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Electron transport through two irreducibly-coupled Aharonov-Bohm
rings with applications to nanostructure quantum computing circuits

C. A. Cain and C. H. Wua)

Department of Electrical and Computer Engineering, Missouri University of Science and Technology,
301 W 16th St, Rolla, Missouri 65409, USA

(Received 16 February 2011; accepted 31 July 2011; published online 12 September 2011)

We investigated several classes of two coupled Aharonov-Bohm rings that share a finite center

common path, where the phase of the electron wave function can be modulated by two distinct

magnetic fluxes. The coupling is similar to two coupled atoms. The behavior of charge accumula-

tion along the center common path or, equivalently, the bonding and anti-bonding of the two rings

can be achieved as the two applied fluxes are varied. Thus, when three external terminals are con-

nected to such coupled rings, the behavior of the electron transport is divided into several classes,

depending on the number of atoms in each ring and the locations of the terminals. The results are

presented here. The applicable electron wave computing circuits are discussed. In particular, a

half-adder construction is shown here by employing the symmetric and anti-symmetric properties

of the transmission of a given terminal when the sign of the flux is changed. The analogy of two

coupled rings with respect to two spins allows one to make a further connection with traditional

spintronics-based schemes. VC 2011 American Institute of Physics. [doi:10.1063/1.3631782]

I. INTRODUCTION

The Aharonov-Bohm (AB) effect has been well

studied.1–8 An AB ring can be considered as a man-made

atom. The clockwise (counter-clockwise) circulation of the

persistent current can also have an analogy with the spin-up

(spin-down) of spin-based electronics.9 The electron density

in an isolated ring can be considered as uniform throughout

the entire ring in a uniform positive background of ionic

charge of a metal. The flux periodicity is thus an elementary

flux quantum U0 ¼ hc=e. When two external terminals are

connected to such an isolated AB ring, the electron transport

from one terminal to the other exhibits several different

classes of behavior in a strictly one-dimensional ballistic

model.10 Thicker small-scale coupled AB rings have also

been investigated.11 This is similar to microwave propagation

in a waveguide. The fundamental modes in microwaves are

classified by the waveguide’s geometrical properties, such as

the aspect ratio of the cross section in the rectangular case.

However, in a two-terminal AB ring, as an electron wave-

guide, the transmission behavior is classified by the total

number of atoms, or nodes, on the one-dimensional ring and

the relative locations of the two terminals. Even-numbered

and odd-numbered rings form two different classes of trans-

port. In particular, for an odd-numbered AB ring, the distance

between the two terminals, as measured from the upper and

lower paths of the ring, must differ by at least one atomic

spacing. This results in a universal double flux periodicity

ðU0=2Þ for the odd-numbered rings, while even-numbered

rings will have a single flux periodicity U0. Larger one-

dimensional rings are similar to their smaller counterparts,

since scaling laws exist to preserve the transmission behavior

if the ring size is scaled up an even or odd number of times,

as long as the electron coherence is maintained.10,12,13

When two or more AB rings are interacting together by

an added bound length, or path between the two rings, the

flux periodicity is unchanged. This is a property of reducible

networks, because each ring can be modulated by one flux

only. However, in an irreducible network, when two AB

rings are merged to form an interacting center common path

(as shown in Fig. 1), there is a charge transfer from other

locations of the ring to the center common path to form a

bonding or anti-bonding orbital.14 In this case, the phase of

an electron wave function on this center common path can

now be modulated by the two applied fluxes on either side.

This is similar to the situation when two atoms are brought

together to form a molecule. However, this bonding and

anti-bonding behavior, or the charge transfer into or out of

the center common path, can be manipulated by controlling

the two applied fluxes. Thus, this space charge effect, or ca-

pacitance effect,8 is not limited to a p-n junction from two

different semiconductor types. In nanoscale metals, this pure

semiconductor equilibrium charge transfer behavior can be

seen in metallic rings.14 This points out that the transport of

an electron in electron waveguides is both resistive (elastic

scattering at the nodes) and capacitive (due to the space

charge), just like electron transport through a classical diode.

