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Abstract 

Based on derivative adaptive critics, neurocontrollers for  
excitation and turbine control of multiple generators on 
the electric power grid are presented. The feedback 
variables are completely based on local measurements. 
Simulations on a three-machine power system 
demonstrate that the neurocontrollers are much more 
effective than conventional PID controllers, the 
automatic voltage regulators and the governors, for 
improving dynamic performance and stability under 
small and large disturbances. 

1 Introduction 

Power systems containing turbogenerators are large-scale 
nonlinear systems. The conventional controllers for the 
generators are designed by linear control theory based on 
a single-machine infinite bus (SMIB) power system 
model. These SMIB power system models are linearized 
at specific operating points, and then excitation and 
turbine controllers are designed, based on the linearized 
models. The drawback of this approach is that once the 
operating point or the system configuration changes, the 
performance of the controller degrades. Conservative 
designs are therefore used, particularly in multimachine 
systems, to attempt satisfactory control over the entire 
operating range of the power system. 

In recent years, renewed interest has been shown in 
power systems control using nonlinear control theory, 
particularly to improve system transient stability [ 1,2]. 
Instead of using an approximate linear model, as in the 
design of the conventional power system stabilizer, 
nonlinear models are used and nonlinear feedback 
linearization techniques are employed on the power 
system models, thereby alleviating the operating point 
dependent nature of the linear designs. Nonlinear 
controllers significantly improve the power system's 
transient stability. However, nonlinear controllers have a 

more complicated structure and are difficult to 
implement relative to linear controllers. In addition, 
feedback linearization methods require exact system 
parameters to cancel the inherent system nonlinearities, 
and this contributes further to the complexity of stability 
analysis. The design of decentralized linear controllers 
to enhance the stability of interconnected nonlinear 
power systems within the whole operating region is still a 
challenging task [3]. However, the use of Artificial 
Neural Networks offers a possibility to overcome this 
problem. 

Multilayer perceptron type artificial neural networks 
(ANNs) are able to identify/ model time varying single 
turbogenerator systems [4] and, with continually online 
training, these models can track the dynamics of the 
power system, thus yielding adaptive identification. 
ANN controllers have been successfully implemented on 
single turbogenerators using ANN identifiers and indirect 
feedback control [5-61. Moreover, ANN identification of 
turbogenerators in a multi-machine power system has 
also been reported [7]. 

In this paper, the electric power grid is modeled using 
artificial neural networks and used in the development of 
neurocontrollers based on derivative adaptive critics, to 
replace the conventional automatic voltage regulators 
(AVRs) and turbine governors. With derivative adaptive 
critics, optimal neurocontrollers can be designed by 
using pre-recorded data from the power system 
operation, and offline training, before allowing the neural 
network to control the generators. With adaptive critics, 
the computational load of online training is therefore 
avoided. The method presented in this paper can 
therefore be used in the development of neurocontrollers 
to be retrofitted to existing plants. 

A three-machine laboratory power system example is 
simulated, with neurocontrollers on two generators. The 
third generator is the infinite bus, with a fixed voltage 
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and frequency. The simulation results show that both 
voltage regulation and system stability enhancement can 
be achieved with this proposed neurocontroller, 
regardless of the system operating conditions and types 
of disturbances. 

T ~ o ’  = 4.50 s 
TdO” = 33 mS 
TQO” = 0.25 s 
X, = 2.09 pu 

2 Electric Power Grid 

&’ = 0.205 pu 
&” = 0.164 pu 
X, = 1.98 pu F = O  

Rs = 0.006 
H = 5.68 

X,” = 0.213 pu p = 2  

The multi-machine laboratory power system in figure 1 
is modeled in the MATLABISIMULINK environment 
using the Power System Blockset (PSB) [SI. ‘Each 
machine is represented by a seventh order model. There 
are three coils on the d-axis and two coils on the q-axis 
and the stator transient terms are not neglected. A three 
machine five-bus power system is chosen, to illustrate 
the effectiveness of the adaptive critic based controllers. 
The power system in figure 1 consists of two micro- 
generators. 

