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Abstract: In this paper, we introduce and demonstrate a novel optical fiber extrinsic Fabry-
Perot interferometer (EFPI) for tilt measurements with 20 nrad resolution. Compared with in-
line optical fiber inclinometers, an extrinsic sensing structure is used in the inclinometer 
reported herein. Our design greatly improves on the tilt angle resolution, the temperature 
stability, and the mechanical robustness of inclinometers with advanced designs. An EFPI 
cavity, which is formed between endfaces of a suspended rectangular mass block and a fixed 
optical fiber, is packaged inside a rectangular container box with an oscillation dampening 
mechanism. Importantly, the two reflectors of the EFPI sensor remain parallel while the 
cavity length of the EFPI sensor meters a change in tilt. According to the Fabry-Perot 
principle, the change in the cavity length can be determined, and the tilt angle of the 
inclinometer can be calculated. The sensor design and the measurement principle are 
discussed. An experiment based on measuring the tilt angle of a simply-supported 70-cm 
beam induced by a small load is presented to verify the resolution of our prototype 
inclinometer. The experimental results demonstrate significantly higher resolution (ca. 20 
nrad) compared to commercial devices. The temperature cross-talk of the inclinometer was 
also investigated in a separate experiment and found to be 0.0041 μrad /°C. Our inclinometer 
was also employed for monitoring the daily periodic variations in the tilt angle of a 
windowsill in a cement building caused by local temperature changes during a five-day 
period. The multi-day study demonstrated excellent stability and practicability for the novel 
device. The significant inclinometer improvements in differential tilt angle resolution, 
temperature compensation, and mechanical robustness also provide unique opportunities for 
investigating spatial-temporal modulations of gravitational fields. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
OCIS codes: (120.2230) Fabry-Perot; (060.2370) Fiber optics sensors; (000.2780) Gravity. 
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1. Introduction 
Inclinometers purposed for tilt measurements have attracted considerable attention for 
structural health monitoring and warning of impending natural disasters such as landslides 
and earthquakes [1–3]. The concept behind a typical inclinometer is that it measures 
variations in tilt angle generated by the behavior of a pendulum subject to a gravitational field 
[4]. 

For applications in harsh environments, modern inclinometers require high resolution and 
long measurement times to precisely and continuously measure variations in the tilt angle. 
Advanced applications require that inclinometers function in remote and unreachable places, 
requiring capabilities such as long-distance transmission without loss and interference from 
electromagnetic sources, resistance to hazardous environments, etc [5]. The conventional 
electrolytic inclinometers, which have been widely used in practical applications, suffer from 
large transmission loss and electromagnetic interferences. However, fiber optic sensors could 
be promising candidates for inclinometers owing to their unique advantages such as immunity 
to electromagnetic fields, low transmission losses, high accuracy, the possibility of remote 
operation, robustness, etc [6]. In recent years, a variety of fiber optic inclinometers have been 
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reported and developed [7–16]. The majority of the previously reported fiber optic 
inclinometers are fabricated in-line (i.e., the sensor is fabricated using a piece of optical 
fiber), and the principles of sensing are based on wavelength or intensity modulation of the 
input signal caused by bending the fiber optic sensors as demonstrated for fiber tapers [7–11], 
fiber Bragg gratings (FBG) [12–14], and photonic crystal fibers [15, 16]. 

Although the inclinometers mentioned above show great capability in tilt measurement, 
there exist several drawbacks. For fiber taper-based fiber optic inclinometers, using a fiber 
taper can greatly reduce the mechanical strength of the sensor structure, which is too delicate 
for harsh environment. For FBG-based fiber optic inclinometers, one or more FBGs will be 
attached to a vertical cantilever-based pendulum and used to measure the strain variations of 
the cantilever caused by gravity-induced bending [12–14]. However, FBG-based 
inclinometers suffer from unwanted mechanical frictions, rotations, and instabilities because 
the force transfer from the cantilever to the FBGs is complicated. Furthermore, the accuracy 
of the FBG-based inclinometers will diminish in a vibrationally-unstable environment 
because the cantilever will experience a mechanical resonance [14]. Also, the resolution for 
all the aforementioned fiber optic inclinometers is less than 0.001° (17.5 μrad) [7–16], which 
is not sufficient for some applications like gravitational field measurements that require 
extremely high-precision tilt measurements [17]. 

