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Detection of Basal Cell Carcinoma Using Electrical
Impedance and Neural Networks

Rohit Dua, Student Member, IEEE, Daryl G. Beetner*, Senior Member, IEEE, William V. Stoecker, and
Donald C. Wunsch, II, Senior Member, IEEE

Abstract—Variations in electrical impedance over frequency
might be used to distinguish basal cell carcinoma (BCC) from
benign skin lesions, although the patterns that separate the two
are nonobvious. Artificial neural networks (ANNs) may be good
pattern classifiers for this application. A preliminary study to
show the potential of neural networks to distinguish benign from
malignant skin lesions using electrical impedance is presented.
Electrical impedance was measured in vivo from 1 kHz to 1 MHz
at five virtual depths on 18 BCC and 16 benign or premalignant
lesions. A feed-forward neural network was trained using back
propagation to classify these lesions. Two methods of prepro-
cessing were used to account for the impedance of normal skin
and the size of the lesion, one based on estimating the impedance
of the lesion relative to adjacent normal skin and one based on
estimating the impedance of the lesion independent of size or
surrounding normal skin. Neural networks were able to classify
measurements in a test set with 100% accuracy for the first
preprocessing technique and 85% accuracy for the second. These
results indicate electrical impedance may be a promising clinical
diagnostic tool for basal cell carcinoma or other forms of skin
cancer.

Index Terms—Basal cell carcinoma, bioimpedance, frequency,
resistivity, tissue characterization.

I. INTRODUCTION

BASAL CELL carcinoma (BCC) is the most common form
of cancer. If detected early, it can be treated and cured

without serious side effects. Visual inspection of a lesion, fol-
lowed by biopsy and appropriate treatment, is the conventional
clinical response. Biopsy is very accurate, but many malignant
lesions escape biopsy due to errors in visual inspection. In some
cases the patient, or even the physician, prefers to delay biopsy if
there is not a high degree of certainty that the lesion is malignant.
Undetected, the cancer may cause significant local destruction.

Bioimpedance may be a promising tool for detecting skin
cancer. Impedance can be measured quickly and easily in the
clinic, the instruments needed to measure impedance can be
manufactured inexpensively, and the procedure is noninvasive.
Bioimpedance varies from one tissue type to another, depending
on tissue structure and composition [1]. Ex vivo studies have
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shown abnormal patterns in the impedance of breast cancer and
squamous cell carcinoma [2], [3]. In vivo studies of the skin
have shown abnormal patterns in impedance as a result of ir-
ritation or allergic reaction [4], [5]. Clinical studies of basal cell
carcinoma have also shown significant differences between the
impedance of BCC and normal skin and benign lesions, but a re-
liable method to identify BCC using impedance is not yet avail-
able [6]–[9].

Many studies of the electrical impedance of skin have at-
tempted to use a single measure or index, developed heuristi-
cally, to quantify differences between tissue types or conditions.
These indices are often based on only one or two features of the
measured impedance [4]–[7], [10], potentially ignoring impor-
tant information necessary for accurate classification [8], [11],
and do not consider the impedance of surrounding normal skin.
For in vivo tests, the impedance of normal skin adjacent to the
test site might be used to improve classification of the lesion by
accounting for the variation of skin impedance that is normally
seen among individuals or among different anatomic locations
[10]. It may also help account for the large amount of normal
skin that is typically included in a measurement of a suspect
lesion. Here, we use neural networks to classify lesions using
impedance at 31 frequencies and use impedance of surrounding
normal skin to preprocess data.

II. EXPERIMENTAL METHODS

Electrical impedance was measured on 26 human subjects
using the Impedance Spectrometer (SciBase AB, Huddinge,
Sweden) [12]. The impedance spectrometer utilizes a hand-held
probe with circular concentric electrodes as shown in Fig. 1.
The outermost electrode (D) is approximately 10 mm in
diameter. The two outer electrodes [(C) and (D)] are source
electrodes. The innermost electrode (A) is a current sink.
The electrode (B) surrounding the innermost electrode is
a guard electrode, which reduces surface currents. A small
time-varying current is sent through the electrodes, and the
resulting voltage is measured to calculate the impedance of
the skin at 31 logarithmically distributed frequencies from 1
kHz to 1 MHz. Impedance is measured at five skin depths by
controlling the distribution of source current between the outer
source electrodes, creating a “virtual” electrode between the
two source electrodes. Distance between the sink electrode
and virtual source determine depth (approximately half the
distance). While depth varies with frequency and the structure
of the skin, it typically ranges from about 0.1 to 2 mm. Both
magnitude and phase are measured, though only magnitude
was used in this analysis.