Tv I 

Tv2 
Tv3 

I 
”refl 

0.616 s Tv4 0.039 s 
2.266 s Tv5 0.0235 s 
0.189 s Te 0.47 s 

G3 

Figure 1 : Multimachine Power System Model 

Each of the 3 kW, 220 V, three phase micro-generator 
was designed to have all its per-unit parameters, except 
the field winding resistance, the same as those normally 
expected of a 1000 MW generator. The parameters of 
the micro-generators, determined by the IEEE standards 
are given in Table 1 [9]. A time constant regulator is 
used on each micro-generator to insert negative 
resistance in series with the field winding circuit, in order 
to reduce the actual field winding resistance to the 
correct per-unit value. 

The conventional AVR and exciter combination transfer 
function block diagram is similar for both generators and 
is shown in figure 2 and the time constants are given in 
Table 2. The exciter saturation factor Se is given by 

Se = 0.6093 exp(O.2165 Vrd ) ( 1 )  

T,,,, Tv2, T,,j and T,, are the time constants of the PID 
voltage regulator compensator; T,,s is the input filter time 
constant; T, is the exciter time constant; &, is the AVR 
gain; Vr,,, is the exciter ceiling; and, V,,,, and V,i are the 
AVR maximum and minimum ceilings. 

Table 1 : Micro-Generator Parameters. 

Exciter 
“,“A 

Input Filter PID C‘mlpmsatim 
and limits 

Saturation 

Figure 2: Block Diagram of the AVR and Exciter 
Combination. 

Table 2: AVR and Exciter Time Constants. 

A separately excited 5.6 kW dc motor is used as a prime 
mover, called the micro-turbine, to drive each of the 
micro-generators. The torque-speed characteristic of the 
dc motor is controlled to follow a family of rectangular 
hyperbola for different positions of the steam valve, as 
would occur in a real typical high pressure (HP) turbine 
cylinder. The three low pressure (LP) cylinders’ inertia 
are represented by appropriately scaled flywheels. The 
micro-turbine and the governor transfer function block 
diagram is shown in figure 3, where, P,,f is the turbine 
input power set point value, P,,, is the turbine output 
power, and A’u is the speed deviation. The turbine and 
governor time constants are given in Table 3. 

Figure 3 
Governor Combination. 

Block Diagram of the Micro-Turbine and 

Table 3 : Micro-Turbine and Governor Time Constants 

0.264 
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3 Derivative Adaptive Critics’ Based 
Neurocontrollers 

Adaptive Critic Designs (ACDs) are neural network 
designs capable of optimization over time under 
conditions of noise and uncertainty. A family of ACDs 
was proposed by Werbos [ IO]  as a new optimization 
technique combining concepts of reinforcement learning 
and approximate dynamic programming. For a given 
series of control actions, that must be taken in sequence, 
and not knowing the quality of these actions until the end 
of the sequence, it is impossible to design an optimal 
controller using traditional supervised learning. 

Dynamic programming prescribes a search which tracks 
backward from the final step, rejecting all suboptimal 
paths from any given point to the finish, but retains all 
other possible trajectories in memory until the starting 
point is reached. However, many paths which may be 
unimportant, are nevertheless also retained until the 
search is complete. The result is that the procedure is too 
computationally demanding for most real problems. In 
supervised learning, an ANN training algorithm utilizes a 
desired output and, comparing it to the actual output, 
generates an error term to allow learning. For an MLP 
type ANN the backpropagation algorithm is typically 
used to get the necessary derivatives of the error term 
with respect to the training parameters and/or the inputs 
of the network. However, backpropagation can be linked 
to reinforcement learning via a network called the Critic 
network, which has certain desirable attributes. 

Critic based methods remove the learning process one 
step from the control network (traditionally called the 
“Acfion network” or “uctor” in ACD literature), so the 
desired trajectory or control action information is not 
necessary. The critic network learns to approximate the 
cost-to-go or strategic utility function, and uses the 
output of an action network as one of its inputs directly 
or indirectly. When the critic network learns, 
backpropagation of error signals is possible along its 
input pathway from the action network. To the 
backpropagation algorithm, this input pathway looks like 
just another synaptic connection that needs weight 
adjustment. Thus, no desired signal is needed. All that 
is required is a desired cost functionJ given in eq. (2). 

J ( t )  = c f U ( t  + k )  (2) 
k V  

where 3/is a discount factor for finite horizon problems (0 
< y< I ), and U ( )  is the utility function or local cost. 

