
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Oct 2010 

PSO Tuned Flatness Based Control of a Magnetic Levitation PSO Tuned Flatness Based Control of a Magnetic Levitation 

System System 

Ganesh K. Venayagamoorthy 
Missouri University of Science and Technology 

E. C. Anene 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
G. K. Venayagamoorthy and E. C. Anene, "PSO Tuned Flatness Based Control of a Magnetic Levitation 
System," Proceedings of the IEEE Industry Applications Society Annual Meeting, 2010. IAS '10, Institute of 
Electrical and Electronics Engineers (IEEE), Oct 2010. 
The definitive version is available at https://doi.org/10.1109/IAS.2010.5615717 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IAS.2010.5615717
mailto:scholarsmine@mst.edu


 

PSO Tuned Flatness Based Control of a Magnetic Levitation System 
 
 

Ejike Anene 
Electrical Engineering Programme 

Abubakar Tafawa Balewa University 
PMB 0248, Bauchi, Nigeria 

ejikeanene@yahoo.com 

Ganesh K. Venayagamoorthy 
Real-Time Power and Intelligent Systems Laboratory  

Missouri University of Science and Technology 
Rolla, Missouri, USA 

gkumar@ieee.org 
  

 
Abstract – Investigation on the application of flatness-based 

feedback linearization to the magnetic levitation model of 
INTECOTm Maglev system is presented in this paper.  The 
MAGLEV system dynamics studied consists of a set of third 
order nonlinear differential equations. Using computational 
techniques proposed by Levine, it is verified that the ball 
position is the flat output. The derived flat output is applied in 
the construction of a nonlinear control law used to control the 
levitation to a set point as well as tracking a sine function 
trajectory. The controller gains are obtained and optimized 
using particle swarm optimization. The simulation results 
compared very well with the default PID control. Real-time and 
non real-time simulation using the MATLAB/ SIMULINK real 
workshop environment is presented. 
  

Index Terms-- Feedback linearization, flatness, flat output, 
magnetic levitation, particle swarm optimization 

I.   INTRODUCTION 
Application of magnetic levitation systems (MLS) are 

increasingly getting into diverse areas including: trains, 
magnetic bearings, pumps, centrifuges, turbines etc. The 
control of magnetic levitation has evolved over the years 
from the linearized controls to nonlinear controls. The MLS 
is an impressive dynamic system and its synergetic system 
integrates sensors, drivers and controls making it a 
challenging control problem that can be used as an excellent 
project for use in control education [1]. Experimental models 
for teaching have been built and are being used in many 
departments of engineering colleges to teach the principles of 
magnetic positioning, sensors, control and so on  [2]-[4]. 
Magnetic levitation phenomenon is based on the principles of 
electromagnetism. It causes ferromagnetic objects to be 
levitated by the magnetic force induced by electric current 
flowing through the coils around a solenoid. The system is 
inundated with electromagnetic fluctuations and is naturally 
unstable [5]. The simplest form of a magnetic bearing 
consists of a pair of opposing horseshoe electromagnets. The 
attractive force exerted on the levitated object by each 
electromagnet is proportional to the square of the current in 
each coil and is inversely dependent on the square of the gap. 
The coil is highly inductive and the rate of change of the 
current is limited [6]. The electromagnetic force is nonlinear 
giving rise to difficulties to get closed-loop stability [7].  

                                                           
This work was supported by the National Science Foundation, under 
CAREER Grant #0348221.   

If the electromagnet used to suspend the object were 
simply operated with a fixed amount of current, this would 
not be able to maintain any kind of control over the position 
of the object. If the object were too close to the 
electromagnet, it would be pulled right up to it. If it were too 
far away from the electromagnet, it would fall to the floor. 
There would be no way to adjust or compensate for the slight 
variations that take place in order to maintain the object at a 
fixed distance from the electromagnet [8].  

