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Abstract—Power system stabilizers are widely used to damp 

out the low frequency oscillations in power systems. In power 
system control literature, there is a lack of stability analysis for 
proposed controller designs. This paper proposes a Neural 
Network (NN) based stabilizing controller design based on a 
sixth order single machine infinite bus power system model. 
The NN is used to compensate the complex nonlinear dynamics 
of power system. To speed up the learning process, an adaptive 
signal is introduced to the NN’s weights updating rule. The NN 
can be directly used online without offline training process. 
Magnitude constraint of the activators is modeled as saturation 
nonlinearities and is included in the stability analysis. The 
proposed controller design is compared with Conventional 
Power System Stabilizers whose parameters are optimized by 
Particle Swarm Optimization. Simulation results demonstrate 
the effectiveness of the proposed controller design. 

I. INTRODUCTION 

N power systems, changes of operating conditions will 
result in small-magnitude low-frequency oscillations that 

may persist for long periods of time. In some cases, the 
oscillations will limit the power transfer capability. The 
issue of power system stabilizing control has received a lot 
of attention since 1960's. Power system stabilizer (PSS) is 
designed to generate supplementary control signal in the 
excitation system to damp out low frequency oscillations.  

Earlier studies on stabilizing controller designs are based 
on linearized models. For example, the widely used 
conventional power system stabilizer (CPSS) is designed 
based on the theory of phase compensation and introduced 
as a lead-lag compensator. CPSS is simple in structure and 
easier to implement. But to make CPSS provide good 
damping over wide operating conditions, its parameters need 
to be fine tuned, which is a time-consuming job. To simplify 
this process, intelligent optimization algorithms have been 
applied to offline determining the "optimal parameters" of 
CPSS by optimizing an eigenvalue based cost function 
[1~4]. In the past decade, fuzzy logic and NN were applied 
to this area to adjust the parameters of CPSS online based on 
the knowledge gained from offline training. Since power 
systems are highly nonlinear systems, with configurations 
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and parameters changing with time, adaptive controller 
designs based on nonlinear models are more promising. 

In the past decades, nonlinear control and intelligent 
techniques (such as neural networks, fuzzy logic, etc.) have 
been applied to the designs of adaptive stabilizing 
controllers [5-7]. Most publications in power system control 
demonstrate the effectiveness of the proposed controller 
designs via simulations or even experiments. But there is 
still a lack of controller designs based on stability analyses. 
To address this problem, some controller designs based on 
feedback linearization have appeared [8-10]. It is well 
known that feedback linearization requires the system model 
to be known exactly. Thus, imprecise model will degrade the 
performance of this type of controller designs tremendously. 
Since it is very difficult to get precise models for complex 
systems, there are some limitations with this type of 
controller designs. To overcome this problem, different 
kinds of algorithm have been applied [11-16]. 

In order to further release the requirement of precise 
model, this paper proposes an adaptive neural network 
stabilizing controller based on a nonlinear sixth-order single 
machine power system model. Since complex nonlinearities 
are approximated with a NN, the requirement for precise 
system model is released. A randomly initialized neural 
network can be directly used online and tuned according to 
the weight updating rules, thus the preliminary offline 
training phase is unnecessary. In order to speed up NN’s 
learning process, an auxiliary adaptive signal is introduced 
to NN’s weight updating rule. The bounds on the filtered 
error and NN estimation error under actuator magnitude 
constraint are also given. Comparisons with a particle swarm 
optimization optimized CPSS under different operating 
conditions demonstrate the effectiveness of the proposed 
algorithm.  

Considering the complexities in power system model and 
operating conditions, there is still a lot of work to do in the 
field of stable power system controller design. Stability 
analysis during controller design is helpful to understand 
system behavior and can provide more guidance to the 
implementation process. Furthermore, the IEEE standard 
CPSS in this paper is simpler compared to practical 
sophisticate CPSS products, which may generate much 
better performance.  

