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INPUT DIMENSION REDUCTION IN NEURAL NETWORK TRAINING - CASE STUDY IN 
TRANSIENT STABILITY ASSESSMENT OF LARGE SYSTEMS 

Suresh Muknahallipatna Badrul H. Chowdhury 

Electrical Engineering Department 
University of Wyoming 

Laramie, WY 82071-3295 
email: bchow@uwyo.edu 

Abstract 
The problem in modeling large systems by artificial neural 

networks (ANN) is that the size of the input vector can become 
excessively large. This condition can potentially increase the 
likelihood of convergence problems for the training algorithm 
adopted. Besides, the memory requirement and the processing tune 
also increase. This paper addresses the issue of ANN input 
dimension reduction. Two different methods are discussed and 
compared for efficiency and accuracy when applied to transient 
stability assessment. 

1. INTRODUCTION 
On-line transient stability assessment (TSA) requires the 

identification of critical contingencies in a short enough time period 
So that the operator can be provided with the mformation as to 
whether the system will reach a stable state following a particular 
fault. The artificial neural network (ANN) implementation must be 
able to predict the trajectory of the system state following a 
disturbance, by using inputs obtained on-line at some particular 
instant of time. 

A number of researchers have explored the possibility of 
using ANNs  for the above tasks. Sharkawi, et a1 [ 11 used an ANN for 
transient stability assessment. A simple three generator power system 
was used for testing the network. A feedforward network with 
backpropagation training algorithm was used. Pao, et a1 [2] made an 
attempt to develop an ANN for predicting critical fault clearing 
times. A small power system consisting of four generators and seven 
lines was used. A total of m y ,  twelve dimensional patterns were 
used to train the seven-neuron network. Sobajic and Pao [3] have 
used a combination of supervised and unsupervised learning for 
stability assessment. They have used a second order tensorial 
functional link model for unsupervised learning. This approach was 
demonstrated on a six-node, four machine power system. Fouad, et 
a1 [4] have applied a neural network t e c b q u e  to the concept of 
system vulnerability. They have tried to estimate the critical system 
parameter using a neural network. 

Typically, when the size of the test system is small, the size 
of the neural network design is also small. Hence, the training 
required to determine synaptic weights of the network is fast, and 
convergence problems are less likely to occur given that the input 
features are selected with caution. However, with the increase in 
size of the power system, the number of neural network inputs also 
increases proportionately. This condition naturally increases the 
likelihood of trainmg algorithm convergence problems. Besides, the 
memory requirement and the processing time have to be addressed as 
well, The purpose of th~s paper is therefore to address the issue of 
ANN input dimension reduction. Two different methods that exist in 
the expansive domain of pattem recogrution will be compared for 
efficiency and accuracy when applied to transient stability 
assessment. 

A description of the architectures used in the original ANN 
design is given first. Following that, the two methods of dimension 
reduction will be presented. Results of both the original and the 
modified networks will also be compared. 

2. NETWORK ARCHITECTURE 
The backpropagation, the probabilistic, and the general 

regression neural networks have been considered in this work for 
performing the task of stability classification. Specifically, these are: 

The simple feedforward neural network with single hidden layer 
employing the backpropagation training algorithm. (BPN) 
Radial basis-function networks (RBFN): 
a) The Probabilistic Neural Network (PNN). 
b) The General Regression Neural Network (GRNN). 

A description of these networks and the rationale for choosing them 
are given in [5]. 

2.1 Feature Selection 
The features selected to represent the inputs to the above 

ANNs were: 
1) Change in the rotor angle (from the pre-fault condition to the fault 
clearing time). 
2) Change in the angular velocity. 
3)  Change in the terminal voltage. 
4) Change in generator real power. 
5 )  Change in generator reactive power. 
Again, the suitability of these parameters for the task at hand have 
been presented in [SI. 