The Critic and the Action networks, can be connected 
together directly (Action-dependent designs) or through 

an identification model of a plant (Model-dependent 
designs). There are three classes of implementations of 
ACDs called Heuristic Dynamic Programming (HDP), 
Dual Heuristic Programming (DHP), and Globalized 
Dual Heuristic Dynamic Programming (GDHP), listed in 
order of increasing complexity and power [ l l ] .  This 
paper presents the DHP model dependent design, and 
compares its performance against the results obtained 
using conventional PID controllers. 

The critic network is trained forward in time, which is of 
great importance for real-time operation. DHP has a 
critic network which estimates the derivatives of J with 
respect to a vector of observables of the plant, AY. The 
critic network learns minimization of the following error 
measure over time: 

(3)  

where 

where Lf.)/cMY(t)) is a vector containing partial 
derivatives of the scalar (.) with respect to the 
components of the vector AY. The critic network’s 
training is more complicated than in HDP since there is a 
need to take into account all relevant pathways of 
backpropagation as shown in figure 4, where the paths of 
derivatives and adaptation of the critic are depicted by 
dashed lines. 

In DHP, application of the chain rule for derivatives 
yields 

advi( t  + I) a J ( t i - I )  n 
= 1 4 ( t + l )  

a d y i ( t )  i = I  a m j ( ’ )  

k=l i=I s w+’) aAk(t)  a q t )  

(5) 
m n  aL\ri(t+l) aAk( t )  

where 2,(t+l) = 6Y(t+l)/c?4Yi(t+l)))), and n, m are the 
numbers of outputs of the model and the action networks, 
respectively. By exploiting eq. (S), each of n components 
of the vector E(t) from eq. (4) is determined by 
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The action network is adapted in figure 5 by propagating 
A(t+l) back through the model to the action. 

The goal of such adaptation can be expressed as: 

(7) 

The weights’ update expression is: 

where a i s  a positive learning rate. 

Figure 4: DHP Critic Network Adaptation 

4 1  

gNJ, 
’ JAY(t+l) 

Figure 5: DHP Action Network Adaptation 

4 Three Artificial Neural Networks -Model, Critic 
and Action 

Neurocontrollers are designed to replace the AVRs and 
govemors on generator G1 and G2, and therefore ANN 
models of generator GI and G2, and the networks to 
which they are connected are obtained as described in 

[7]. The ANN model in figures 4 & 5 is a three layer 
feedforward network with twelve inputs, a single hidden 
layer of fourteen neurons and two outputs. The inputs to 
the ANN are the deviation of the actual power AP to its 
turbine, the deviation of the actual field voltage AVfto its 
exciter, the deviation of the actual speed dw and the 
deviation of the actual RMS terminal voltage AV, of its 
generator. These four inputs are also delayed by the 
sample period of 10 ms and, together with eight 
previously delayed values, form twelve inputs altogether. 
For this set of inputs, the outputs are the estimated speed 

deviation A 0 and the estimated terminal voltage 

deviation A V t , of the generator. 

A 

A 

The critic network in figures 4 & 5 is also a three layer 
feedforward network with six inputs, thirteen hidden 
neurons and, two outputs. The inputs to the critic 
network are the speed deviation dw and terminal voltage 
deviation AV,. These inputs are time delayed by a sample 
period of 10 ms, and together with the four previously 
delayed values, form the six inputs for the critic network. 
The outputs of the critic are the derivatives of the J 
function with respect to the output states of the 
generators. 

The action network in figures 4 & 5 is also a three layer 
feedforward network with six inputs, a single hidden 
layer with ten neurons and a single output. The inputs 
are the generator’s actual speed and actual terminal 
voltage deviations, dw and AV, respectively. Each of 
these inputs is time delayed by 10 ms and, together with 
four previously delayed values, form the six inputs. The 
output of the action network (neurocontroller), A(t) = 
[AV& 4 ,  the deviation in the field voltage, which 
augments the input to the generator’s exciter and the 
deviation in the power, which augments the input to the 
generator’s turbine. 

5 Simulation of the Neurocontrollers and Results 

The training procedure for the critic and action networks 
is similar to adaptive critic designs for SMIB [6]. It 
consists of two training cycles: the critic’s and the 
action’s. The critic’s adaptation is done initially with a 
pretrained action network, to ensure that the whole 
system, consisting of the ACD and the power system, 
remains stable. The action network is pretrained on a 
linearized model of the generator. The action is trained 
further while keeping the critic network parameters 
fixed. This process of training the critic and the action 
one after the other is repeated until an acceptable 
performance is achieved. The ANN model parameters 
are assumed to have converged globally during its offline 
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training [7] and, it is not adapted concurrently with the 
critic and action networks. 