0018-9294/04$20.00 © 2004 IEEE
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Fig. 1. Probe tip of impedance spectrometer. The probe tip consists of four
electrodes, an outer source electrode (D), an inner source electrode (C), a
guard electrode (B), and a sink electrode (A). The outer source electrode is
approximately 10 mm in diameter.

Measurements of electrical impedance were made on 18 BCC
and 16 benign or premalignant lesions. Lesions ranged in size
from 2 to 15 mm. Subjects ranged from 28 to 85 years old. Be-
nign and premalignant lesions included two actinic keratoses,
two compound nevi, four intradermal nevi, one chromoblas-
tomycosis, one cutaneous polyp, and six seborrheic keratoses.
These diagnoses were encountered along with the basal cell
carcinomas in the clinic. The benign and premalignant set is
very heterogeneous. Results might be improved by using a more
homogeneous set to compare with BCC, but we believe that
the heterogeneous set better reflects the heterogeneity of BCC
mimics and is a more valid test of our methods.

When possible, impedance was measured at five locations for
each lesion: once with the probe centered over the lesion, twice
with the lesion centered between the outer source and sink elec-
trodes (once each on opposite sides of the lesion), and twice
over normal skin adjacent to the lesion site (on opposite sides of
the lesion). In some cases five measurements were not possible
because of time constraints or placement of the lesion. Before
making a measurement, the skin was soaked for two minutes in a
0.9% saline solution to reduce the high impedance of the stratum
corneum that would otherwise prevent accurate measurement of
the living skin layers. The skin was also soaked for one minute
between subsequent measurements. After impedance was mea-
sured, a shave biopsy was obtained for histopathology determi-
nation of the diagnosis. Additional information on the data and
methods is available in [6] and [13].

III. NEURAL NETWORK ANALYSIS

Before analysis, data were checked for obvious errors
(change in sign of phase, abrupt and abnormal changes in
magnitude, zero impedance, etc) [13]. Erroneous data were
discarded, approximately 5% of the total. Data measured at
depth 5, the “deepest” measurement, were not used, in order to
reduce the size of the data set. Because depth 5 uses only the
outer source electrode and most lesions were much smaller than
the size of this electrode, this measurement may conceivably
be most affected by the normal skin surrounding the lesion. In
a previous study of BCC, benign lesions and normal skin using
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Fig. 2. Preprocessing of data profiles for method 1. Impedance measured on
normal skin is subtracted from impedance measured over the lesion and then
normalized. Data reduction is achieved using PCA.

impedance, we found that differences were more significant at
depths 1–4 than at depth 5 [6].

Two types of preprocessing were employed to account for
the impedance of the normal skin of each subject. The first
technique relies on a subtraction of impedance measured over
normal skin from the impedance measured over the lesion.
The second technique attempts to “remove” the lesion from
the surrounding normal skin to estimate the impedance of the
lesion alone. After preprocessing, data were normalized and
reduced using principal component analysis (PCA) [14]. The
resulting profiles were processed benign and cancer profiles.
Neural networks were trained to classify benign and malignant
lesions using these profiles. Configurations for the neural
networks were chosen according to the configuration that
performed best for each set of processed data.

A. Method 1: Subtraction of Impedances

1) Preprocessing: More than one study has shown differ-
ences in the impedance among normal tissue and malignant and
benign tumors [2], [3], [6], [7]. Differences in skin impedance
may result because benign lesions tend to be drier and more
highly keratinized than normal skin and BCC tends to be more
highly vascularized and better hydrated than normal skin. These
differences will vary over frequency, which is important to con-
sider when attempting to classify lesions based on measured
impedance [2], [3]. The following technique explores the pos-
sibility that the relative difference in impedance over the lesion
and over adjacent normal skin may be used to identify lesion
type.

Fig. 2 graphically depicts the preprocessing technique em-
ployed. First, the magnitude of impedance of normal skin (mea-
sured at a site adjacent to the suspect lesion) is subtracted from
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(a) (b)

Fig. 3. Preprocessed data for (a) method 1 and (b) method 2. Plots show the average value of data among lesions after preprocessing and normalization, but before
PCA. Data are shown only for depth 1. A complete profile consisted of depths 1–4. Whiskers show the standard deviation of data about the mean at 3.2, 25, and
159 kHz. A bold whisker is used to show variance for BCC and a thin whisker for benign lesions.

the magnitude of impedance of the (malignant or benign) le-
sion, giving a measure of the difference in impedance between
the two. The resulting profile contains 124 data points—the dif-
ference in magnitude at 31 frequencies for each of four depths.
A total of 167 profiles were generated using this process. Out
of these, 87 profiles were of malignant lesions and 80 were of
benign lesions. PCA was then performed on the profiles to re-
move data redundancy [14].

