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Abstract 
This paper details a feasibility study of estimating excitation 
system parameters during on-line operation using time-domain 
system identification. This study concentrates o n  identifying the 
appropriate exciter model, developing an  input signal that would 
provide a proper level of perturbation such that the dynamics of 
the system can be captured, analyzing the effects of both sys- 
tematic and random noise, developing algorithms to  perform 
the parameter estimation, testing, and validating the obtained 
system parameters. This study established a strong basis for  
estimating the system parameters during on-line operation. 
Key Words: Parameter estimation, excitation systems, sys- 
tem identification 

1 Introduction 
The analysis of power system phenomena such as voltage col- 
lapse and low frequency oscillations often requires the use of 
small signal stability software and/or time domain simulation. 
The validity of the results of these packages depends greatly 
on the accuracy of the model parameters of the system com- 
ponents. Many parameters which are used in studies are ei- 
ther “manufacturer specified” or “typical” values which may be 
grossly inaccurate, as various parameters may drift over time or 
with operating condition. Thus, it is desirable to develop meth- 
ods for estimating component parameters, preferably during 
on-line operation. While parameter estimation of synchronous 
machines has been well documented, parameter estimation of 
excitation systems has only begun to receive thorough atten- 
tion. 

This paper details a feasibility study of estimating excitation 
system parameters during on-line operation, using time-domain 
system identification. This study concentrates on identifying 
the appropriate exciter model, developing an input signal that 
will provide a proper level of perturbation such that the dy- 
namics of the system can be captured, analyzing the effects of 
both systematic and random noise, developing algorithms to 
perform the estimation, testing, and validating the obtained 
parameters. 
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Frequently, it is necessary to invest considerable resources 
to obtain excitation system parameters. Union Electric Com- 
pany contracted Ontario Hydro to obtain the parameters of 
their Rush Island Plant and many of their other plants as well. 
This procedure required many engineering hours and required 
each system to remain off-line through-out most of the testing. 
The primary reason for the off-line test is that the required 
perturbations to the system are large enough to impact the 
terminal voltage levels of the generator, and secondly, many of 
the component signals could only be isolated by dismantling 
several of the control boards. For this reason, Union Electric 
commissioned a study to determine the feasibility of determin- 
ing the parameters without the heavy investment of engineering 
hours, without deleteriously impacting the system during on- 
line operation, and using signals which are easily accessible. 
The highpoints and main conclusions of this feasibility study 
are presented in this paper. This study was implemented based 
on a model of the actual Rush Island excitation system built 
by Ontario Hydro as a result of their system testing. This pa- 
per presents the methodology of the system identification ap- 
proach, the application of both systematic and random noise to 
the system signals, and the numerical results of the estimated 
parameters. The study established a strong basis for estimating 
the system parameters during on-line operation. 

Previously, very little work has focused on obtaining ex- 
citation system parameters. In [l], a time-domain approach 
was proposed for obtaining the system parameters. The data 
used for the estimation was obtained during a lightening strike, 
which provided a very significant perturbation to the system. 
The authors fit the data to several excitation system models 
including the IEEE AC1 (which is a representation of the Rush 
Island excitation system) and the DCl models. In on-line ap- 
plications, a perturbation of this size is not acceptable. Several 
other authors have taken the approach of employing a frequency 
domain-based estimation. Most of these works, however, were 
for specific exciters and were not representative of an IEEE 
standard model for use in standard stability simulations [2]-[4]. 

