (Ω) in the
first quadrant [overexcited generator operation, power factor
(pf) lagging] of the P−Q plane for the global model online
identification. A total of seven operating conditions E to K
within Ω are used for training and appear in Table III. The
eighth operating condition L [point O (L) in Fig. 6] is used
for the online global convergence test (after the weights of the
identifiers have been frozen) at a point in the region of the

Fig. 7. Deviation signal inputs based online global convergence test. (a) Speed
deviation (∆ω). (b) Terminal voltage deviation (∆Vt).

training set. online training starts with random weights and con-
tinues for 3000 s for the two identifiers (MLPN and RBFN12)
at operating conditions changing from E to K (Table III); each
operating condition is randomly selected every 10 s, but the
shuffled sequence is the same for the two identifiers. Thereafter,
the weights are frozen and the two identifiers are tested for
global convergence at the operating condition E in the training
set (this is local convergence test) from t = 0 s to t = 5 s, and at
the different operating condition L [point O (L) in Fig. 6] (this
is global convergence test) from t = 5 s to t = 10 s, and again
at the initial operating point E from t = 10 s to t = 15 s.

The result in Fig. 7 shows that the MLPN identifier has
better local convergence performance than RBFN12. Both
identifiers show the good global convergence performance.

The PRBS signals are now removed, the identifiers’ weights
are still fixed, and a 100-ms three-phase short circuit is applied
at the infinite bus in Fig. 1 at t = 0.3 s, in order to prove that
the identifiers are correctly tracking even with large changes
in variables. The operating point at which this short circuit is
applied is the condition O (M) in Fig. 6, which is not within
the set used for the training of the two identifiers (MLPN and
RBFN12) and is at approximately 25% more active power than
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Fig. 8. Online global convergence test by a 100-ms three-phase short circuit.
(a) Speed deviation (∆ω). (b) Terminal voltage deviation (∆Vt).

the closest training condition H in Table III. The result in Fig. 8
shows that both identifiers trained by deviation signals give
acceptable tracking results even during such large changes, and
the MLPN identifier has a slightly better global convergence
performance than the RBFN12 identifier.

This training procedure for the MLPN has been used as part
of a neurocontroller successfully tested on practical generators
in a multimachine power system [4], [5]. On a physical system,
the training of the identifier could occur in either of the
following two ways.

1) Data recorded from the physical system over a period
of time could be used off-line for the training of iden-
tifier, which would start with random weights. This has
actually been implemented on a MLPN identifier in [4]
and [5].

2) The identifier could be trained online as the physical
system moves from one operating condition to the next
over periods of minutes or even hours. In both the off-
line and online training cases, the identifier will not be
allowed to interact with the neurocontroller until the
identifier training has converged.

Fig. 9. Actual-signal-inputs-based online global convergence test. (a) Speed
deviation (∆ω). (b) Terminal voltage (Vt).

In the simulation results for this paper, it was convenient
to change operating conditions at much shorter intervals of
time, in order to speed up the simulation process. After all, the
purpose of this investigation is to compare the performances
of two different types of feedforward neural networks as
identifiers only.

C. Global Model Identifiers Trained by Actual Signal Inputs

For the online identification of nonlinear dynamics of the
synchronous generator using the MLPN and RBFN, the devi-
ation signals are usually used, because not only do they provide
better sensitivity for controller in practice, but also it is easy to
amplify a small (deviation) signal than the full (actual) signal.
However, the use of deviation signal inputs for the real-time
identification might be difficult in a practical power system
due to the problems of accurately measuring small values.
Furthermore, the deviation signals in practice might be severely
distorted with signal noises [12]. For these reasons, the actual
signal inputs, which have much larger magnitudes, are here
investigated as an alternative to the deviation signals. For the
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Fig. 10. Actual-signal-inputs-based online global convergence test by a
100-ms three-phase short circuit. (a) Speed deviation (∆ω). (b) Terminal
voltage (Vt).

actual signal inputs based online identifiers, the inputs and
outputs of identifiers are as follows:

1) input vector to the identifiers, U(k) = [Pin(k) +
∆Pin(k), Vref(k) + ∆Vref(k)];

2) output vector of the plant, Y (k) = [∆ω(k), Vt(k)];
3) output vector of the identifiers, Ŷ (k) = [∆ω̂(k), V̂t(k)].

After online training for 3000 s for both identifiers (MLPN
and RBFN12) with actual signal inputs, under the same ran-
domly selected operating conditions as the previous test, the
weights of the two identifiers are then frozen. Thereafter, the
identifiers are tested at the operating condition E in Fig. 6 from
t = 0 s to t = 5 s, and at the operating condition L from the
t = 5 s to t = 10 s, and again at the operating condition E
from t = 10 s to t = 15 s. The results in Fig. 9 show that
the MLPN identifier trained by actual signals did not reach
global convergence even though it was trained as a global model
over multiple operating points. On the contrary, the RBFN12
identifier still shows to some degree acceptable identification
capability. A similar behavior is also observed in the results
of Fig. 10 for a large perturbation by applying a 100-ms

Fig. 11. Sensor failure test by a 100-ms three-phase short circuit. (a) Speed
deviation (∆ω). (b) Terminal voltage deviation (∆Vt).

three-phase short circuit to an infinite bus at the operating
condition O (N) in Fig. 6 (see also the operating condition N
in Table III).