The system is both inherently nonlinear and open-loop 
unstable. This has led to the use of feedback control to 
stabilize the system. Many authors have applied the analog 
lead compensator using classical frequency response design 
to control a one-dimensional magnetic levitator [5].  Methods 
for feedback control design typically use a linearized model 
of the system, but for bearing applications, it is highly 
nonlinear properties can limit the performance of the overall 
system.  Reference [9] described a nonlinear control system 
for a magnetic bearing designed using a combination of 
feedback linearization and backstepping concepts 
implemented with a floating-point digital signal processor. 
The author in [10] designed negative feedback and phase-lead 
controllers to stabilize a levitation system. Several other 
control methods had been used to stabilize the MLS.  

In this paper the flatness-based feedback linearization 
approach is applied to control the MLS through stabilization 
and tracking. Differential Flatness allows a feedback 
linearization strategy in which system states are defined as 
functions of the system flat output and its higher order 
derivatives. If the flat output or any variable linked to it is 
measureable then the states can be completely parameterized 
and subsequently used to implement the control law. But first 
the system has to be shown to possess a flat output or simply 
put flat [11].  In this concept, the feedback law is constructed 
as a function the flat output and its derivatives up to the order 
of the system control plus one on which the loop is closed. 
The gain structure of the closed loop law has characteristics 
that allows for the system performance to be optimized. The 
paper presents the investigations carried out by optimizing 
the system gains using a meta-heuristic approach. 

 The maglev levitation system model used is described in 
Section II. In Section III, the flat output is computed while 
the particle swarm optimization algorithm used to optimize 
the controller gains is presented in Section IV. Section V 
discusses the studies carried out in non-real time and real-
time in the MATLAB/SIMULINK environment. Conclusions 
are given in Section VI. 

978-1-4244-6395-4/10/$26.00 ©2010 IEEE



 

II.   THE MAGNETIC LEVITATOR MODEL 
The INTECO maglev system is a complete laboratory tool 

for studying classical control techniques, real time control 
and signal analysis. It is a single degree of freedom levitation 
system. The system is configured to run real-time 
experiments executed in the MATLAB/Simulink 
environment using the real time workshop and real time 
workshop target toolboxes.  It is also equipped with maglev 
hardware and a dedicated DSP card for real-time 
implementations. Since the purpose is to implement the 
flatness-based controller using this model, the parameters of 
the system dynamics is assumed the same. In the model 
development, INTECO used empirical analysis to model 
control of the current that goes to the electromagnet. The 
resulting linear relationship is found to be a straight line 

bauui +=)(  with a dead zone. The constants aand b are 
determined from the experimental data. The system dynamics 
are described in (1) – (3). 
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Where g  is gravitational force, m  is mass of object,  

12121 ,,,,_,_ ckpppfpf i  are system constants. 
 

III.   FLATNESS-BASED FEEDBACK CONTROLLER 
 

The system  
f x x u( , , ) = 0              (4) 

with  x Rn∈   and   u Rm∈  is differentially flat if one can 
find a set of variables called flat output;  

y h x u u u u r= ( , , , ,....., )( )          (5) 

y Rm∈ and system variables,  

x y y y y q= α( , , ,....., )( )          (6) 
and control,  

u y y y y q= +β( , , ,....., )( )1  .        (7) 
 

A.  Flat output 
Given the dynamics (1)-(3), the flat output can be 

determined using Levine’s method [12]. Applying the 

implicit function theory and eliminating the dynamics with 
control, the variational equation is given by: 
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or compactly                                                                                                  
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manipulation of polynomial matrices, the following right 
Smith steps are performed. 
 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−− A

bb
bA 11

10
  = [ ]01 , therefore  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= A

b
U 1

1
ˆ  

, such that  ⎥
⎦

⎤
⎢
⎣

⎡
=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

0
1

11
01

ˆ
A

b
UQ  as required [12]. 

Therefore, 
 

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

3

1

11
01

dx
dx

A
b

dxQ          (10) 

Such that the first line reads 1dxdy =   which gives 1xy =  
the flat output, while the second line is identically equal to 
zero from (9) showing the flatness of the system dynamics. 
 