2 The Excitation System Model 
The Rush Island excitation system is a brushless excitation 
system. This is a field controlled alternator rectifier exciter. 
This system consists of an alternator main exciter with non- 
controlled rectifiers to convert the AC current into the DC cur- 
rent needed by the generator. Several control devices are also 
included in the excitation system. These include a damping 
module, a V/Hz limiter, a voltage error detector, minimum 
and maximum excitation limiters, a load compensator, a sig- 
nal mixer, a trinistat three-phase firing circuit, and a trinistat 
three-phase power amplifier (thyristors). Each of these mod- 
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Figure 1: AC1 type exciter used in the study 

ules, separately, have a specific function within the exciter. 'The 
main exciter's output is determined by the trinistat three-phase 
power amplifier, whose firing angle is determined by the trin- 
istat firing circuit. The signal mixer generates an error signal 
which is fed into this firing circuit, which, in turn, determines 
the firing angle used. Under normal operating conditions, the 
output of the voltage error detector, which compares the actual 
terminal voltage to  a specified reference voltage, establishes the 
signal mixer output. The main exciter field current is fed back 
through the damping module to  produce a closed loop configu- 
ration. This helps stabilize the system and maintain a constant 
voltage output. The minimum excitation limiter, maximum 
excitation limiter, and V/Hz limiter are included to prevent 
the generator from operating in a greatly underexcited, greatly 
overexcited, or saturated region, respectively. The load com- 
pensator provides compensation for the transformer impedance 
or line drop at the output of the generator. All of these devices, 
together, are considered to be the pilot exciter, which supplies 
the field current to  the main exciter. The main exciter is not, 
therefore, self-excited, and the voltage regulator power is taken 
from a source not affected by external transients. This model 
may be represented by the IEEE standard AC1 type exciter 
shown in Figure 1. 

Union Electric and Ontario Hydro developed a computer- 
based model of the excitation system, using the visual simula- 
tion software package VisSim (manufactured by Visual Solu- 
tions). The model was extensively analyzed by UE and Ontario 
Hydro and is found to accurately simulate the response of iJhe 
actual excitation system during open circuit operation of i;he 
generator. Thus in this study, the parameter estimation pro- 
cess is based on estimating the parameters of the VisSim model, 
under the assumption that if the VisSim model parameters can 
be estimated, then so can the actual system parameters. Open 
circuit operation was chosen to simplify the generator model, 
which in this study is taken to  be known. There is a multi- 
tude of literature on the estimation of generator parameters; 
therefore, this was not included as part of this study. 

3 Parameter Estimation by Sys- 
tem Identification 

System identification (SI) is defined as the study of determin- 
ing the model or structure of a system using a limited number 
of input and output data measurements, which may or may 
not be disturbed by noise [ 5 ] .  The process by which syst.em 

identification is performed contains five general steps. The first 
is to collect input-output data from the experimental design 
(or process) to be identified. Next, the data is examined and 
conditioned so as to remove any bias terms and reduce the 
effect of any large disturbances that are not a result of the pro- 
cess being identified (Le., noise). Thirdly, a model structure 
for the process must be defined and selected. After the model 
structure has been selected, the best fit model in the selected 
structure (or the parameters of the model) is computed using 
the obtained input-output measurements. Finally, the result- 
ing model is examined for accuracy and validity. The validity of 
the calculated model can be checked using various techniques, 
one of which includes simulation of the resulting model using 
the obtained input data from the actual system as input and 
comparing the output data of the actual system to  that of the 
system containing the estimated parameters. 

In order to  accurately estimate the parameters of the exci- 
tation system, the VisSim model (also known as the function 
model) had to modified in two ways. The first modification 
came in the form of a perturbation signal that would disturb 
the system such that the dynamics of the system would be cap- 
tured in the input/output data measurements. The greater the 
dynamics within the signal, the more accurate the parameter 
estimation. However, it wabs desired to  design the perturbation 
signal, such that the parameter estimation could be performed 
on-line. Because of this, i i  perturbation signal had to be de- 
signed such that it would dynamically excite the system, yet 
have a minimal impact on the output of the system (Vc). The 
second modification came in the form of noise. The model did 
not initially include any noise input. However, it is known 
that systematic noise due to the inverter type power amplifier 
occurs in the actual excitation system. Due to  the feedback 
configuration of the excitation system, this noise is propagated 
throughout the entire system. Also, in on-line measurements, 
random noise in the data acquisition system is prevalent, and 
therefore must be modeledl. 