2.2 Training and Validation 
The training and validation of the original neural network 

was done on the New England 39 bus test system and the IEEE 145 
bus test system. The New England test system has ten generators and 
the IEEE test system has fitly generators. Only three-phase faults 
were considered. The faults were assumed to be cleared without any 
change in the network structure. The training data was generated 
using the digital simulation technique. Faults were created on the 
system, with the system prefault operating points at five different 
power levels for the New England system. For each fault, the system 
behavior at ten different fault clearing times considered around the 
critical clearing time for the.fault was obtained. A total of 576 cases 
were simulated, with equal number of stable and unstable cases. Out 
of these, 73 cases were randomly selected for testing purposes. Each 
input pattem had a dimension of fifty since there are IO generators in 
the system. On the other hand, a total of 898 cases were simulated for 
the IEEE test system. Out of these, 106 cases were randomly selected 
for testing. The training and the test pattems were simulated in the 
same way as was done foT the New England test system. Each input 
pattern had a dimension of 250 since there are 50 generators in the 
system. The description of the neural networks used for the two test 
systems is presented in Table 1 .  The performance of the three types 
of networks studied is presented in Table 2. I h u g  the recall phase 
of the ANN, both the training and the testing sets were evaluated to 
test the network for generalization. 

The RBFNs have better performance compared to the BPN. 
This is expected, since they classify pattems by the nearest 
neighborhood criteria. The feedforward networks employing 
backpropagation training algorithm classify by finding decision 
surfaces. Since, the dimension of the input pattern is quite high, the 
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process of findlng the decision surfaces is complex. Therefore, those 
networks employlng the backpropagahon training algorithm e h b i t  
poorer performance when compared to the RBFNs. 

NETWORK 

# of neurons in 
Input layer. 

# of neurons in 
Hidden layer 

# of neurons in 
Output layer 

able 1. Structure of the original neural network. 
NEW ENGLAND TEST SYSTEM 

BPN PNN CRNN 

50 50 50 

25 503 503 

1 2 2 

# of neurons in 
Output layer 

1 2 2 

NETWORK BPN PNN 

Stable cases classified as 10 2 
Unstable 

Unstable cases classified as 8 14 
Stable 

True Classifications 558 560 
96.81% 91.22% 

GRh" 

2 

1 

513 
99.47% 

3. DIMENSION REDUCTION 
The dimension of the input data for the neural network 

model developed in Section 2 is fixed by the number of generators in 
a power system. This dimension, for the New England test system, 
was 50, and in case of the IEEE test system, it was 250. The present 
day computers with their memory and CPU speed capabilities can 
handle the dimension of a system similar to the New England test 
system with considerable ease. However, in case of the IEEE test 
system or larger systems, the processing time and the memory 
requirements increase significantly. In addition to the memory 
requirement due to the large dimension of the input data, the memory 
requirements of the RF3FNs are increased due to storage of the input 
patterns. One can reduce the memory requirement and processing 
time, by reducing, (i) the dimension of the input data, or (ii) the 
number of input patterns (training patterns). In this section, the 

NETWORK 

Stable cases classified as 
Unstable 

Unstable cases classified as 
Stable 

True Classifications 

problem of reducing the dimension of tlie input data will be 
addressed. 

The aim of dimension reduction is to describe the input 
pakerns by means of a minimum number of features which are 
effective in discriminating between different classes. Most of the 
dimension reduction (also called feature reduction) methods are 
classified into two groups [6]: 

Subsetting methods. 
Feature space transformation methods. 

Subsettinn methods 
These methods are also known as filtering methods. h 

these methods, the dimension is reduced by selecting a few of the 
original features and ignoring the others. The selection process is 
usually done by considering the following principles: 

Only input features having an effect on the output are selected. 
Input features having the same information are represented by a 
single input feature. 

A statistical measure such as the linear correlation method, 
can be used to implement the above principles. 
Feature space transformation methods 

These methods are also known as aggregation methods. In 
these methods, the dimension of the sample input space is reduced by 
constructing a new set of features in a lower dimensional space. The 
new set of features can be a linear or a non-linear combination of the 
original features. A number of methods like Karhunen-Loeve [7] 
transformation, divergence method [8], non-parametric discriminant 
analysis [9] ,  discriminant analysis [9] etc., are available to perform 
the transformation. In ttus work, the discriminant analysis method 
has been used to reduce the feature space dimension. 