In this paper, we investigated the electron transport

through two irreducible AB rings (Fig. 1). This is motivated

by the possibility of using such quantum networks for com-

puting circuits. Earlier effort in this area by one of us12,13

centered on a single AB ring having three or four external ter-

minals. Multi-terminal AB rings can then be used for comput-

ing by employing two or three coherent inputs. Thus, logic

gates and full/half-adders are constructed based on the vector

sum of these inputs. However, spintronics-based computing

uses different inputs.9 If the spin-up (spin-down) concept is

a)Author to whom correspondence should be addressed. Electronic mail:

chw@mst.edu.
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associated with an AB ring having clockwise (counter-clock-

wise) circulation of the persistent current, then it is possible

to construct the four rules of a half-adder using the four con-

figurations of spin pairings (or AB ring pairings), even though

the coupling of spins and of AB rings are different. But note

that, in coupled AB rings, the entanglement is guaranteed as

long as the coherence length is larger than the entire network.

In Sec. II, we present the quantum network model of the

irreducible network for two coupled AB rings. This is formu-

lated through the node-equation approach developed by one

of us earlier.10,12,13 In this approach, a simple AB ring can be

considered as a ring of harmonic oscillators, except now the

applied fluxes can further modulate the phase of the oscilla-

tors. The equivalence of our node equation approach, with

respect to traditional scattering matrix methods, has been

established.10 The band structure and persistent current for the

three different classes of irreducibly coupled AB rings are

described first, with a detailed example given for a particular

even-even combination. When the center common path is

modulated by two different fluxes, U1 and U2 (as shown in

Fig. 1), the Brillouin zone is two-dimensional. Thus, the flux

periodicity is always a rational number. Note that the presence

of a tunneling path in a simple AB ring can also be modeled

as having a center common path.15 In Sec. III, we describe

the node equation approach when the isolated coupled rings

are further perturbed by attaching multiple external terminals.

The number of external terminals is chosen to be three for

good reason. If the number is only two, the constructed one-

dimensional chain of irreducible networks can only further

narrow down the transmission range. This has been investi-

gated earlier14 and limits the possible logic applications. For

four or more terminals, the transmission probabilities will be

distributed to all terminals and is then useless for constructing

a computing circuit because logical outputs cannot be distinc-

tively determined any longer. As we will show, only in a

three-terminal situation can an input still be transferred totally

to one of the two output terminals. Additionally, the three pri-

mary classes of transmission behavior observable in two irre-

ducibly coupled AB rings having three terminals are

presented. They represent the fundamental modes of propaga-

tion, just like microwave propagation in classical waveguides.

In Sec. IV, we show a class of propagation that may be useful

for constructing a half-adder circuit. When two binary digits

are summed, the four rules of addition can be satisfied. In

Sec. V, we state our conclusion on the usefulness of coupled

AB rings as computing circuits. Even though we investigated

strictly one-dimensional ballistic quantum networks, it has

been conjectured that, in much thicker AB rings, only a lim-

ited mode, which fits into the one-dimensional model, is dom-

inant in the network, just like the situation in a classical

waveguide. If this conjecture is true, an experimental realiza-

tion of electron wave computing is possible. The current

lithography-based microelectronic technology already exists

today for this type of computing. In 1985, fabrication and

FIG. 1. The six irreducibly coupled AB

ring network configurations. Dots are the

location of atoms with spacing a to the

nearest neighbors. In the double-bond

figures, the two center paths are closely

spaced together, but drawn apart for

clarity purposes. In the single-bond fig-

ures, the center common path is drawn

distorted. The two rings have the same

flux area.
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transport properties of a single AB ring with two terminals

were demonstrated.7 With minor modification, it is possible

to insert a common center path, essentially halving the single

AB ring and producing an equivalent irreducibly coupled AB

ring network. Therefore, the tools to make this type of com-

puting possible exist today and just need further development.