3.1 Input Signal Perturbation 
The pseudo random binary signal (PRBS) was chosen as the 
perturbation signal. The characteristics of the signal are such 
that it has a random switching time between two values, a max- 
imum and minimum, which are held constant. The spectrum of 
this signal has a wide band of frequency content, which excites 
the dynamics within the system. Since the minimum and max- 
imum values of the signal may be specified, the magnitude of 
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Table 1: Effect of PRBS Magnitude on Vc 

PRBS (V) 
rt 1.0 

0.5 
f 0.1 

Vcmoa (P.u.) VC,,,;~ (P.u.) p.u. swing 
123.0 (1.025) 117.5 (0.979) 0.0458 
121.5 (1.013) 118.7 (0.989) 0.0233 
120.3 (1.003) 119.7 (0.998) 0.0049 

[ A 0.05 j 120.2 (1.002j i 119.9 (o.999j i 0.0024 I 

Table 2: Physically Measurable Signals 

the PRBS can be set such that the output of the overall system 
is not significantly disturbed. Due to the accessibility of the 
reference voltage (Vref), this signal was chosen as the injection 
point for the perturbation signal. With the constantly chang- 
ing setpoint, the system was continually making adjustments 
to match the setpoint value, thus dynamically exciting the sys- 
tem. In the Rush Island system, a PRBS signal of magnitude 
0.1 V or greater superimposed onto to the reference voltage 
causes limits within the excitation system to be violated. It 
was determined that a PRBS of magnitude 0.05 V is sufficient 
to excite the dynamics of the system without affecting the over- 
all system significantly. Table 1 shows the effect of the various 
magnitudes of the PRBS on the output VC. 

3.2 Noise 
There are two types of noise in the excitation system: system- 
atic noise due to the inverter type power amplifier and random 
noise due to  the data acquisition equipment. The inverter type 
power amplifier rectifies a 420 Hz, three-phase, AC signal to 
a DC signal using gated thyristors. The gates are provided to 
control the firing angle, or gate delay, on the thyristors. This 
firing angle will determine whether the output of the rectifier 
will have a positive, negative, or zero average dc voltage out- 
put. Representative waveforms of the signals produced by the 
rectifier for three different gate delay angles (30, 90, and 150 
degrees) are shown in Figure 2. The inverter type power ampli- 
fier’s (rectifier) output is VFE; therefore, the systematic noise 
was added into the model at the summing junction that pro- 
duces VFE in the main exciter. Due to the configuration of 
the main exciter, the systematic noise is propagated tbrough- 
out the main exciter. It is also propagated through the pilot 
exciter by the feedback of I F E .  The relatively long time con- 
stant associated with the generator, however, naturally filters 
out this noise; therefore, the effects of the rectifier noise are not 
seen at the output of the generator (Vc). 

Ftandom noise enters the data through the data acquisition 
equipment. This random noise is approximated by zero mean, 
white Gaussian noise. In this study, the magnitude of the noise 
was varied to determine the highest magnitude of random noise 
that could be tolerated and still produce a reasonable estimate 
of the parameters. 

Output of Systematic Noise Generator 

Alpha = 30 degrees 
v 21 1 

0 
I 1  
t 

0 ,0005 DO15 ,0025 
Time (sec) 

Alpha = 90 degrees 

0 .0005 .001 ,0015 ,002 .GO25 
Time (sec) 

Alpha = 150 degrees 
v -.5 1 

0 
I -1.0 

-1.5 

-2.0 
0 .0005 ,0015 ,0025 

Time (sec) 

Figure 2: Typical rectifier waveforms 

3.3 Data Collection 
The first step in performing the data collection of the input and 
output data is to determine which of the signals in the desired 
model are physically measurable. The usable signals are given 
in Table 2, where VED is the output of the voltage error detec- 
tor and is not shown in Figure 1 due to the simplification of 
the model. The following manually adjusted quantities are also 
assumed to be known: reference voltage (Vref), volts/hertz ref- 
erence (V/Hz,,f), per unit Gequency (f (pu)), and base adjust 
into the firing circuit. In addition to the physically measurable 
signals, the transfer function of the (assumed known) genera- 
tor yielded the “derived” signals EFD and I F D .  Lastly, it was 
assumed that EtFt(pv) and V ,  were also obtainable. 