BPN PNN G R "  

27 3 2 

23 11 9 

848 884 887 

3.1 Statistical Correlation Technique 
As mentioned earlier, the linear correlation between the 

input variables are computed. If the correlation between the ith and 
the jth variable of a machine is grater than or equal to 0.9, then one 
of the variables is ignored or discarded in representing the input data. 
This method was fKst applied to the input data of the New England 
Test System. 

94.43% 

3.1.1 Resulrs for the New England Test System 
The correlation technique was applied to subsets of the 

input variables. The input variables were grouped into five subsets. 
Each subset contained the same type of variables, i.e., all rotor angles 
of the generators, and so on. Using the computer package MatlabTM, 
the linear correlation coefficients between the variables in each 
subset were computed. The correlation coefficients for the rotor angle 
variable is shown in Table 3. 

98.44% 98.11% 

As mentioned before, the mtena to discard an input 
vanable is that, if two vanables are correlated (2 0 9), then discard 
one of the vanables The cntena fails tn lndicating wluch vanable 
out of the two should be discarded l k s  process of discarding 
becomes more complicated when a number of vanables are correlated 
to each other Table 3 indicates that the rotor angles of generators 
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30, 33, 34, 35, and 37 are I ~ i ~ l i I !  correlated. It is not possible to 
decide which of the above rotor angles should be discarded using the 
correlation criteria, since it docs not indicate which inputs have 
better information about class separability. In order to overcome h s  
problem, it is necessary to consider whether a variable selected as a 
feature will provide more infonilation for classification than those not 
selected. This information IS usually obtained by considering the 
heuristic notion of interclass distance. 
Interclass Distance [ 101 

Given a set of patterns with dimension n, it is reasonable to 
assume that the pattern vectors for each of the two classes occupy a 
distinct region in the observation space [ I l l .  The average pairwise 
distance between the patterns is a measure of class separability in the 
region with respect to a particular variable. Tius measure of class 
separability for an ith variable is given by Eqn. (I) ,  as follows: 

classified as 
Unstable 

Unstable cases 

I ms-mul 

7(10) 13(2) 2(2)  

where: 

msando?’ are the mean and variance respectively of the ith 
variable corresponding to the stable class; and 

m y  andoy’a re  the mean and variance respectively of the ith 
vanable corresponding to the unstable class. 
The variables having the higher value of index F carry more 
information about class separability. The index F for each variable is 
shown in Table 4. Using tius interclass distance measure with the 
linear correlation coefficients for the variables, the input variables to 
be discarded were selected. For example, in Table 3, the correlation 
coefficients between the rotor angles of generators 30, with those of 
33, 34, 35, and 37 are high. Comparing, the corresponding F, values 
of the rotor angles for these generators given in Table 4, it can be 
seen that the rotor angle parameter of the generator 35, has the 
hghest value of F,. Th~s indicates that only the rotor angle variable 
corresponding to generator 35 should be retained and the rest 
discarded. Continuing on in this way, the next row of Table 3 shows 
no correlation of generator 31 (whch was not discarded in the 
previous step) with any of the other generators. Therefore generator 
31 cannot be discarded. The techxuque of discarding proceeds in this 
way. Table 5 shows the input variables discarded for each of the 
generators. 

Table 4. Intercbs distance of the input variables for the New 
England test system 

interclass distance F, 
Gen I Rotor I A n W r  1 Terminal I Real I Reactive 

In Table 5, the ‘X’ mark indicates a variable that is discarded. After 
these input variables are ignored, the new dimension of the input 
patterns reduces from 50 to 3 1. When singular value decomposition 
is performed on the weight matrix, small singular values indicate that 
their corresponding inputs have the least effect on the performance of 
the network. 