The electron waveguide network is very similar to the corre-

sponding superconducting network, as described by the de

Gennes-Alexander theory.16 However, the electron wave-

guide network is an easier extension in terms of construction

from our current microelectronic technology.

II. BAND STRUCTURE AND PERSISTENT CURRENT
IN ISOLATED AND IRREDUCIBLY COUPLED AB RINGS

In a strictly one-dimensional ballistic quantum network,

nodes and path length bonds connect two adjacent nodes to-

gether. The electron wave function at any location in the net-

work must satisfy the Schrödinger equation. Thus, an electron

wave propagates along a given bond length and is scattered

elastically at each node point. In addition, the phase of the

electron wave function along a given path can be further

modulated by the applied fluxes. The node equation approach

reformulates the Schrödinger equation for the network by

relating the electron wave functions at each node point with

those at neighboring nodes.10 For a given node at x (see

Fig. 2) connected through a bond length lxy to all the neigh-

boring nodes at y, the resulting node equation for a plane

wave along the network is from the Kirchhoff law such that

the electron wave function at node x, W xð Þ, satisfies

X
y

cot klxy

� �
�iD

" #
W xð Þ�

X
y

cscðklxyÞexp½i/lxy�W yð Þ
� �

¼0;

(1)

where k ¼
ffiffiffiffiffiffiffiffiffi
2mE
p

=�h and E is the electron energy. / is related

to the applied flux U by / ¼ 2p=Mð Þ U=U0ð Þ, where M is the

total number of nodes in a loop (or ring). D ¼ 1� Rð Þ
= 1þ Rð Þ, where R is the reflection amplitude if node x is an

input terminal from y1, y2, or y3, D ¼ �1 if node x is an out-

put terminal, and D ¼ 0 if node x is simply internal by being

neither an input nor an output terminal. Transmission proba-

bility, T ¼ 1� Rj j2, is then used in calculating the conduct-

ance in the Landauer-Büttiker formulation.17–22

Note that the bond lengths are in the unit of multiple

atomic spacing (lxy ¼ na, for example). Thus, even or odd-

numbered magnification also applies to the same network; that

is, the n-factor can be magnified an even or odd number of

times, satisfying a set of scaling rules.12 Thus, it is sufficient to

present small-scale toy models (the smallest n integer) when

considering the band structures for each type of network.

If the flux modulation is set equal to zero, Eq. (1) is sim-

ilar to coupled harmonic oscillators of the same topology

with a mass located at each atom and spring constants associ-

ated with all neighboring atoms, as shown in Fig. 2. When

two AB rings are irreducibly merged together, two situations

can arise with respect to the common center path. Single and

double-bonds capable of forming this path are shown and

investigated. If the M3S and M3D cases (both shown in Fig.

1) are chosen to be examined for illustration purposes, where

M3S labeling is for M ¼ 3 atoms on a ring and S for single

common center path when coupled, the generalized node

equation approach from Eq. (1) for the four nodes, labeled as

A, B, C, and D, reduces to

2 cos kað ÞW Að Þ � exp½i/1a�W Bð Þ � exp½�i/1a�W Dð Þ ¼ 0;

(2)

n cos kað ÞW Bð Þ � exp½�i/1a�W Að Þ � exp½i/2a�W Cð Þ
� n0 exp½ið/1 � /2Þa�W Dð Þ ¼ 0;

(3)

2 cos kað ÞW Cð Þ � exp½i/2a�W Dð Þ � exp½�i/2a�W Bð Þ ¼ 0;

(4)

n cos kað ÞW Dð Þ � exp½i/1a�W Að Þ � exp½�i/2a�W Cð Þ
� n0 exp½ið/2 � /1Þa�W Bð Þ ¼ 0;

(5)

where W Að Þ is the electron wave function at node A and so

on, n ¼ 3, and n0 ¼ 1 for the single-bond case (M3S), while

n ¼ 4 and n0 ¼ 2 for the double-bond case (M3D).