Compared to the in-line structure fiber optic sensors, the extrinsic optical fiber sensors can 
overcome the disadvantage of low mechanical strength because the optical fiber only served 
as a transceiver of light signals. Recently, Lee et al. reported a packaged fiber optic 
inclinometer using a moveable transmissive grating panel, reflective mirror, and optical fibers 
as transceivers [5]. Their reported inclinometer achieved a full-scale measurement range of ± 
90°. But, the fabrication process for the transmissive grating panel is complicated. 
Meanwhile, a widely used interferometric sensor, the extrinsic Fabry-Perot interferometer 
(EFPI), has the merit of displacement and strain measurements [18–24]. An EFPI is formed 
by the endface of an optical fiber and an external reflecting surface. The cavity length of the 
EFPI (i.e., the distance between the two reflecting surfaces) can be accurately measured from 
the reflection spectrum [18]. Therefore, with proper structure design and packaging, an 
inclinometer based on EFPI displacement measurements will be able to take advantage of 
high resolution, and it could be considered as a good candidate for tilt measurements. 

In this paper, we report a high resolution EFPI-based optical fiber inclinometer for tilt 
measurements. The reported inclinometer consists of an EFPI sensor packaged inside a 
rectangular metal container box. The sensor design and the measurement principles are 
discussed in Section II. An example application experiment based on measuring the tilt angle 
of a simply supported 70-cm beam, induced by small incremental loads (2.000g), is presented 
in Section III to verify the resolution of the novel inclinometer. Our results demonstrate a 
high resolution of 16.7 nrad. The novel inclinometer was also employed throughout five days 
to monitor the variations in the tilt angle of a windowsill caused by daily (cyclic) temperature 
changes. 

2. Sensor design and measurement principles 
A schematic diagram of a partial side view of the inclinometer is illustrated in Fig. 1(a). The 
EFPI sensor is fabricated and packaged in a rectangular metal container box. The EFPI sensor 
consists of two parts: the mass block part and the optical fiber module. The rectangular mass 
block is flexibly connected to the top plate of the rectangular container box by two stainless 
steel multi-strand ropes of the same length. The distance between two connection points on 
the mass block and the corresponding connection points on the top plate are identical. The 
four connection points are contained in a common plane, and the stainless steel multi-strand 
ropes are perpendicular to the horizontal plane of the inclinometer. As for the optical fiber 
module, a segment of the optical fiber is rigidly connected to the top plate of the rectangular 
box by a supporting rod. The supporting rod is perpendicular to the top plate, and the endface 
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of the optical fiber is precisely adjusted to be parallel with the adjacent end face of the mass 
block. Therefore, the endface of the optical fiber and the adjacent endface of the mass block 
form an EFPI sensor. A thin layer of gold was sputtered onto the endface of the mass block to 
increase the reflectivity. When the inclinometer is tilted at an angle θ the two supporting 
ropes will remain perpendicular to the virtual horizontal Earth’s ground plane as required by 
the Earth’s gravitational field. Synchronously, the supporting rod will be tilted with the 
inclinometer, and the angle between the supporting rod and the ropes is the tilt angle of the 
inclinometer as illustrated in Fig. 1(b). The mass block will remain parallel to the top plate 
because the four connection points define a parallelogram. As a result, the two reflectors of 
the EFPI sensor will remain parallel, but the distance between the two reflector surfaces will 
change. The change in the tilt angle of the inclinometer can be described as follow: 

 arcsin d
l

θ ∆ ∆ =  
 

 (1) 

where Δd is the change in the cavity length of the EFPI sensor and l specifies the lengths of 
the ropes. When the change in the tilt angle is small, Eq. (1) can be described as: 

 arcsin d d
l l

θ ∆ ∆ ∆ = ≈ 
 

 (2) 