II. BACKGROUND 

The following mathematical notions are required for 
system approximation using NNs and system stability 
analysis in the design of an adaptive controller.  
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A. Approximation Property of NN 
The commonly used property of NNs for control is its 

function approximation and adaptation capacities. Let f(x) 
be a smooth function from Rn → Rm, then it can be shown 

that, as long as x is restricted to  a compact set 
nRS ∈ , for 

any given positive number εN, there exist weights and 
thresholds such that 

)()()( xxWxf T εϕ +=  (1) 

where x is the input vector, φ(.) is the activation function, W 
is the weight matrix of the output layer and ε(x) is the 
approximation error that satisfies Nx εε ≤)( .  

For the above function approximation, φ(x) must form a 
basis [17]. For two layer neural networks, φ(x)=σ(VTx), 
where V is the weight matrix of the first layer and σ(x) is a 
sigmoid function. If V is fixed, then W becomes the only 
design parameter. It has been shown in [18] that φ(x) can 
form a basis if V is chosen randomly. The larger the number 
of the hidden layer neurons Nh, the smaller the 
approximation error ε(x).  

 

B. Stability of Systems 
To formulate the controller, the following stability notion 

is needed. Consider the nonlinear system given by 

)(
),(

xhy
uxfx

=
=&  (2) 

where x(t) is a state vector, u(t) is the input vector and y(t) is 
the output vector. The solution to (2) is uniformly ultimately 
bounded (UUB) if for any U, a compact subset of Rn, and all 

Uxtx ∈= 00 )(  there exists an ε > 0 and a number T (ε,x0) 
such that ||x(t)|| < ε for all t  ≥  t0 + T. 

III. MODEL OF SINGLE MACHINE POWER SYSTEM 

The dynamics of a single machine power system can be 
represented with a two-axis model [19] as in (3).  
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where, Id, Iq and Vt are subjected to the constraints of (4) and 
(5) respectively: 
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In above equations, Tm is the mechanical torque, Efd is the 
field voltage, Vr is the output of AVR, θ∠ tV  is the terminal 
voltage at the generator bus, Vref is the reference signal 
applied to the AVR, Re and Xep form the impedance of the 
transmission line between the generator and infinite bus, 

vssV θ∠  is the infinite bus voltage, and Vpss is the stabilizing 
control signal, δ is the rotor angle in radian, ω is the speed in 
radian per second, '

dE  and '
qE  are the internal transient 

voltage in per units.  
Define the speed deviation as 

se ωωω −=Δ= , then the 
control objective is to regulate e  to zero. In order to get the 
expression of the speed deviation with respect to the control 
signal, the error dynamics of the system is transformed into 
the following Brunovsky Canonical Form. 
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where 
1 2 3 4[ ] [ ]T T

se e e e e ω ω ω ω ω= = − & && &&& , u stands for 
the control signal, and d stands for a bounded disturbance 
with |d| ≤ dM, x  stands for δ, ω, Eq

', Efd, Vr. The definitions 
of k1 ~ k28, and )(xf  and )(xg can be found in [20]. 

IV. NN BASED STABILIZING CONTROLLER DESIGN 

A. Assumptions 

Assumption 1: )(xg  is bounded and the sign is known to 
be either positive or negative. Without losing generality, 

0)( >xg  is assumed. Furthermore, there exists two positive 
constants mg  and Mg , such that 0)( >>> mM gxgg .  

Assumption 2: The derivative of )(xg  is bounded, which 
means there exist a positive constant dMg , such that 

dMgxg ≤)(& . 

Considering the range of the variables in above equations, 
assumptions 1 and 2 hold for single machine power system. 
Simulation studies under different kinds of operating 
conditions confirm the above analysis. 

B. Neural Network Based Controller Design 
Define the filtered error r as 

er T ]1[Λ=   (8) 
where Λ=[λ1 λ2 λ3]T is an appropriately chosen coefficient 
vector such that e→0 as r→0, (i.e. s3+λ3s2+λ2s+λ1 is 
Hurwitz).  

