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Abstract

This paper presents a temporal model for the coverage
achieved by software testing. The proposed model, which is
applicable at any level of the testing hierarchy, can deter-
mine the value of test coverage at any given time, as well as
predicting future values. The model is comprised of two
main components: coverage functions, and the coverage
matrix. The coverage functions represent the coverage of
a single entity as a function of time and reflect the test envi-
ronment through their stochastic parameters. The coverage
matrix utilizes the coverage functions to depict the coverage
attained for each entity by each test within the test suite. A
normalized sum of the elements of the coverage matrix is
used to represent the overall coverage achieved by the test
suite, as a function of time. The application of the model to
multi-phase testing is illustrated. In the application section,
test coverage values from Y2K compliance testing are used
to verify model predictions.

1 Introduction

Software testing has been defined as the process of ex-
ecuting software and comparing the observed behavior to
the desired behavior. The major goal of software testing is
to discover errors in the software, with a secondary goal of
building confidence in the proper operation of the software
when testing does not discover errors [6, 5]. We define test
coverage to be the fraction of the system that has undergone
testing satisfactorily. In most cases, quantifying the extent
of testing performed is a difficult, but vital task. Test cover-
age values and trends can be used in evaluating confidence
levels of test results, or in correcting test strategies. Pre-
diction of coverage values is even more useful, as it can be
utilized in determining test durations required for achieving

This research was supported in part by the Center for Education and Re-
search in Information Assurance and Security (CERIAS) at Purdue Uni-
versity.

given coverage objectives. This paper presents a mathemat-
ical model for coverage, which can determine the quantita-
tive value of coverage as a function of time. Section 2 pro-
vides a brief overview of past studies related to this work.
Section 3 presents the coverage model and its main compo-
nents. The model is generalized to multi-phase testing in
Section 4. Section 5 illustrates the application of the model
to test coverage data from Y2K compliance testing. Section
6 concludes our work and proposes future enhancements to
the model.

2 Related Work

Our coverage model is based on the coverage matrix in-
troduced in [8], which represents entity-level coverage with
binary elements. Our model represents coverage with a real
number in the range of [0 1], facilitating the accurate rep-
resentation of fractional coverage. In quantifying coverage,
we represent the effects of the test environment by using
two different exponential functions to determine coverage
values. These exponential functions were used in [7] to
model productivity. We depict two testing environments,
one in which testing proceeds rapidly, and another with av-
erage testing progress. As a result, our model incorporates
the notion of test duration into the model, and the elements
of the coverage matrix are time-dependent. A model simi-
lar to our coverage function has been discussed in [3], with
a focus on relating test coverage to known models of soft-
ware reliability. The model does not incorporate the effect
of test environment into coverage calculations, and does not
extend the coverage analysis to the system level, as done by
the coverage matrix in our model.

3 Coverage Model

3.1 Coverage Functions

In this section, we describe two exponential functions
used to depict changes in coverage over time: the rapid and
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average progress models. The former is applicable to en-
vironments where testing proceeds rapidly, and the latter to
environments where testing proceeds slowly at first, then ac-
celerates. Both models can be applied at any level and any
phase of testing. The rapid progress model depicts a testing
environment where testing progresses quickly, and no ini-
tial slowness is observed. This model determines C(t) by
the following equation:

C(t) = a� be�ct

Three test environment parameters are involved: a, the
final expected coverage, b, which can be loosely interpreted
as an initial coverage indicator, and c, the testing speed in-
dicator. All three parameters are positive real numbers. To
further elaborate, a is the coverage that would be obtained
if infinite time were available for testing. Coverage is rep-
resented as a fraction, hence 0 � a � 1. Parameter b is
inversely related to the initial test coverage, as C(t) = a�b
at time t = 0 . If testing is performed in multiple phases,
the initial coverage of the first phase of testing will be zero,
hence a = b. In later phases, the initial coverage can be
nonzero. Coverage is restricted to positive values, hence
0 � b � a. The parameter c determines the speed of test-
ing progress. The greater the value of c, the faster the final
coverage value is achieved.

The average progress model depicts a testing environ-
ment where testing progress is initially slow, and later accel-
erates. This model determines C(t) by the following equa-
tion:

C(t) = a�
b

ect + e�ct

The semantic meaning of the parameters is the same as
in the rapid progress model. For this model, b = 2a is
required for initial coverage of zero, and 0 � b � 2a limits
the coverage to positive values. Figure 1 provides a sample
depiction of both progress models.

The values of the test environment parameters depend
on the system under test, as well as the test method, and
can be determined empirically. If all three are determin-
istic, the coverage can also be computed deterministically.
If any parameter value is probabilistic, test coverage will
be a random process. A simplified example of the analysis
can be performed for the rapid progress environment, where
C(t) = a� be�ct, assuming zero initial coverage and com-
plete final coverage, a = b = 1. In this case, the random
process representing the coverage achieved by a given test
on a given entity is determined solely by the probability dis-
tribution of the parameter c. The simplest scenario occurs
when c is assumed to be uniformly distributed over [0,1]. In
this case, the random process of test coverage can be repre-
sented by:

P (C(t) � x) = �ln(1� x)=t for 0 � x � 1� e�t
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Figure 1. Rapid and average progress mod-
els.