The MLPN trained online with the actual signals did not
retain past learned information in that the weights trained
by actual signals, which are much less sensitive than devi-
ation signals, did not learn the network’s response globally.
On the contrary, the RBFN has to some degree reached a
global minimum without regard to the type of inputs, be-
cause the weights associated with an optimally selected neu-
ron only affect a specified region of the multidimensional
input space.

D. Robustness for Sensor Failure

Industrial processes to be controlled must be protected for
the case of any sensor failures especially when the identifier
provides the basis for a full-state observer, which tracks the
corresponding states of the real system in conjunction with
online measurement. When the ANN-based identifier is used
as an observer in a practical power system, the fixed weights
(which have been trained with the deviation signals as a global
model) are not sensitive to a sensor failure of input signals,
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Fig. 12. Experimental results with forced training at Pref = 0.1 at unity pf.
(a) Speed deviation (∆ω). (b) Terminal voltage deviation (∆Vt).

which, therefore, make the predictive ability of the identifiers
more robust.

To illustrate the robustness of the identifiers for a sensor
failure, it is assumed that the sensor array for the input sig-
nals [∆Pin(k − 1) ∆Pin(k − 2) ∆Pin(k − 3)] (for the GMIs
trained by deviation signal inputs in Section III-B) has failed,
and, therefore, these signals are not used. As in the previous
section, the same 100-ms three-phase short circuit is now ap-
plied at the infinite bus at the operating condition N in Table III.
The corresponding results in Fig. 11 clearly show that the two
identifiers still track the system responses to some degree even
without one of the measured input signals during a sensor
failure situation.

IV. GLOBAL MODEL IDENTIFIERS:
EXPERIMENTAL RESULTS

From the simulation studies carried out in Section III, it can
be concluded that the two identifiers as global models have
each reached global convergence when they are trained with
the deviations of measured signals as identifier inputs. Espe-
cially, if only deviation signals are used, the MLPN is strongly
recommended in view of real-time hardware implementation
issues, because the MLPN avoids the extensive computational

Fig. 13. Experimental results with PRBSs and training terminated at 20 s
with Pref = 0.2 at unity pf. (a) Speed deviation (∆ω). (b) Terminal voltage
deviation (∆Vt).

efforts required in off-line training such as the determination
of the RBF centers. Therefore, the usefulness in practice of the
MLPN GMI trained with deviation signals is now verified by
practical implementation. A constant exciter voltage Vref and a
turbine power signal Pin are applied to the microalternator [5]
for a particular operating condition. The training of the MLPN
identifier is carried out by injecting PRBSs ∆Vref and ∆Pin

into the exciter and the turbine, respectively. Fig. 12 shows the
terminal voltage deviation and speed deviation, respectively,
as a result of training with PRBSs at an operating point:
Pref = 0.1 per unit (p.u.) at unity pf. These results show that
the MLPN identifier takes about 3 s to track the plant dynamics.

Fig. 13 shows the speed deviation and terminal voltage
deviation with the PRBSs applied to the exciter and turbine,
at a new operating point: Pref = 0.2 p.u. at unity pf. In these
figures, the training is terminated at t = 20 s in order to test
the generalization capability of the MLPN identifier at this
operating point. It is obvious from the results that the MLPN
is able to track the speed and terminal voltage deviations with
sufficient accuracy even when online training is stopped. This
proves that the MLPN identifier has achieved an adaptive global
minimum after 20 s. Similar results were obtained at other
operating points and conditions.
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V. CONCLUSION

This paper compared the performance of a multilayer per-
ceptron neural network (MLPN) and a radial basis function
neural network (RBFN), using the actual signals as well as
the deviation signals in a continually online training mode, to
identify the nonlinear dynamics of a synchronous generator
connected to an infinite bus. The online identifiers were each
trained at several different stable-operating conditions as global
models. In each case, after a period of training, the weights
were frozen, and the identifiers were then tested at a different
operating condition, either included in the training set or outside
the training set. The weights were frozen in order to simulate
the condition when the training of the identifiers would be
automatically stopped, and their weights frozen, in case a
measurement from a sensor was lost, but the control action that
uses the identifier would continue until remedial action could
be taken. These tests are important to evaluate the confidence
levels in the neural network identifiers/models [for example,
the model network used in the adaptive-critic-design (ACD)-
based optimal neurocontrollers [3]–[5]] developed. From the
case studies, the following conclusions can be drawn:

1) The MLPN identifier as a global model successfully con-
verges to a global minimum if it is trained using deviation
signals. In this case, the MLPN could have the better local
convergence and online global convergence properties to
identity a synchronous generator over the RBFN.

2) The MLPN identifier trained by the actual signal fails
to identify a synchronous generator even with a global
model. In contrast, the RBFN identifier as a global model
gives reasonably good results irrespective of whether it
was trained using deviation or actual signals.

Generally, the RBFN requires less training time to converge
and fewer computational complexities to train the identifiers.
However, when the MLPN is trained by using the global model
with deviation signal inputs, it has the faster convergence
speed, strong local convergence, and online global convergence
properties to identity the synchronous generator.

The final recommendation is that the RBFN should be used,
for either deviation or actual signal inputs to an identifier, taking
into account the importance of having a global model with only
online training. If only deviation signals are used, the MLPN is
strongly recommended. The use of MLPN is also preferred for
the real-time hardware implementation, because the efforts to
determine the RBF centers can be avoided.
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