Equation (2) shows that when the change in the tilt angle is small, the sensitivity of the 
inclinometer, which is defined as the ratio between the change in the cavity length and the 
corresponding change in the tilt angle (unit: nm/nrad), is uniquely determined by the rope 
length. Figure 1(c) is a partial schematic diagram of the inclinometer equipped with an 
oscillation dampening device. A cross paddle is connected to the bottom of the mass block, 
and it is immersed in a damping fluid. This arrangement can physically reduce oscillations 
from environment-induced vibrations and thereby increase the stability of the inclinometer. 
The oscillation reduction can also be achieved by a magnetic dampening device. A 
photograph of one prototype of the inclinometer is illustrated in Fig. 1(d). To reduce the 
temperature cross-sensitivity of the inclinometer, during the fabrication of our inclinometer, 
the container box was initially backflushed with helium gas and then evacuated. Furthermore, 
all of the rigid components of the inclinometer, including the mass block, the supporting rod, 
and the rectangular box package, are made of Invar whose coefficient of thermal expansion, 
αCTE1, is low (1.2 × 10−6/°C). As revealed in Fig. 1(a), when the temperature of the 
environment fluctuates, thermal expansions/contractions will affect the size of the mass 
block, the container box and the ropes; these size changes will cause variations of the EFPI 
cavity length. The three effects result in a temperature cross-talk for the cavity length 
measurement. However, the contributing effects from mass block and container box will 
partially or completely offset each other. The result of geometrical considerations and 
analyses indicate that the change in the EFPI cavity length caused by a change in temperature 
can be described as: 

 ( )1 2t CTE CTEd d l Tα θα∆ = + ∆  (3) 

where d is the initial cavity length of the EFPI; ΔT is the temperature change experienced by 
the inclinometer; θ is the tilt angle of the inclinometer to the perpendicular line and αCTE2 is 
the coefficient of thermal expansion of stainless steel. 
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Fig. 1. Schematic diagrams and photograph of novel inclinometer. (a) Partial schematic 
diagram of the inclinometer. A rectangular mass block is flexibly connected to the top plate of 
the rectangular metal container box by two ropes with the same length. An optical fiber is 
rigidly connected to the top plate of the container box using a supporting rod. The EFPI sensor 
is formed by the combined endface of the optical fiber and the adjacent endface of the mass 
block. The endface of the mass block is sputtered with gold to form a highly reflective mirror 
surface. (b) Partial schematic diagram of the inclinometer tilted to an angle θ. The two endface 
reflectors of the EFPI sensor always maintain a mutual parallel disposition. (c) Partial 
schematic diagram of the inclinometer including an oscillation dampening device. The mass 
block is connected to a cross paddle which is immersed into a damping fluid. (d) Photograph 
of a prototype inclinometer. The inclinometer is made of Invar to reduce the temperature cross-
sensitivity. 

As mentioned above, the endface of the optical fiber together with the adjacent reflective 
endface of the mass block form the EFPI sensor with a cavity length of d. The interference 
signal (I0) is given by 

 0 1 2 1 2
42 cos( )ndI I I I I π ϕ
λ

= + + +  (4) 

where I1 and I2 are the light intensities reflected from the endface of the optical fiber and the 
adjacent gold-sputtered mirror endface of the mass block, respectively; φ is the initial phase 
difference between the light waves reflected from the two reflectors; n is the refractive index 
of the cavity which is about 1 and λ is the wavelength of the incident light. When the 
variables inside the cosine function of Eq. (4) are equal to a multiple of 2π, a constructive 
interference results. In the wavelength spectrum of the interference signal, the space between 
two adjacent peaks, defined as the free spectrum range (FSR), can be expressed as: 

 
2

2
cFSR
d

λ
=  (5) 

where λc is the center wavelength of the interference spectrum. So, the cavity length can be 
demodulated by determining the FSR of the interference spectrum. When the inclinometer is 
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tilted, the cavity length of the EFPI will experience a change. The change in cavity length can 
be evaluated by: 