B.   Control law 
From the computed flat output the control law follow from 
the following compensator   
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Since 2x equals (2), then from 2x  we obtain  
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And from 3x the control law is computed as 
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And the linear control is given by 
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The gains ki are chosen such that the linear time invariant 
error dynamics  
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 where e j j j( ) ( ) * ( )( )= −δ δ   are stable. To compute the 
gains, (14) can be rewritten as a Hurwitz polynomial by 
 
         012

2
3

3 =+++ ksksks      (16) 
 
The closed loop characteristic polynomial of a third order 
equivalent system is given in terms of the natural frequency 
and damping ratio by 
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such that comparing (14) and (15) gives 
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IV.   IMPLEMENTATION OF PARTICLE SWARM OPTIMIZATION 
TUNING OF FLATNESS-BASED EXCITATION CONTROLLER 

(FEC) 
The PSO uses a pseudorandom algorithm to search the 

solution space of an optimization problem. First proposed by 
Kennedy and Eberhart, it makes use of the inference that the 
social behavior of birds requires them to flock together and 
migrate from place to place. It therefore makes use of a 
collection of possible solutions called particles whose 
individual velocity and position are updated according to two 
basic expressions. The current position of each solution 
particle is constantly compared with the previous ones and 
the best is used along with the groups’ best solution particle 
to determine the next direction of search, thereby narrowing 
the search space using the following relations [13].  
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(18) and (19) are used to update the particles’ velocity and 
position at each iteration. Gbpi xx ,  represent each particle’s 
personal best solution and the populations’ best solution 
respectively. 21,, ccw  are the inertia constant, and two 
positive numbers referred to as the cognitive and social 
acceleration constants respectively. These PSO parameters 
have to be chosen to ensure fast and accurate convergence of 
the PSO. Rand is a random number with uniform distribution 
in the interval [0, 1]. The fitness function is designed for 
optimal selection of feedback gains.  

The fitness function which is used to update the particles’ 
velocity and position is the square of the area under the curve 
of the object’s position trajectory during stabilization and is 
given by:  

εττ <= ∫
2

1

2)(
t

t

deJ            (20) 

Where )( refte θθ −=  The controller gains are tuned using 
the PSO algorithm with 15 particles, each of three dimensions 
corresponding to the feedback gains 321 ,, kkk . Table I list 
the PSO parameters and computed gains after 300 iterations 
for nparticles.  
 



 

 
TABLE I 

 
PSO PARAMETERS 

            iterationvvccwn maxmin21  
    15   0.6-0.8    2      2         -30       30       300 
 
The optimized gains are given by 

2527.29,3136.709,4.4306 321 === kkk  
 

V.  RESULTS 
Fig. 1 gives the PSO fitness after 300 iterations showing 

convergence at the 155 iteration to a set of gains. 
 

 
 
Fig. 1 Typical Fitness plot for 300 iterations 
 

Figs. 2-5 show the results of a ten second simulation of the 
maglev system for a ball set point of 0.006 m.   
 

 
 
Fig. 2. Ball position for a ten second simulation 
 
 
 

 
 
Fig. 3. Control to stabilize the ball position for a ten second simulation 
 

 
 
Fig. 4. Current to drive the electromagnet during levitation for a ten second 
simulation 
 

 
 
Fig. 5. Velocity showing the transient dip before stabilization of the ball 
position for a ten second simulation 
 

Fig. 6 shows the results of a ten second real-time study of 
the maglev levitation system with a flatness based controller. 
The parameters of the flatness based controller are tuned with 
PSO. The input applied for tracking is te sin2 3−

.  
 It can be observed from the non real-time and real-time 
studies and results that the flatness based controller is able to 
provide satisfactory control results. 



 

 

 
 
Fig. 6. Real time tracking performance simulation in MATLAB for an input 

te sin2 3−  using the flatness based controller tuned with PSO 

 

VI.  CONCLUSION 
The dynamics of a magnetic levitation system considered 

in the paper possess a flat output on which the control law 
used to stabilize the system was constructed. The control law 
was designed and applied to the system to stabilize the 
displacement to a set point. The system with flat output based 
controller also performed satisfactorily in tracking in the real-
time workshop based experiments. Future work will be 
focused in the hardware design and implementation of a 

simple MAGLEV plant using different control strategies as 
well as the flatness-based controller on the FPGA platform.  
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