/1 ¼ 2p=M1ð Þ U=U0ð Þ, where M1 is the number of atoms on

the left ring (3 in this case) and U0 is the elementary flux

quanta. Similarly, for /2, the relation to the applied flux for

the right ring can be defined. We note that, if there is a

potential associated with each node, then it can be shown

that the cos kað Þ factor in Eqs. (2)–(5) for the plane wave will

be replaced with a form factor.10 The resulting secular equa-

tion leads to the requirement for the electron energy E, with

respect to the applied fluxes. In the general situation of an

(l,m,n) configuration with spacing in units of atomic spacing

a (see Fig. 3) for the left ring, right ring, and common center

path, respectively, all the eigenenergies must satisfy the fol-

lowing equation for the single-bond case:

3sin klð Þsin kmð Þsin knð Þ�2

cos klð Þcos kmð Þsin knð Þþ
cos kmð Þcos knð Þsin klð Þþ
cos knð Þcos klð Þsin kmð Þ

2
64

3
75

þ2½cos l/1þm/2ð Þsin knð Þþcos l/1þn/3ð Þsin kmð Þ
þcos m/2�n/3ð Þsin klð Þ�¼ 0; (6)

FIG. 2. Harmonic oscillator model—dots are masses; bond lengths are

springs.
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where /3 ¼ ð/1 � /2Þ. Similarly, the eigenenergies satisfy

for the double-bond case:

3 sin klð Þ sin kmð Þ sin knð Þ �
cos klð Þ cos kmð Þ sin knð Þþ
2 cos kmð Þ cos knð Þ sin klð Þþ
2 cos knð Þ cos klð Þ sin kmð Þ

2
64

3
75

þ ½cos l/1 þ m/2ð Þ sin knð Þ þ 2 cos l/1 þ n/3ð Þ sin kmð Þ
þ 2 cos m/2 � n/3ð Þ sin klð Þ�¼ 0: (7)

Note that the flux periodicity is generally determined by the

last three terms in Eqs. (6) or (7) when those cosine func-

tions repeat. As an example, if we solve Eq. (6) where

(l,m,n)¼ (3,3,1) for the M4S case (shown in Fig. 1), Fig. 4

demonstrates the band structure and persistent current for

such networks when U1 ¼ 6U2 ¼ U. Notice that, due to the

strong coupling, there is a Fermi level crossover at

U � 6ð2=9ÞU0. This contributes to the discontinuity exhib-

ited by the persistent current and designates a flux-enclosed

anti-bonding region. There are six eigenstates and the Fermi

level is located at the third-lowest level in a half-filled sit-

uation at temperature T¼ 0 K.

For any configuration of coupled AB rings, if all the

bond lengths a are scaled up an odd number of times, 2nþ 1,

with n an integer, the Fermi level dependence on the flux

remains the same, because the cos(ka) factor in every term is

scaled up to become cos((2nþ 1)ka) and the persistent cur-

rent is scaled down by the factor of 1/(2nþ 1), thus preserv-

ing transmission.

In an odd-even (M34) network, when two AB rings of

different size are interacting with each other, this creates a

complex problem. First, we note that each bond length must

have the same fundamental unit: an integer unit of atomic

spacing. Thus, two rings will have two different cross-

sectional areas or two different total flux values for U1 and

U2. For M ¼ 3, it is denoted as U03, and for M ¼ 4, it is U04.

Therefore, U04 ¼ ð16=9ÞU03. This extra factor will change the

flux periodicity drastically, since the three cosine functions

are now repeating at offset multiples from one another. Due

to this, the flux periodicities for M34Sþ, M34Dþ, M34S�,

and M34D� are all given by a rather large U ¼ 9U0.