Conversely, we may be interested in determining the
probability distribution of the time T required to attain a
certain coverage level, Cf . In this case, assuming the rapid
progress model, Cf = a � be�cT . Assuming that c is uni-
formly distributed over [0,1]:

P (T � t) =
1

t
ln

b

a� Cf

for t > ln
b

a� Cf

As testing progresses, repairs may introduce new fault
sites into the system. The modified system may have a tem-
porary decrease in coverage until sufficient testing is per-
formed to reach the coverage attained before repair. Ad-
ditional terms should be added to the coverage function to
model this transient decrease in coverage. For example, the
following function, f(t) , can be subtracted from the cover-
age functions to model the decrease:

f(t) =

�
k(t� p)e�d(t�p) for f(t) � 0
0 otherwise

In the equation above, k, p, and d, respectively, deter-
mine the size, start time, and duration of the dip in cover-
age. Figure 2 depicts the rapid progress model, modified
with the function above.

3.2 Coverage Matrix

The basic premise of our coverage model lies upon using
a matrix to represent the system coverage attained by a test
suite. The entities represented by the elements of the matrix
can be located at any level of the testing hierarchy, from unit
to end-to-end testing. The test suite can be comprised of a
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Figure 2. Modified coverage function.

single test, or a combination of any number of tests used to
achieve a testing objective. In the coverage matrix, denoted
by M , the rows represent the tests being executed, and the
columns represent the entities being tested. The value of
each element of M is determined by the coverage functions
described in the previous section. Formally, let S be the
system under test, and T the test suite applied to S. Let
E be the set of entities of S that are tested by T . T and
E and are assumed to be nonempty, and every element of
S is assumed to belong to at least one entity in E. In the
time-dependent coverage matrix M(t), the rows represent
elements of T , and the columns represent elements of E.
Let each elementmij(t) of M(t) be defined as the coverage
obtained by running test i on entity j.

M(t) =

2
6664

m11(t) m12(t) � � � m1jEj(t)
m21(t) m22(t) � � � m2jEj(t)
...

...
. . .

...
mjT j1(t) mjT j2(t) � � � mjT jjEj(t)

3
7775

Depending on the test environment, mij(t) are calcu-
lated by either the average or rapid progress functions. In
either case, the values of the parameters, a, b, and c depend
on the entity being tested, as well as the test being executed.
Hence:

mij(t) =

8<
:

aij � bije
�cijt rapid progress

aij �
bij

ecijt + e�cijt
average progress

For mathematical tractability, we assume that the entities
being tested are similar. This occurs often in module test-
ing of software composed of similar modules performing
different functions. In this case, the model parameters will

depend only on the test being executed, and will be identi-
cal for all entities in the same row of the coverage matrix.
Hence, all elements within the same row of M(t) will be
identical, as the test corresponding to row i will be expected
to achieve the same coverage for all entities being tested. In
this case, we represent the coverage achieved by test i, at
time t, with cvgi(t). The resulting matrix will be:

M(t) = [ cvg1(t) cvg2(t) � � � cvgjT j(t) ]� [1]jEj

where [1]jEj is a vector of ones.
In the general case, where the model parameters depend

on both the entity being tested and the test being executed,
we define TCi(t) to be the mean coverage achieved by test
i at time t.

TCi(t) =

PjEj
j=1mij(t)

jEj

To obtain a measure of the overall coverage achieved by
the test suite, we compute the mean of the values of TCi(t)
over all tests in the suite. Let CV G(t) be the overall cov-
erage achieved at time t by executing test suite T for all
entities in E.

CV G(t) =

PjT j
i=1 TCi(t)

jT j
=

PjT j
i=1

PjEj
j=1mij(t)

jT jjEj

The above summations rely on the implicit assumption
that all entities in E undergo test i simultaneously. In the
more general case, the start and end times for a test can vary
among entities. The summations above will be more com-
plex, as the coverage values corresponding to each entity ej
will be time-shifted by sij , which is the start time of test i
for the entity.

A

F

D

C

α

β

γµ

Figure 3. Entity-level state space model for
testing.

In the state-space model for the general case, we can define
two states for an entity that has not completed testing: active
(A), meaning that the entity is currently undergoing a test in
the test suite, and deferred (D), meaning that testing of the
entity has been suspended, but will resume at some later
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time. Once an entity completes testing, it reaches the com-
plete (C) state, indicating that the entity has been gracefully
removed from testing, either due to reaching the intended
coverage goal, or due to reaching the time limit allocated
for testing. An entity can also leave the test suite by abnor-
mal termination (F), meaning that testing was irrecoverably
interrupted by an anomaly such as power outage or system
crash. Figure 3 depicts this state-space model at the entity
level. The transition probabilities �, � depend on the test
schedule for the overall system, and 
 can be derived from
the exponential coverage function.