3.4 Transfer Functions 
The obtainable input/output signals, both measured and de- 
rived, break the model up into several parts. Each of these 
parts can be described by a transfer function relating an out- 
put signal to an input signal and the parameters contained be- 
tween them. The SI process used actually estimates transfer 
functions, not individual parameters. By isolating and deter- 
mining a variety of transfer functions from the developed SI 
process, the individual parameters may be derived from these 
transfer functions. Once the transfer functions were developed, 
they could be used to validate the estimates of the parame- 
ter estimation algorithms. The excitation system includes two 
nonlinear blocks: the saturation block and the rectifier mode 
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Para- Actual 
meter Value 

block. Under nominal operation (as in this study), the rectifier 
mode block can be assumed to remain in a fixed mode, and is 
therefore modeled as a constant gain value ( I N F E x ) .  The sat- 
uration function ( S E ) ,  however, is linearized in order to obtain 
a linear transfer function. 

Est. Est. Value Est. Value 
Value Unfiltered Filtered 

3.5 Signal Conditioning 
Each of the input/output data sets must be conditioned to re- 
move the high frequency content, any initial transients due to 
initial conditions, and the bias within the signals. One method 
to reduce the effect of noise in the data measurements during 
estimation is to average several noisy data sets together. In 
actual practice, this implies that several data sets of the same 
signal, in response to an identical perturbation, had been taken. 
The more sets averaged together, the better the estimation will 
be. After the averaging process, the averaged noisy data sig- 
nals were then passed through a lowpass filter to remove the 
high frequency content (noise) associated with the systematic 
and random noise. The filtered data was then conditioned to  
remove any initial transients. The estimation algorithms as- 
sume that the system is in steady state at the onset of the 
PRBS perturbation. Due to the initial conditions set on the 
integrators in the VisSim functional model, the system experi- 
enced initial transients for the first few seconds of simulation. 
The initial transients died out at approximately 2 seconds, after 
which time the PRBS was injected into the system. Lastly, the 
bias in each data signal was removed by computing the aver- 
age of each data set (which should be close to the steady-sta,te 
value) and subtracting this average Gom each data point. This 
made each of the data signals zero mean. 

3.6 Estimation 
In the estimation process, there are two types of models: para- 
metric and non-parametric. A parametric model concentrates 
the information of the model structure into a set of parameters 
using a parameter vector. Since the structure of the excita- 
tion system model was already known, a parametric model was 
used in this study. The general polynomial representation of 
the transfer function of a parametric model structure is: 

where q is the shift operator and A(q) through F(q)  are poly- 
nomials in q of varying orders. The vector y(t) is the output, 
u(t - nk) is the input with delay (if required), and e ( t )  is the 
error signal (or noise). The various parametric models are vari- 
ations of the general equation where specific polynomials are of 
order zero. For example, the ARX (auto regressive with extra 
input) has polynomials C(q) ,  D(q )  and F(q)  of order zero. The 
ARMAX (auto regressive with moving average and extra input) 
has polynomials D(q)  and F(q)  of order zero. The PEM model 
structure is a general model structure which encompasses! all 
of the polynomials given in equation 1. During the valida7tion 
stage, the accuracy of the system response is analyzed to de- 
termine whether the chosen model is acceptable, and if not, 
a different model may be chosen. The selection of the model 
structure must include not only the type of model to be used, 
but also the order of the polynomials within the model. The 
order of the polynomials correspond to the number of both the 
poles and zeros in the transfer function that relates the output 
to the input or the error. Then, a best fit approximation is used 

to  calculate the parameters oil the chosen model to  best approx- 
imate the desired transfer function. A least squares minimiza- 
tion is used to perform the approximation of the ARX model 
parameters, while a Gauss-Newton minimization is performed 
in the estimation of the ARMAX and PEM model parameters. 