 
2

0 12
c FSR

d
FSR FSR
λ ∆

∆ =  (6) 

where FSR0 and FSR1 are the values of FSR before and after the tilt, respectively; and, ΔFSR 
is the difference between FSR0 and FSR1. If the mass block module tilts clockwise, the cavity 
length of the EFPI will decrease. And, if the mass block module tilts counterclockwise, the 
cavity length of the EFPI will increase. Hence, the sign of ΔFSR can be used to determine the 
direction of tilt. 

Concerning the demodulation principle described above, variations of the cavity length of 
the EFPI can be determined. It should be noted that no matter how great the tilt angle is, the 
endface of the optical fiber will always remain parallel to the adjacent reflective endface of 
the mass block. So, the tilt angle can be measured if the cavity length change is within a 
proper range (i.e., the cavity length of the EFPI is approximately within 0 to 1 mm). More 
significantly, the measurement range and sensitivity of the inclinometer can be adjusted by 
simply changing the lengths of the stainless steel multi-strand ropes, and adjusting the initial 
cavity length of the EFPI during the fabrication of the inclinometer. For example, if the 
lengths of the stainless steel multi-strand ropes are 1.000 cm and the initial cavity length of 
the EFPI is 500.000 μm, then the measurement range and sensitivity of the inclinometer are 
calculated to be ± 50 mrad and 0.01 nm/nrad (cavity length change/tilt angle change), 
respectively. This adjustability feature expands the capability of our inclinometer for different 
tilt measurement applications. 

3. Experimental results and discussions 
To verify the resolution of the prototype inclinometer, a verification experiment based on 
measuring the tilt angle of a simply-supported beam under external load was designed and 
tested. The schematic diagram of the test experiment setup is illustrated in Fig. 2(a). The 
beam is made of stainless steel. The size of the beam is 700.0 mm × 50.0 mm × 8.0 mm. The 
distance between each support point and the respective end of the beam is 100.0 mm, so the 
effective length of the beam is 500.0 mm. The inclinometer is placed at the same position as 
one of the support points. Several copper washers were placed on the beam at the center 
position to provide the necessary load to cause the beam to bend and, therefore, tilt the beam 
at both support points. To prevent the copper washers from moving, a cylindrical post was 
attached to the center of the beam and used to position and secure the copper washers. 

At the support points, very small tilt angles can be calculated using: 

 
2

16
sFl
EI

θ =  (7) 

where F is the load applied to the center of the beam; ls is the length between the two support 
points; E is Young’s modulus for the stainless steel beam material used in the experiment 
(about 200 GPa), and I is the moment of inertia. The test measurement setup for the 
inclinometer apparatus is illustrated in Fig. 2(b). A wavelength interrogator (Micron Optics 
SM125) which integrates a swept laser, a photodetector, and an optical fiber coupler was used 
as the source and demodulation device. The incident light was directed into the inclinometer 
then reflected back to the interrogator through the single-mode fiber. The reflected spectrum 
was obtained by sweeping the wavelength of the laser (from 1510 nm to 1590 nm) and 
recording the corresponding intensities of the reflected signals. A personal computer was 
connected to the SM125 to record and analyze the interference spectra using a LabVIEW 
program developed in our lab. Detailed descriptions of the measurement apparatus can be 
found in our recent work [21–24]. 
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Fig. 2. Experimental apparatus for verifying the inclinometer using a simply-supported beam. 
(a) Schematic cross-section diagram of the tilt angle verification experiment based on a 
simply-supported beam. The inclinometer is placed at the location of a support point. Copper 
washers were used to provide the load for tilting the beam. (b) A photograph of the 
experimental test setup and the inclinometer. Schematic diagram of the test measurement setup 
that is coupled to the inclinometer. A Micron Optics SM125 was used as the source and 
demodulation device. A personal computer was used to analyze the interference spectra. 