III. ELECTRON TRANSMISSION PROBABILITIES IN
IRREDUCIBLY COUPLED AB RINGS HAVING THREE
EXTERNAL TERMINALS

When three external terminals are to be attached to an

M3 network (Fig. 1), one can arbitrarily pick three locations

out of the four nodes (labeled as A, B, C, and D). Therefore,

only four unique configurations of transmission exist. All

others are the equivalent of the above four varieties by the

argument from the Büttiker symmetry principle.8 We will

FIG. 4. Band structure (left) and persistent current (right) for M4Sþ. Here, M4Sþ is for M ¼ 4 atoms in each ring with a single-bond and applied fluxes

U1 ¼ U2 ¼ U.

FIG. 3. The general (l,m,n) single-bond

(left) and double-bond (right) configura-

tions. In the M3S configuration of Fig. 1,

(l,m,n)¼ (2,2,1), while in the M4S con-

figuration, (l,m,n)¼ (3,3,1) and so on.

Note that the transmission behavior for

(6,6,3), (10,10,5), or (14,14,7) is pre-

served to that of (2,2,1).
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denote those configurations as ABD, ACD, DAC, and DBC.

The ABD configuration here denotes the input is from termi-

nal A and the outputs are going to terminals B and D.

With three terminals, the outputs are generally divided

into three distinct classes. Class (I) can be described as

when all terminals share the output with approximately a

third transmission probability. We show one example of

Class (I), by picking the M4S ACE network, in Fig. 5. Class

(II) is when two terminals share the output roughly equally,

while the third terminal has a diminished role. This is

shown in Fig. 6 for the M4S FBD network. These first two

classes are distributed output cases. Lastly, Class (III)

describes when one terminal dominates the output at near

total transmission probability, with the other two having

diminished roles at that particular broad flux range. This is

shown in Fig. 7 for the M4D ABF network. Thus, it is pos-

sible to state that electron transport for any of the six gen-

eral network configurations (M3, M4, M34) having three

external terminals must fall into one of the three classes just

discussed. Thus, we expect an experimental realization will

fall into one of the three classes. We note that, if one termi-

nal dominates the share of the transmitted output (meaning

Class (III) behavior), it is a desirable circuit for computing

purposes that require only a single output to be high at

once.

When two rings are of different size, as in the M34 case,

there are 18 unique terminal configurations, more than the

M4 case due to its anti-symmetric geometry. The transport

behavior is more complex and spread over a larger flux

range, as discussed in Sec. II. These properties make such

network configurations less useful, in general, for construct-

ing logic circuits.

FIG. 5. Class (I) equivalently distributed network with M4S ACEþ (left), M4S ACE� (right). All three terminals (A, C, E) share approximately a third of the

transmission.

FIG. 6. Class (II) distributed network M4S FBDþ (left), M4S FBD� (right). Terminals B and D share approximately half of the transmission, while F has a

diminished role.
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IV. APPLICATIONS OF IRREDUCIBLY COUPLED AB
RINGS FOR COMPUTING: A HALF-ADDER EXAMPLE

By analyzing the electron transmission behavior of

coupled AB rings, it is possible to realize them in such a way

to be useful for performing digital logic operations. Due to

favorable transmission relations for three-terminal networks,

it is possible to produce functional non-unique operating

models of many different traditional computing structures.

From Class (III) transmission, one such possibility is the

emulation of half-adder operation, which shares a two-input

relationship with a coupled AB ring network. Organizing ex-

perimental transport results has allowed us to determine that,

while several configuration possibilities exist, the M4D

structure with terminal configuration ABF in Fig. 7 is the

best Class (III) example to illustrate half-adder functionality.

In this equivalent three-terminal case, depicted by Fig. 8, A

is the applied current source to the network as well as the

measured sum output, made possible by using a three-

terminal quantum circulator at the node.12 B is the carry out

(cout), while F is the dump terminal, which provides a return

path for the current to prevent unwanted transmissions at the

sum and carry out terminals and ensures all possible logical

combinations are satisfied.