3.7 output 
The last step in the parameter estimation process is to convert 
the estimated discrete time transfer function parameters (in q)  
to continuous time transfer function parameters (in s), since 
the continuous time parameters of the excitation system are 
desired and the data is, by nature, discrete. This dictated that a 
discrete to continuous conversion be performed. The conversion 
was accomplished using a pole-zero matching technique which 
matches the poles and zeros of the transfer functions. 

4 Test Results 
In order to estimate the parameters, the VisSim simulation of 
the Rush Island excitation system was run, the data collected, 
and the estimation algorithms executed. The simulation was 
conducted using a simulation step size of 5 x 10F5 seconds. 
This step size was selected !such that is was much smaller than 
the frequency of the systematic noise (2520 Hz), which was 
the highest Gequency in the system with the exception of the 
PFU3S. The PRBS perturbation of f0.05V was injected into the 
system after the initial transients had died out (approximately 
2.6 seconds into the simulation). The f is t  tests conducted con- 
tained a no noise base case and cases where only systematic 
noise was considered. The results of these tests are shown in 
Table 3. The systematic noise in these tests was modeled using 
a magnitude of one volt as the three-phase input into the recti- 
fier and a firing angle of 90 degrees. This represented a “worst 
case” scenario because the !30 degree signal contains the highest 
harmonic content. 

Table 3: Estimation results with zero random noise 

Estimation Results of Pilot Exciter 

Est. Value Est. Value 
Unfiltered Filtered 

No Noise I Sys. Noise I Sys. Noise 
3.74.472 I 213.9605 I 174.211 

I 1 tOE: 1 ‘b.po’9~~ ::::;: 1 :::;;: 
0.6746 0.6757 0.6748 

0.00766 0.00758 0.0077 0.0073 
INFEX 1.215 1.216 1.2136 1.2146 

After the base case was conducted, various tests were per- 
formed utilizing various combinations of the variables in the 
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Para- 
meter 

system which would influence the estimation of parameters: es- 
timation technique (arx, armax, or pem), random noise magni- 
tude, lowpass filter cutoff frequency, number of averaged data 
sets, firing angle on the rectifier, and three-phase magnitude 
into the rectifier. A sample of these tests are shown in Tables 
4-5. All the results shown in a particular figure utilize the esti- 
mation technique, rectifier firing angle, and three- phase mag- 
nitude into the rectifier shown at the top of the figure. The 
title of each column indicates the amount of random noise (in 
percentage of the steady state operating point of that signal) 
and the number of times each signal was averaged. 

Note that without noise in the system, the estimated param- 
eters contain only the slightest error. Also, the systematic noise 
was found to have a negligible impact on the estimation of most 
of the excitation system parameters, with the exception of the 
time constant associated with the voltage error detector. The 
very fast time constant associated with TA is the most probable 
cause of the inaccuracy of the estimation. It is noted, however, 
that the estimate for this parameter can be greatly improved 
by filtering the data before performing the estimation. 

Actual Est. Value Est. Value Est. Value 
Value 0.5% noise 0.5% noise 1% noise 

K H ~  
T H ~  
KA 

The random noise, however, did have a significant effect on 
the outcome of the parameter estimates. Although most of 
the parameters could be estimated fairly accurately with small 
amounts of random noise injected, it was found that several of 
the parameter estimates were relatively intolerant to the ran- 
dom noise. The type of estimation algorithm used in the iden- 
tification of the parameters did not seem to have an impact 
on the accuracy of the results. Each algorithm produced sim- 
ilar results when performing the estimations under the same 
conditions. 