The original vectors were normalized using an algorithm
available in MATLAB. This algorithm scales the values
between 1 and 1 by normalizing the mean and standard
deviation of the vector. Normalization is a prerequirement for
the MATLAB PCA procedure. The PCA algorithm has three
effects: it orthogonalizes the components of the input vectors to
make the resultant vectors uncorrelated, it orders the resulting
orthogonal components so that those with largest variation
come first; and it eliminates those components that contribute
the least to the variation in the data set. The resulting vector
had four components. A plot of the average normalized values
of impedance at depth 1, before PCA, are shown in Fig. 3.

2) Neural Network Architecture and Training: A 4, 20, 10,
5, 1 artificial neural network (ANN) was used for training and
simulating the data [15]. An output of “1” was chosen to sig-
nify a malignant lesion and “ 1” to signify a benign lesion.
The network was trained and simulated using the MATLAB
neural network toolbox [14]. The tan-sigmoid transfer function
(TANSIG) was used for all four layers. The entire data set was
divided randomly into a training set (the first 147 vectors) and
a test set (the remaining 20 vectors) giving a train/test ratio of
approximately 7:1, a common ratio used for small data sets. The
training set included data from 76 malignant and 71 benign pro-
files and the test set data from 11 malignant and 9 benign pro-
files. The profiles in the test set were generated from different
lesions than profiles in the training set. The conjugate gradient
method [16] was used to train the network to a mean square error
of .

10-X X

Normal Skin Lesion

Fig. 4. Impedance measurements of a lesion with normal skin might
be approximated as resulting from a series combination of an impedance
composed of normal skin and an impedance composed of tissue from the
lesion. These impedances could be assumed to have the same cross-sectional
area but different length. In this case, the lesion has a length x(in millimeters)
and the normal skin a length 10 � x.

B. Method 2: Estimation of Lesion Impedances

1) Preprocessing: When the probe makes a measurement,
it measures both normal skin and the lesion. The measured
impedance results from a complex interaction among the major
variables: impedance of the tissues and the size and location
of the lesion within the skin. However, it might be possible
to model this interaction approximately as the result of two
impedances in series (Fig. 4), where one impedance is set by
the impedance of normal skin and the other impedance is set by
the lesion. This approximation is appropriate for a hypothetical
case where the center electrode of our probe is placed directly
over the center of a cylindrical lesion. If one assumes the
cross-sectional area for both lesion and normal skin is the same,
then the resulting impedance is a direct function of the length of
the current path through the lesion and through the normal skin
included in the measurement, as shown in Fig. 4. The length
of the lesion would be proportional to the lesion diameter, ,
and the length of the normal skin proportional to the amount of
tissue remaining under the probe, or proportional to for
a 10-mm probe. In this case, the measured impedance would
be given by

(1)
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Fig. 5. Preprocessing of data profiles for method 2. Impedance of the lesion
by itself—without surrounding normal skin—is estimated from measured
impedance and lesion size. Estimated lesion impedance is then normalized.
Data reduction is achieved using PCA.

where is the measured impedance of the lesion (which also
contains surrounding normal skin), is the impedance of the
normal skin within the measurement, and is the impedance
of the lesion by itself. The impedance of the lesion would be
proportional to the length,

(2)

where is the per-unit-length impedance of the lesion. The
impedance of the section of normal skin within the measure-
ment, , would be proportional to the difference of the probe
size (10 mm) and lesion size,

(3)

where is the measured impedance of normal skin adjacent
to the lesion. Using these relationships, one could calculate
and then use to find the impedance that would be measured
if the lesion were a full 10 mm in diameter as

(4)

where is the estimated impedance of this 10-mm lesion. At
mm, the lesion would take up the entire space under

the probe, giving . This estimate would effectively
remove the influence of normal skin from the measurement and
would normalize the measurement to a single lesion size. In
method 2, data were adjusted before application to the neural
network using (4), as shown in Fig. 5. If the lesion size was
greater than 10 mm, was set to 10, because the probe covered
the lesion completely (i.e., ). The data were then nor-
malized and scaled between 1 and 1 as in method 1. Average

normalized values are shown in Fig. 3. PCA was also applied to
this modified data, resulting in a vector dimension of four.