It is further necessary to establish the physical relation-

ship between the network and logical inputs (1’s and 0’s),

which need to be added. We note that, while the logical out-

puts are measureable currents, the inputs can instead be real-

ized as the applied fluxes for each ring, U1 and U2. Similar

to the spintronic inputs of spin-up (spin-down), a flux-

mapping rule is developed in order to create the logical to

physical connection. The simple rule implies that properly

mapped fluxes must be of equal magnitude and can only dif-

fer by opposite sign, leading to four distinct possible input

combinations (just like a half-adder): "#; ""; ##; #". By set-

ting when U1 ¼ U2 ¼ U and when U1 ¼ �U2 ¼ U, it is pos-

sible to observe where these four combinations exhibit

desirable transmission modes for half-adder operation in the

network. For this, properly mapped fluxes must exhibit no

incorrect transmissions under all four conditions across the

flux period range and is the reason why a dump terminal, or

discounted terminal, is necessary. In other words, three ter-

minals are necessary for half-adder computing. In Fig. 9,

adapted transmission plots (from Fig. 7) are shown for the

network. Upon close examination, it can be noticed that, in

the 60:1U0 range, there is interesting transport phenomena.

High transmission probabilities are observed for the appro-

priately chosen output terminals, � 0:9, forcing unwanted

transmissions at the other terminals to be very low, � 0:1.

Exploiting these results and connecting them with the spin-

up (spin-down) principles, it is possible to extract the four

distinct total combinations for half-adder operation. Basi-

cally, at a fixed flux value U, when U1 ¼ �U2 ¼ U, the out-

put at F is high and outputs at A (sum) and B (cout) are

negligible. Thus, Rule I is satisfied, as shown in Table I and

labeled on Fig. 9. The remaining three rules are presented in

the same manner. For a half-adder, the general principle is to

pick the appropriate high current output terminals for the

FIG. 7. Class (III) one terminal dominant network M4D ABFþ (left), M4D ABF� (right). The domination occurs at different flux ranges for different

terminals.

FIG. 8. Half-adder logic circuit represented by the M4D ABF network.
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sum and carry out, thus allowing the four flux directional

combinations to be mapped into the four configurations of

addition.

By utilizing the concept of inputs being introduced into

irreducibly coupled AB ring networks as applied directional

fluxes (spintronic inputs), while outputs are measurable cur-

rents, it is possible to extend the functionality of coupled AB

rings to be used for a whole host of other digital logic device

families. The key is finding the appropriate class of the

coupled AB ring structure, such as Class (III) transmission,

and its corresponding terminal arrangements, which exhibit

the correct flux-mapping relationships for the specific logical

operations necessary for operation. This points out the need to

establish the fundamental mode of propagation associated

with a given AB ring dimension and the terminal locations

that can transmit an input near totally to a proper output ter-

minal symmetrically and anti-symmetrically with respect to

the change of flux sign. We believe this strongly demonstrates

a new way of thinking about physically structuring next-

generation computing architecture — by using coupled AB

ring network topologies, where properly chosen applied fluxes

can act as logical input bits to induce modulated transmission

modes via the AB effect for digital logic operations.

V. CONCLUSION

Electron transmission through two irreducibly coupled

Aharonov-Bohm rings via multi-terminals is modeled as

flux-assisted coupled harmonic oscillators of the same topol-

ogy. The three-terminal cases shown here are of particular

interest. The transmission depends strongly on the number of

atoms in each ring as well as on the terminal locations. All

six general configurations have been discussed. The flux pe-

riodicity is determined from a two-dimensional Brillouin

zone due to the fact that there are two modulating fluxes

present, and this value is generally a rational number of the

elementary flux quanta. The general equations for determin-

ing the flux periodicity for two single and double-bonded

coupled AB rings are provided here. We present the trans-

mission results when the two fluxes are of the same direction

and of opposite direction, corresponding to two different

spins or the circulating persistent current directions in each

ring. The transmission probability can be classified into three

distinctive behaviors: The first class is for an input to be

more or less equally distributed to all three output terminals

in a broad flux range. The second class is for two terminals

to share roughly half of the transmission each, while the third

FIG. 9. Transmission results for the M4D ABF network when operating as a half-adder.