In order to validate the estimated parameters, they were in- 
serted into the functional model and internal signals were com- 
pared with signals produced by the original functional model. 
Several of the signal comparisons are displayed in Figures 3- 
5 (note: the first second of the simulation during which the 
start-up transients are decaying has been omitted). These "es- 

averg= 5 averg = 10 averg = 10 
11.9177 12.333 12.2274 12.4712 
0.1700 0.1745 0.1730 0.1766 

0.00483 0.00983 0.007028 0.02227 

Table 5: Estimation Results using ARMAX and PEM, 
CY = go", and a 1 V Input into Rectifier 

TA 
XF 
TF 

0.0060 0.01204 0.00857 0.02989 
0.08402 0.04987 0.04718 0.06459 
1.18999 1.1912 1.1913 1.16523 

Para- 
meter 

KThy 

T, 
SE + K E  

PT 
Kd 

INFEX 

Actual Est. Value Est. Value Est. Value 
Value 0.5% noise 0.5% noise 1% noise 

averg=5 averg=lO averg=lO 
174.472 174.4614 173.1237 174.1729 
0.07554 0.07550 0.0750 0.0754 
0.0974 0.0975 0.0975 0.0974 
0.675 0.6610 0.6715 0.6513 

0.00766 0.0073 0.0071 0.0069 
1.215 1.2254 1.2128 1.2053 

timated" signals were derived using the estimated parameters 
from the following test scenario: estimation algorithm=arx, 
three-phase rectifier input = 1 V, firing angle = go", cutoff 
frequency in main exciter signals = 10 Hz, cutoff frequency in 
pilot exciter signals = 50 Hz, random noise level = 0.5% of sig- 
nal level, and 5 sets of data were averaged. Although the steady 
state value of the signals have a slight error (due to the error in 
the parameters), the response of the signals to a disturbance is 
shown to be quite similar. This validates that the estimated pa- 
rameters can be used to correctly model the dynamic response 
of the system. 

Para- Actual Est. Value Est. Value Est. Value ' 
meter Value 0.5% noise 0.5% noise 1% noise 

avg=5 avg=lO avg=lO 
K H ~  11.9177 12.2857 11.7084 12.4406 
TwZ 0.1745 0.1754 0.1688 0.1779 
KA 0.00483 0.00904 0.00710 0.02802 
TA 0.00600 0.01104 0.00870 0.03177 
KF 0.08402 0.0483 0.08695 0.12040 
TF 1.18999 1.1811 1.19218 1.19360 

Efd: Estimated vs. Actual 

6d 

Para- 
meter 

Kthy 
T, 

SE + K E  
PT 
Kd 

INFEX 
16 

v l 5  
0 
I 15 
t 

14 

1 4  

Actual Est. Value Est. Value Est. Value 
Value 0.5% noise 0.5% noise 1% noise 

averg=5 averg=lO averg=lO 
174.472 169.018 170.6974 167.406 
0.07554 0.0732 0.0739 0.0725 
0.0974 0.0975 0.0975 0.0978 
0.675 0.6720 0.6672 0.6419 

0.00766 0.0069 0.0065 0.0045 
1.215 1.198 1.2032 1.2148 

Y b'l 
135 

1 2 3 4 5 

Time (sec) 

- Actual Response 

__.__ Estimated Response 

Figure 3: Estimated vs. Actual Response of Efd 
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cantly. The results of the full study show that as the mag- 
nitude of the random noise increased, the accuracy decreased. 
Due to the difficulty in testing every combination of variables, 
the results provided in this paper give the reader a sense of 
the accuracy as the magnitude of the noise increases. Since the 
noise magnitude can be effected by such things as the quality 
of the data acquisition equipment, the determination of how 
much noise can be tolerated in order to obtain a specific ac- 
curacy is left for each user to decide. In the full study, the 
effect of averaging the data was also investigated. Many sets 
(or pairs) of the simulated input/output data were taken and 
averaged in order to derivle the parameters. It was found that 
as more data sets were averaged together, the estimation be- 
came more accurate. For further discussion on these topics and 
results of various combinations of the variables (firing angle, 
rectifier amplitude, etc.) see [6].  