4 Multi-phase testing

In software regression testing, one or more test phases
may be required for achieving coverage objectives. In the
most general case, testing begins at Phase 1, with no ini-
tial coverage, and proceeds until the final coverage goal Cf

is reached, or testing is abnormally terminated. Each test
phase may have a different test environment, hence environ-
ment parameters a, b, and c will vary among phases. The
state space model for multi-phase testing is illustrated in
Figure 4. At test phase k, denoted by Pk, three outcomes
are possible. Cf may be reached within the duration of
the phase, so no further testing will be necessary. Alter-
natively, testing may proceed normally, but Cf may not be
reached, so testing enters phase i + 1. In the worst case,
testing will be abnormally terminated. The probabilities
of the aforementioned events are denoted by PCk, PEk,
and PFk, respectively. The number of phases, N , depends
on the coverage achieved in each phase, as well as Cf . If
the test environment parameters for one or more phases are
non-deterministic, the total number of test phases will be a
random variable.
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1
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C

PE
1
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PE
N
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1
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i
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PF
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1
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N
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Figure 4. State space model for multi-phase
testing.

Figure 5 depicts multi-phase testing with Cf = 1. All
three test phases are assumed to have a = b = 1 , but c

= 0.2, 0.4 and 0.8 for the first, second, and third phases,
respectively. This represents a typical scenario where the
test environment improves over time. The phase durations
are assumed to be 1, 2, and 3 time units, respectively. Cf is
reached after 3.5 time units, during the third phase.
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Figure 5. Multi-phase test coverage model.

5 Application

This section provides two examples of applying the
model to actual test data. The data sets are from Y2K com-
pliance testing of mission critical and non-mission critical
systems. In the first data set, only one test suite is consid-
ered. In the second data set, the tests applied are classified
into replacement and termination suites. For both data sets,
the actual computed numbers are presented, which may ex-
ceed the limits defined for the corresponding test parame-
ters. This is due to truncation of the time axis, correspond-
ing to finite test time.

5.1 Y2K Compliance Testing of Mission Critical
and Non-Mission Critical Systems

Figures 6 and 7 illustrate the progress made on Y2K
compliance testing of mission critical and non-mission crit-
ical systems, as well as the application of the rapid and aver-
age progress models to the data. As seen in the figures, both
models accurately depict the testing progress, with the av-
erage progress model yielding values that are slightly closer
to the actual data. The coverage matrices follow.
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Figure 6. m11(t).

Rapid progress model

M(t) = [ 1:06� 0:74e�0:14t 1:09� 1:02e�0:13t ]

Average progress model

M(t) =�
0:99�

1:12

e�0:24t + e0:24t
1:04�

1:71

e�0:22t + e0:22t

�

5.2 Y2K Compliance Testing of Mission Critical
and Non-Mission Critical Systems - Repair
and Termination

This section also models the progress made on Y2K
compliance testing of mission critical and non-mission
critical systems. Once again, the entities considered are
mission critical and non-mission critical systems. In
this data set, two test suites are considered, one with the
objective of replacement, and another with the objective
of termination of non-compliant systems. Figures 8 and
9 depict the application of the rapid and average progress
models to the data. As seen in the figures, both models
accurately depict the testing progress, with the average
progress model yielding values that are slightly closer to
the actual data. The coverage matrices follow.

Rapid progress model

M(t) =

�
6:33� 5:98e�0:006t 1:92� 1:86e�0:04t

1:06� 1:73e�0:14t 1:02� 0:65e�0:16t

�
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Average progress model

M(t) =2
6664

1:19�
1:54

e�0:11t + e0:11t
1:09�

1:85

e�0:23t + e0:23t

1:06�
1:73

e�0:14t + e0:14t
1�

1:13

e�0:23t + e0:23t

3
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6 Conclusions and Future Work

In this paper, a matrix-based exponential model was used
to predict coverage values over time. Two test environments
were considered, thereby incorporating the notion of ”qual-
ity” of the test environment. In one model, rapid testing
progress was assumed, and in the second, an initial slow
period was followed by subsequent acceleration in testing
progress. An entity-level state-space model was presented
for both single and multi-phase testing. The model was sub-
sequently applied to field data, and the results verified that
the model could accurately represent the temporal changes
in test coverage.

The temporal coverage model presented in this paper is
still in the preliminary stages, and can be elaborated upon
in many ways. One interesting area is the application of
the model to multi-level testing by combining the results of
the model at various levels of the testing hierarchy, such as
unit, integration, or system testing. We plan to investigate
the derivation of the components of the higher-level cov-
erage matrix from coverage matrices at lower levels. An-
other interesting area of investigation is the effect of test
methodology, such as model-based testing [1] or partition
testing [2, 4], on the test environment parameters a, b, and c.
We also intend to perform sensitivity analysis of test cover-
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Figure 8. m11(t) and m12(t).

age with respect to the model parameters, which will enable
us to investigate the relationship between test methodology
and coverage.
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