Table 5. Discarded input variables. 
I Discarded input variables 

Gen I Rotor I Anrulsr I T e r m i d  I Red 1 Reactive 

Training and Testing of the Modified Neural Network 
Using the reduced input vectors, the same three networks, 

with modification in their structure to suit the new input dimension, 
were tramed and tested. The description of the modified neural 
networks is presented in Table 6 and the performance of these 
networks is presented in Table 7. Companng Table 6 with Table 1, 
one can notice that the number of hdden layer neurons have 
increased for the modified case. Generally, a network having a 
higher number of weights, as a result of higher number of neurons in 
the hidden layer, has more degrees of freedom leading to an 
unconstrained network. The generalization error of an unconstrained 
network is high. On the other hand, a smaller network (hghly 
constrained) will be sensitive to initial conditions and learning 
parameters. It may get stuck at a local minima due to an unfavorable 
set of initial conditions. In order to avoid these problems, an optimal 
number of hidden layer neurons was determined for the modified 
network, whch happens to lugher than that for the original ANN. 

neurons in 

Table 7. Comparative performance results for the Modified ANNs 

I New England Test System I 
NETWORK 1 BPN I PNN I G R ”  
Stablecases I 

classifiedas Stable 1 8 (8) I 26 (14) 1 l ( 1 )  
True I 561 I 537 1 573 I Classifications I 97.39% I 93.22% I 99.47% I 
In Table 7, the numbers in parentheses represent the results 

obtained using the original input data set. It can be seen that the Same 
level of performance has been maintained by the backpropagation 
NN and the GRNN, whereas the performance level of the PNN has 
deteriorated. This behavior is due to the following reasons: 

The PNN uses the Panen probability density function estimator 
employing a Gaussian kemel. This type of PDF requires the use 
of Patnck-Fisher separability measures [ 101 for proper 
classification. 
The interclass distance measure given by Eqn. ( l ) ,  used to select 
the features does not estimate the probability density functions. 
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3.1.2 Results for the IEEE test system 
As a first step, the linear correlation coefficients of the 

input variables were computed. But, it was observed that only a few 
input variables (compared to the original input dimension) had 
significant correlation. The reason behind this lies in the fact that this 
power system exhibits inter-area mode instability in addition to the 
regular local instability for different faults. The inter-area mode 
instability is characterized by a group of generators swinging against 
another group of generators following a disturbance. In case of the 
local instability, a set of generators will swing against another set of 
generators and both sets could belong to a single area. Since, both 
these modes of instability are present in this system, the parameters 
that are chosen as input variables to the neural network will not have 
significant correlation. 

The relationship between interclass &stance measure and the 
error probability, in general, is very loose. 
The interclass distance measure is a heuristic measure. 

3.2 Discriminant Analysis 
Discriminant analysis is one of the well known linear 

feature extraction techniques. In h s  method, the input patterns in the 
original pattern space are projected into a new subspace having fewer 
dimensions than the original pattern space. Mathematically t h s  can 
be written as: 

Y;=T&XS V j = 1 ,  . . . ,  n a n d i = l ,  . . . ,  K (2) 
where 

Y denotes the pattems in the reduced pattern space, and 
X denotes the patterns in the original pattern space, and 
K denotes the number of classes, and 
To denotes the transformation matnx. 

The process of projection into the subspace or constructing the 
transformation matrix To has to satisfy the following constraint: 
- the ratio of the between-class scatter to the withinclass scatter 

The simplest scalar measure of scatter is defined as the 
determinant of the scatter matrix. The determinant of a matrix is the 
product of the eigenvalues, and hence is the product of the 
"variances" in the principle directions. Using this measure, the 
constraint can be written mathematically as: 

should be maximum. 

(3) 

where 
S"denotes the within-class scatter matnx, and 
Sb denotes the behveen-class scatter matrix. 