Figure 3(a) shows the interference spectrum of the EFPI based inclinometer without a 
load applied to the beam. The averaged FSR of the spectrum is 5.071 nm, corresponding to 
the initial EFPI cavity length of 236.871 µm. In our verification experiment, the cavity length 
was measured for 55 minutes. During the series of tilt experiments, a copper washer was 
placed on the post of the beam every five minutes, and every minute the interference 
spectrum was recorded. Hence, for each load, five interference spectra were recorded to 
calculate the cavity length of the EFPI sensor. The weight of each copper washer is 2.000 g. 
The lengths of the ropes were set to 6.000 cm in the prototype inclinometer and the dynamic 
range of the inclinometer was calculated to be ± 8.333 mrad. A silicone fluid with 500000 cSt 
was used as the damper fluid. The size for each paddle is 33 mm × 11 mm × 1 mm in the 
prototype inclinometer. According to Eq. (6), when a copper washer was placed on the center 
post of the beam, it would induce a tilt angle of magnitude 0.717 μrad to the beam at each 
support point. The total load ranged from 0 to 20.000 g, corresponding to a tilt angle range 
from 0 to 7.170 μrad. The verification results for the inclinometer are shown in Fig. 3(b). The 
left vertical axis represents the measured cavity length of the EFPI sensor, and the right 
vertical axis represents the measured tilt angle, which was calculated from Eq. (2). In Fig. 
3(b), 0.717 μrad steps increments of the tilt angle can be easily distinguished. The 
measurement setup based on the SM125 can achieve a resolution of 1.0 nm for the cavity 
length. Thus, the EFPI based inclinometer can achieve a measurement resolution of 16.7 nrad 
according to Eq. (2). Multiple measurements of the cavity length, and the corresponding tilt 
angle recorded when the applied load was 16.000 g are presented as an inset in Fig. 3(b). We 
calculated that the standard deviation of the tilt angle measurement uncertainty is 11.2 nrad. 
The measured variations are due to environmental perturbations such as temperature 
fluctuations, experimental setup vibrations, etc. The measured tilt angle as a function of 
applied theoretical tilt angle is shown in Fig. 3(c). The linear fit (red line) produced an R-
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square of 1.000, indicating an excellent correlation and linearity between the applied tilt angle 
and measured tilt angle. The slope and the intercept of the linear fit result reveal the 
difference between the applied tilt angle and measured tilt angle. The reason for the 
difference was that we use the angle calculated from Eq. (7) as the applied tilt angle, but the 
calculation was based on the assumptions that the tilt angle of our inclinometer was equal to 
the tilt angle of the beam at the support point, and the load was concentrated at the center of 
the beam. The error introduced by the mathematical approximation in Eq. (2) is much smaller 
than the deviation of the measured angle, which can be neglected. Importantly, the numerical 
value of the slope (near unity) for a linear fit to the data in Fig. 3(c) provides strong and 
independent evidence for the application of sound physics principles used in the design and 
operation of the inclinometer because the comparison is made between absolute tilt angles 
that are derived from independent and fundamentally different physics; one angle is derived 
from the deformation of a rigid beam and the other from the basic geometry considerations of 
a parallelogram-mediated gap. 
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y:Average calculated tilt angle
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Fig. 3. Experimental data for verifying the inclinometer using a simply-supported beam. (a) 
Interference spectrum of the EFPI-based inclinometer without a load applied to the beam. The 
spectrum was recorded from 1510 nm to 1590 nm. (b)The verification result of the EFPI-based 
inclinometer. The measured change in the cavity length and the calculated tilt angle are shown 
as a function of time. Every five minutes, the load was increased by 2.000 g, and every minute 
the interference spectrum was recorded. The inset shows the change in the cavity length and 