A discount factor y of 0.5 and the utility function given 
in eq. (9) are used in the Bellman’s equation (eq. (2)) for 
the training of the critic network (eqs. (4)) and the action 
network (eq. (7)). Once the critic network’s and action 
network’s weights have converged, the action network 
(neurocontroller) is connected to the generator G1 (figure 
6). A similar procedure is carried out in developing G2’s 
neurocontroller. 

U(  t )  = [4AV(t) +4AV( t - I ) +  I6AV(t - 2 ) ]  2 
. (9) 

+ [0 .4Aw(t)+0.4Ao(t-I)+0.16Aw(t-  2)/’ 

At two different operating conditions and three different 
disturbances, the transient performance of the 
neurocontrollers are compared, with that of conventional 
controllers [ 121 (whose parameters are carefully tuned 
for the first set of the operating condition given in 
Appendix ). 

3% Step change in Vtl atfirst operating condition 
At the first operating condition (Appendix), a 3% step 
increase occurs in the desired terminal voltage of G1. 
Figures 7 and 8 show that the neurocontroller ensures no 
overshoot on the terminal voltage and provides superior 
speed deviation damping unlike with the AVR and 
governor combination. 

5% Step change in Vt2 at second operatingpoint 
At the second operating condition (Appendix), a 5% step 
increase occurs in the desired terminal voltage of G2. 
Figures 9 and 10 show that the neurocontroller again 
provides the best damping, which proves that the 
neurocontroller has leamed and adapted itself to the new 
operating condition. In fact, figure 10 shows signs of an 
inter-area mode starting up at about 4.5 seconds, and the 
neurocontroller is far more successful in damping this, 
than the conventional controllers. 

Three phase short circuit 
At the second operating condition (Appendix), a 100 ms 
short circuit occurs halfway between buses 3 and 4 
(figure 6). Figure 11 shows that the neurocontroller 
again has better damping on the speed deviation of G1 
and also on the terminal voltage (though not shown to 
conserve space). 

All these results show that at operating conditions 
different from the one at which the AVRs and governors 
were tuned, and for large disturbances, their performance 
has degraded. The neurocontrollers on the other hand 
have given excellent performance under all the 

conditions tested. Many more tests were done to confirm 
this. 

Figure 6: Multi-machine Power System with 
Neurocontrollers on Generators G1 and G2 

6 Conclusions 

A new method, based on derivative adaptive critics for 
for the design of neurocontrollers for generators in a 
multi-machine power system has been presented. All 
control variables are based on local measurements, thus, 
the control is decentralized. The results show that the 
neurocontrollers ensure a superior transient response 
throughout the system, for different disturbances and 
different operating conditions, compared to the 
conventional controllers, the AVRs and governors. 
Further studies on the practical implementation of these 
neurocontrollers on multiple generators on a laboratory 
system are currently in progress and preliminary results 
look encouraging. The success of the neurocontrollers 
are based on using deviation signals, and having a 
complete nonlinear model of the system. The use of such 
intelligent nonlinear controllers will allow power plants 
on the electric power grid to operate closer to their 
stability limits. 
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Time in seconds 

Figure 10: Terminal Voltage of Generator G2 for a 5% 
Step Change in its Desired Terminal Voltage 

Time in seconds 

Figure 10: Speed Deviation of Generator G2 for a 5% 
Step Change in its Desired Terminal Voltage 

Figure 7: Terminal Voltage of Generator G1 for a 3% 
Step Change in its Desired Terminal Voltage 

“0 1 2  3 4 5 6 7 8 
Time in seconds 

Figure 11 : Speed Deviation of Generator G 1 for a 
100 ms 3-Phase Short Circuit between bus 3 and 4 

8 Appendix 

Condition one Condition two 
G I  G2 G I  G2 

Time in seconds 

Figure 8: Speed Deviations of Generator GI for a 3% 
Step Change in its Desired Terminal Voltage 

P,(pu) 0.200 0.200 0.3000 0.300 
Q @U) -0.0216 -0.0218 -0.0493 -0.0341 
vt @U) 1 1 1 1 
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