2) Neural Network Architecture and Training: A 4, 30, 15, 1
ANN was used for training and simulating the data. The network
was trained and simulated as with method 1.

IV. RESULTS

Method 1: Every profile in the test set was classified correctly.
Method 2: Of the 20 vectors in the test set, 85% were clas-

sified correctly. All nine vectors related to benign lesions were
correctly classified (100%). Eight of the 11 vectors related to
BCC (73%) were classified correctly.

V. CONCLUSION AND DISCUSSION

Our results are encouraging. In one case, 100% of lesions
were classified correctly and in the other case, 85% of lesions
were classified correctly. This performance was obtained even
though lesions were generally much smaller than the size of the
probe. For example, a 2-mm-diameter lesion constitutes only
4% of the area under the probe tip. Preprocessing techniques
were devised to look at the relative difference in impedance at
the lesion site compared to normal skin and to help account
for the normal skin that was measured in addition to the le-
sion. Best results were obtained using a relative difference, pos-
sibly because a relative difference required fewer assumptions
about the position and shape of the lesion and because it may
account better for variations in impedance among individuals
or among different anatomic sites. This result emphasized the
possible need to use measures of an individual’s normal skin as
a reference point when evaluating measures over a lesion.

The fact that benign lesions were identified more accurately
than BCC in method 2 may be related to the distribution of BCC
and benign data given to the neural network. The neural network
was trained to generate the highest classification rate, indepen-
dent of whether it correctly classified benign lesions or BCC. If
BCC and benign data “overlapped” in a sense, so that the neural
network was unable to find a weight set that allowed for 100%
classification, the training algorithm would find a weight set that
minimized misclassification. If a few values of BCC overlapped
with many values of benign data, the weight set would misclas-
sify BCC more often than benign lesions. It is likely that an-
other weight set could be found where BCC was classified at
a higher rate than benign lesions, but the overall misclassifica-
tion rate would then be higher too. Another reason method 2
performed more poorly than method 1 may be that the effect
of the electrode contact impedance was not considered in the
method 2 formulation, which may produce inaccurate estimates
of the lesion impedance. For method 1, the effect of contact
impedance is largely removed by the subtraction of measure-
ments over normal skin and the lesion if the contact impedance
is the same in both cases, which is a reasonable assumption. A
concern with method 2 is that it occasionally estimated negative
values of impedance, indicating the method was not sophisti-
cated enough to account for all conditions. Method 2 might be
improved if it also accounted for depth information, for uncen-
tered lesions, for electrode contact impedance, or for the high
impedance of the stratum corneum that may confuse results.
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Accurate classification of BCC and benign lesions was most
likely due to differences between the lesions and not other dif-
ferences between the groups, like location of lesions or patient
age. In a previous study using the same basic dataset [6], the
impedance of normal skin measured next to the lesion on both
groups was compared. A high probability of similarity was
found between the impedance of normal skin for the two groups
while statistically significant differences were found between
the impedance of BCC and benign lesions. If differences were
caused by age, location, technique, or other factors, differences
would also have been found between measures of normal skin
next to the lesion site. In addition, because the lesions used
in the training set were different than the lesions used in the
test set, the neural network could not simply “memorize” the
training set to produce good results. The neural network had to
find features in the training set that were fundamental to lesion
type and could, therefore, also be found in the test set.

As in many applications, preprocessing improved results.
Here, PCA reduced each vector, containing magnitude of
impedance at 31 frequencies and four depths, to only four
components. Because of the data format, it is difficult to
relate these components to physical parameters. The data were
also manipulated to reflect specific aspects of the impedance
measurement. This preprocessing is a significant factor in the
quality of results we report. When identification was attempted
without preprocessing, results were significantly worse.

A study on a dataset of this size is not conclusive. A much
larger study would be desirable, particularly when using ma-
chine learning techniques like neural nets. Yet, these prelimi-
nary findings are sufficiently promising to argue for additional
studies. Future studies might include development of more so-
phisticated preprocessing techniques, perhaps using statistical
methods, analysis of features besides magnitude, like phase or
both real and imaginary components, and analysis of other types
of lesions including melanoma.

This preliminary study indicates there is sufficient informa-
tion within electrical impedance measures to distinguish be-
tween malignant and benign lesions. Better understanding of the
mechanisms behind differences will further improve the utility
of these measures. If effective, electrical impedance can form
the basis of a safe, inexpensive, and noninvasive method to iden-
tify skin malignancies, especially those lesions with atypical
clinical appearance.
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