TABLE I. Rules for the M4D ABF half-adder flux-mapping relationships (see Fig. 9).

Half-adder

rule

Input

bits to add

Flux mapping

(U1,U2)

Logical outputs

at terminals

Satisfied at

(U1,U2)

Transmission

results

I 0 0 ("; #) A (sum)¼ 0 (�0.1, þ0.1) U0 TA¼ 0.1

B (cout)¼ 0 TB¼ 0.1

II 0 1 ("; ") A (sum)¼ 1 (�0.1, �0.1) U0 TA¼ 0.9

B (cout)¼ 0 TB¼ 0.1

III 1 0 (#; #) A (sum)¼ 1 (þ0.1, þ0.1) U0 TA¼ 0.9

B (cout)¼ 0 TB¼ 0.1

IV 1 1 (#; ") A (sum)¼ 0 (þ0.1, �0.1) U0 TA¼ 0.1

B (cout)¼ 1 TB¼ 0.9

054315-7 C. A. Cain and C. H. Wu J. Appl. Phys. 110, 054315 (2011)



terminal is more or less bypassed. The third and final class is

for one terminal to dominate the transmission at near unity,

while the other two terminals are bypassed at a broad flux

range. When two AB rings of different size are interacting

with each other, such as from the odd-even combined AB

rings, the flux periodicity is greatly increased due to the

cross-sectional area ratio, and the transmission behavior

becomes very irregular and complex. Broadly speaking, the

transmissions are divided into several fundamental modes

similar to classical microwave transmission, except the clas-

sification scheme is determined by how even or odd-

numbered AB rings are combined and by the locations of the

terminals. Once those parameters are fixed, a scaled-up ver-

sion of the same topology will preserve the same transmis-

sion behavior if the magnification factor is by an odd number

of times. We present the smallest possible configurations in

this paper and expect, experimentally, that the transmissions

must fall automatically into one of the three classes dis-

cussed, regardless of the size or geometry, as long as a

coupled AB ring structure with three terminals is preserved.

Because of the four different spin pairings from the two

possible directions of the circulating persistent currents in

each AB ring, one can map each pairing configuration into

one of the four rules of binary addition when two digits are

being added. The flux directions are then used as the inputs

for the two digits. The outputs for the sum and carry out

require two external terminals, which we have identified

properly by an example where the transmissions can indeed

be dominated by one particular terminal (the Class (III)

transmission) to satisfy all four half-adder rules evaluated at

one particular value (at a board range) of the applied fluxes

simultaneously. This is made possible by observing the sym-

metric (for the sum terminal) and anti-symmetric (for the

carry out terminal) properties of the transmissions with

respect to the change of the flux sign. Thus, for a full-adder,

one can expect to use three irreducibly coupled AB rings

with three flux directions as the inputs to satisfy the eight

rules of a full-adder, in principle. A higher number of

coupled AB rings can thus be expected to perform higher-

order computations. These kinds of quantum circuits can be

realized experimentally if there is only one fundamental

mode dominating the propagation in the electron waveguide

of a thicker cross section. By utilizing existing technology

for a single AB ring with two terminals,7 if a third terminal

is added and center common path inserted, thus halving the

ring, the resulting irreducibly coupled AB ring network

makes it possible to realize this form of electron wave com-

puting. At first glance, it may appear that our quantum com-

puting method relies on very complicated phase coherent

electron interference. However, we want to emphasize that

the transmission behavior for any three-terminal construction

of two irreducible AB rings will result in one of the three

classes discussed here, with one being useful for quantum

computing circuits.
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