The proposed method was established to estimate the linear 
parameters of the IEEEACl type exciter; however, it can also 
be adapted to work with almost any model. The method con- 
tains an estimator that can be changed to accommodate almost 
any linear model structure. If one model is found to produce 
inaccurate results, another model may be selected and inves- 
tigated. The basic parameter estimation procedure stays the 
same. First, a model must be chosen, The signals that can be 
readily measured or derived must then be assessed, the estima- 
tion performed, and the results verified. If a model structure is 
not available, the MatLab SI toolbox is capable of calculating a 
best fit model. In most cases, however, a small signal stability 
program accepts only variartions of a standard model. The focus 
of this study, therefore, was to identify the linear parameters of 
a standard excitation model. 

Vreg: Estimated vs. Actual 

‘I ,375 

o .125 I !  
V 

I 
t 

1 2 3 4 5 
Time (sec) 

- Actual Response 

Estimated Response 

Figure 4: Estimated vs. Actual Response of Vreg 

5 Identifiability, Observability, 
and Confidence Intervals 

Identifiability and observability were not covered in depth iri 
this study. The data that was collected came from a simula- 
tion that, with the exception of random noise, produced repro- 
ducible data. It must be noted that this study was a feasibil- 
ity study to determine whether the proposed method could be 
used to identify the parameters. This goal was accomplished. 
Regarding the observability and identifiability of the parame- 
ters of the actual system it must also be noted that the model 
parameters are estimated using actual data. If a particular pa- 
rameter does change, but does not effect the output data (Le. 
becomes non-identifiable), then the estimator will not capt,ure 
the change in the parameter. It could be argued, however, that 
if the parameter did not change enough to effect the output sig- 
nal, then the change has no effect on the response of the system. 
The change does not become significant (in the overall scheme) 
until the response of the system is effected. If this occurs, the 
data acquisition equipment should pick up this change in the 
output data and the estimation algorithms will compensate for 
this and produce an estimate with the changed parameter ta,ken 
into consideration. Confidence intervals were not introduced 
due to the availability of the accurate model. By comparing 
the estimated parameters to those in the functional (accurate) 
model, one can determine the accuracy of the estimated pa- 
rameters. Furthermore, the dependence of the interval on wch 
variables as the magnitude of random noise makes this analysis 
difficult and beyond the scope of this study. 

6 Discussion and Conclusions 
Several observations can be made from the results of this study. 
The first is that the magnitude of the rectifier noise had a ioeg- 
ligible effect on the accuracy of the estimations (due to the low 
pass filtering of the signals). The magnitude of the random 
noise, however, did effect the accuracy of the results signifi- 
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It is important to note! that this study focused on deriving 
the linear parameters of the system. The simulation that was 
used to derive the parameters still contained the nonlinearities; 
however, the perturbation was chosen such that the non-linear 
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windup limits of the system would not be exceeded. This al- 
lowed for accurate estimation of the linear time constants. 

Since most of the parameters in the standard stability pro- 
grams are linear, the results of this study prove to be very 
useful. The examination of excitation system parameters, how- 
ever, is not complete. This feasibility study concentrated on 
estimating the linear parameters of the excitation system, and 
was the first part of a two phase study. The second phase is 
currently underway and concentrates on deriving an estimation 
algorithm to determine the non-linear parameters (saturation 
constants, windup limits, etc.) of the excitation system. It is 
believed that once the non-linear parameters have been incor- 
porated into the model, the accuracy of the results will improve. 
The results of both phases will provide the essential information 
needed to determine the most accurate data on the operating 
limits of a particular system. 

It is proposed that upon completion of the two phase study, 
the estimation method developed will produce accurate esti- 
mates of the parameters under various operating conditions (i.e. 
heavy/light load, over/under excitation, etc.) Further investi- 
gation and analysis is needed utilizing actual data in order to 
verify this assumption. 
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