the measured tilt angle from 41 to 45 minutes. (c) The average calculated tilt angle correlated 
to the calculated applied tilt angle and a linear fit was the result. The equation for the linear fit 
is y = 1.03495 × x-0.00107, where y represents average calculated tilt angle and x represents 
calculated applied tilt angle. 
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The response of our prototype inclinometer to variations in temperature was investigated 
in a separate experiment. The experimental setup is illustrated in Fig. 4(a). The inclinometer 
was placed inside a temperature-controlled box. Each side of the box was filled with 
insulating foam. A cylindrical rod fused silica base was used at the bottom of the box, and the 
prototype inclinometer was fixed on the top of the base because the fused silica has a more 
uniform mechanical deformation thermal expansion effect than the insulation foam. It is very 
important to note that the inclinometer is suspended inside the oven by resting on a 
cylindrical rod of fused silica that is in direct contact with the floor of the laboratory and has 
no contact with the oven. Every hour, the temperature inside the box was increased by 10 °C. 
After 50 minutes of temperature stabilization, the interference signal was recorded ten times 
in 10 minutes. The total temperature range is from 0 to 50 °C. The experimental results are 
demonstrated in Figs. 4(b) and 4(c). 
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Fig. 4. Experimental setup and results for quantifying the effects of temperature on the 
inclinometer. Note that the inclinometer is suspended inside the oven by resting on a 
cylindrical rod of fused silica that is in direct contact with the floor of the laboratory and has 
no contact with the oven. (a) Experimental setup for testing the response of the prototype 
inclinometer to variations in temperature. The inclinometer was placed inside a temperature-
controlled box filling with insulating foam. The inclinometer was placed on a solid cylindrical 
rod base of fused silica positioned at the bottom of the box. (b) EFPI cavity length change 
derived from all of the recorded interference signals as a function of temperature. The 
temperature in the temperature-controlled box was increased from 0 to 50 °C with a step size 
of 10 °C. (c) Average equivalent tilt angle change as a function of temperature. The linear fit 
result is shown as a red line. The slope of the linear fit result indicates that the temperature 
cross-talk for tilt angle measurements is 0.0041 μrad/°C. 
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Figure 4(b) illustrates the changes in cavity length derived from all of the recorded 
interference signals recorded for the experiment and the corresponding equivalent tilt angles 
as a function of temperature. As shown in Fig. 4(b) the overall change in the cavity length has 
a positive correlation with temperature. The standard deviation of the corresponding tilt angle 
at a constant temperature was about 9.3 nrad, which nearly matches the value presented in the 
inset of Fig. 3(b). The average change in the cavity length converted to a tilt angle as a 
function of temperature is illustrated in Fig. 4(c). The slope of the linear fit result indicates 
that the temperature cross-talk for the cavity length measurement is 0.258 nm/°C, 
corresponding to a 0.0041 μrad /°C change in tilt angle according to Eq. (2). The measured 
temperature cross-talk result matches well with the theoretical result, which is calculated to be 
0.279 nm/°C (or 0.0044 μrad/°C) according to Eq. (3) using the initial cavity length of 
232.667 μm. The influence of the temperature cross-talk is small, and it can be limited by 
recording the temperature data for compensation or using a proper thermal insulation device. 
Furthermore, a combination of the inclinometer design and a judicious choice of structural 
materials for the top plate and the mass block (see Fig. 1(a)) will reduce the temperature 
cross-talk to a negligible value. For example, a thin layer of metal with a larger coefficient of 
thermal expansion than Invar, like copper, can be electroplated on the side of the mass block 
before the gold sputtering process. In this way, the temperature cross-talk sensitivity of the 
inclinometer can be further reduced. 