The S" shows the scatter of the patterns around their respective class 
expected pattems, whereas Sb shows the scatter of the expected 
patterns around the mixture mean. The constraint in Eqn. (3) is 
known as the generalized Rayleigh quotient. The rectangular matrix 
To, which maximizes J has to satisfy Eqn. (4) [7] given below: 

(Sw)-'SbTo = ATo (4) 
In other words, the optimal To which maximizes J has its columns as 
the generalized eigenvectors that correspond to the largest non-zero 
eigenvalues of the matrix P given below: 

P = (sw)- l  Sb (5) 
A number of versions of discriminant analysis have been 

developed. These versions differ in deciding the number of 
eigenvectors corresponding to largest non-zero eigenvalues to be 
considered in constructing the projection matrix to reduce the 
dimension. 

In Karhunen-Leove expansion [7], the number of 
eigenvectors corresponding to the m- 1 non-zero eigenvalues is 

considered in constructing the projection matrix, where m is the 
number of pattern classes. Foley, et al. [I21 have developed an 
optimal set of discrimiiiant vectors. In their work, the f i s t  feature is 
the Fisher discriminant vector. The second feature is found by 
maximizing the Fisher criterion subject to the constraint that the 
second feature be orthogonal to the Fisher discriminant vector. 
Okada, et al. [I31 have proposed the orthonormal discriminant vector 
method. In this method, a max.imum of n-1 features can be extracted, 
where n is the dimension of the original pattern space. In this paper, 
the version presented in reference [SI has been used. 

3.2.1 Computation of the Projection Matrix To 
Let the patterns in the original space be described by d- 

dmensional patterns and be separated into K classes. Let the 
unnormalized pattems in the kth class be represented by the column 
vectors given below: 

where 

x*k = [x;:, x;;, . . . , x*k]T Jd 
J 

nk = number of pattems in the kth class. 
superscript * denotes that the patterns are unnormalized. 
d = dimension of the patterns. 

STEP1 : Compute the mean of the ith feature for the kth class. 
1 "  k -_  f x * k  

nk j=l J' m l -  

STEPZ: Compute the vector of feature means for the kth class 

(7)  
STEP3: Compute the pooled mean or the grand mean vector for all 
the patterns using: 

1 K  
n k=i 

m = -  C n k m k  ( 8 )  

where 
K 

n =  Cnk 
k=l 

STEP4: The scatter matrix S for the kth class is defined by: 

(9) 

STEPS: Compute the within-class scatter matrix, S", as the sum of 
the class scatter matrices: 

K 

k=l 
s w =  CSk (10) 

STEP6: Compute the betweenclass scatter matrix, Sb, as the scatter 
matrix for the class means using: 

K 
~b = c nk(mk - m) (mk- mIt 

k= 1 
STEP7: Form the matrix, P, using Eqn. (5).  
STEPS: Compute the eigenvalues and the eigenvectors of the matrix 
P. The same level of information present in the input patterns in the 
original pattern space has to be maintained in the new pattern space 
also. Therefore, an optimum number of eigenvectors corresponding to 
non-zero eigenvalues has to be chosen to construct the projection 
matrix To. The number of eigenvectors chosen will decide the 
dimension of the new pattern space. In the technique discussed in 
reference [9] thm number is decided by satisfying the constraint of 
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maintaining 95% of the variance present in the original pattern space. 
Mathematically, it can be represented by: 

m 

i=l 
1% 

c hi 
(12) r m = d  2 0.95 

i=l 
where: 

m, represent the dimension in the new pattern space. 
h is the eigenvalues of the matrix P. 

STEP9: Construct the projection matrix To using the selected 
eigenvectors of matrix P as the columns. 
STEP1 0: Finally, compute the input patterns in the new pattem space 
using Eqn. (2) 

4. CONCLUSIONS 
The discriminant analysis method has shown that even with 

reduced dunension of the input pattem space, the same or better level 
of classification can be maintained with suitable neural networks. As 
demonstrated, even though the subsettmg method is simple to 
implement, it is dependent on the behavior of the power system to 
disturbances. Thus, the discriminant analysis method appears to be 
superior for input dimension reduction in modeling large systems by 
neural networks. 

Tab& 9. Comparative performance of the moa’ijied ANNs due to 
discriminant analysis. 

NEW ENGLAND TEST SYSTEM 
NETWORK 1 BPN 1 PNN I GR” 

Stable cases classified 1 
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