 

Fig. 5. A real-world application for the use of the reported inclinometer. (a) The experimental 
setup for monitoring variations in the tilt angle of a windowsill caused by periodic changes in 
the incident radiation from the sun. The inclinometer was placed on a marble windowsill, and 
it was sealed in a foam box, which kept the temperature inside constant and reduced the 
influence of temperature on the inclinometer. The window is facing south. (b) The measured 
tilt angle of a windowsill and local temperature change as a function of time during a five-day 
measurement period (from 8:00 AM on March 8th, 2017 to 8:00 AM on March 13th, 2017). 
An interference spectrum was recorded every ten minutes, and the cavity length was measured 
to calculate the tilt angle. The measured tilt angle and the published local area temperature 
curve follow a similar trend, showing that they are correlated. Five peaks and five valleys can 
be observed in both curves, corresponding approximately to 2 PM and 3 AM every day, 
respectively. 

To verify the practicability of our prototype inclinometer, an experiment was conducted 
for monitoring variations in the tilt angle of a windowsill caused by periodic temperature 
changes. The experimental setup is illustrated in Fig. 5(a). The inclinometer was placed on a 
marble windowsill inside a room, and it was sealed in a foam box, which kept the inside 
temperature constant and reduced the temperature influences on the inclinometer. The 
window is facing south. The interference signal of the EFPI sensor was recorded every ten 
minutes during a five-day period to calculate the tilt angle as a function of time (8:00 AM 
March 8th, 2017 – 8:00 AM March 13th, 2017). 
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Figure 5(b) shows the experimental results for monitoring variations in the tilt angle of the 
windowsill and the local temperature during five days versus the experiment time. The local 
area temperature data was obtained from [25]. As shown in Fig. 5(b), the measured tilt angle 
and temperature curves map similar patterns, showing a strong correlation. Five peaks and 
five valleys can be observed in both plots presented in Fig. 5(b). The corresponding times for 
the peaks were similar, approximately 2 PM each day during the five days, while the 
corresponding times for the valleys occurred at approximately 3 AM each day during the five 
days. The results show that the tilt angles of the windowsill caused by temperature changes 
reached maxima in the afternoons. Interestingly, the passage of clouds during the day was 
also noticed by measurable changes in the tilt angle of the windowsill because the sunlight 
was blocked, which resulted in small temperature changes of the building and concomitant 
deformation in the building structure. This experiment demonstrates that our inclinometer 
shows high resolution and excellent stability. 

4. Conclusion 
In this paper, we report and demonstrate an EFPI-based fiber optic inclinometer for tilt 
measurements with high-resolution capability, 20 nrad, a resolution that is much higher than 
the resolution capabilities reported for all of the previously published fiber optic 
inclinometers and commercially available inclinometers. Compared to in-line fiber optic 
inclinometers, the extrinsic sensing motif was used in our prototype inclinometer. Our 
inclinometer consists of an EFPI-based sensor packaged inside a rectangular container box. A 
rectangular mass block is flexibly connected to the top plate of the rectangular container box 
by two stainless steel multi-strand ropes of the same lengths. An optical fiber is rigidly 
connected to the top plate of the rectangular container box by a supporting rod. Therefore, the 
endface of the optical fiber and the adjacent mirror endface of the mass block serve as the two 
reflectors of an EFPI sensor. To reduce the effects of oscillations, the rectangular mass block 
is connected to a cross paddle, which is immersed in a damping fluid. After tilting, the two 
endface reflectors of the EFPI sensor will remain parallel while the cavity length of the EFPI 
sensor will experience a change. According to the Fabry-Perot principle, the change in the 
cavity length can be determined, and the tilt angle of the inclinometer can be calculated. The 
sensor design and the measurement principles are discussed. An experiment based on 
measuring the tilt angle of a simply-supported beam induced by a small load is presented to 
verify the resolution of the prototype inclinometer, demonstrating high resolution. The 
temperature cross-talk for tilt angle measurements is 0.0041 μrad /°C, which is small 
compared with the resolution of the inclinometer. The prototype inclinometer was also used 
for monitoring variations in the tilt angle of a windowsill caused by periodic changes in the 
incident radiation from the sun during a five-day period, and it demonstrated excellent 
robustness, stability, and practicality. The sensitivity and dynamic range of the inclinometer 
can be flexibly configured by simply changing the length of the rope. The resolution of 20 
nrad that we achieved with our inclinometer provides opportunities to use the novel device for 
investigating subtle distortions in the gravitational field caused by distant planets, or for 
monitoring and forecasting distortions in the earth’s mantle, which lead to natural disasters 
like earthquakes. 
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