Differentiating (8) and substituting (7) to get 
duxgxfer T +++Λ= )()(]0[&   (9) 
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According to the theory of feedback linearization, the 
ideal control signal can be chosen as 

}]0[)({
)(

1 exf
xg

rKu T
v Λ+−−=∗   (10) 

where Kv is a selected positive constant.  
According to NN approximation theory, the second part 

in (10) can be approximated using a NN, such that 
1ˆ ( , ) { ( ) [0 ] } ( , )
( )

T T
nW x e f x e f x e

g x
Φ ≈ − + Λ =   (11) 

To speed up the NN learning, an auxiliary signal R is 
introduced according to (12). 

23 reR += ρ   (12) 
where ρ is an intermediate signal that will be defined later.  

Define the desired control signal v (without magnitude 
constraint) as 

),(ˆ exWrKv T
v Φ+−=   (13) 

Then the actual control signal applied to the power system 
is given by 
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>
≤

=
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)( uvwhilevsignu
uvwhilev

u   (14) 

where maxu  is the maximum allowed control signal 
magnitude.  

The structure of the controller is shown in Fig. 1. The next 
step is to determine appropriate weight updating rules so 
that the closed-loop stability of control system can be 
guaranteed. The performance of the proposed adaptive 
neural network controller is described by Theorem I. 
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Fig. 1. Structure of the NN-based power system stabilizing controller 

 
Assume there is a constant weight W, that can 

approximate (11) with designated precision, such that 

ε+Λ+−=Φ exf
xg

exW TT ]0[)([
)(

1),(   (15) 

where the bounded approximation error ε satisfies |ε| ≤ εN.  
Assume W is bounded by Wmax, that is, ||W||≤Wmax. 

Rearrange (15) as an expression of )(xf  and substitute 
which into (9) to get 

dxgexWxgrxgKr T
v ++Φ−−= ε)(),(~)()(&   (16) 

where W~  is the weights approximation error and is defined 
as: 

WWW ˆ~
−=   (17) 

Theorem I: Assume the unknown disturbance d, and the 
weight approximation error ε are bounded by known 
constants such that Ndd ≤ , Nεε ≤  respectively. Select 
the weight updating rule as 

WrrRrW ˆ2ˆ 2 Γ−ΦΓ−ΦΓ−= α&   (18) 
where α, Γ>0 are the adaptation gains and the gain Kv 
satisfying 

22 m

dM
v g

g
K >   (19) 

and the auxiliary signal ρ is updating according to  

2

2

3ρ
ρ Mv gK

−=&   (20) 

then the filtered error r(t) and the weight estimation error W~  
are uniformly ultimately bounded.  

Proof: The proof is done in two cases. 
Case 1: vuuv =≤ ,max  

 Filtered Error Bound 
Choose the Lyapunov function V as [21] 
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Evaluating the first derivative of V to get 
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Substitute rrRRR &&& 23 2 += ρρ and the error dynamics (16) 
into (22), we get 
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Define 0
2 2 >−=

m

dM
v g

gKK . According to (23), we have 
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V&  is negative as long as 
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Therefore r is bounded according to  
2
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4max( , )
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 Weight Estimation Error Bound 
Choose the Lyapunov function candidate the same as (21), 

according to (24) and (25)  
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It can be seen that 0<V&  as long as 
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error bound is given by 
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Case 2: )(, maxmax vsignuuuv =>   

Define vuu −=Δ , with uΔ  satisfying 
maxuu Δ≤Δ . 

Substitute uvu Δ+= into (9), similarly, we can get 
uxgdxgexWxgrxgKr T

v Δ+++Φ−−= )()(),(~)()( ε&  (28) 
 
 Filtered Error Bound 
Choose the Lyapunov function candidate the same as 

(21), similar as (24) 
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Now the boundary for the filtered error becomes 
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 Weight Estimation Error Bound 
Similarly, we can get the bound for the weight estimation 

2
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g
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M
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Remark 1: The weights of the hidden layer are randomly 

initialized between 0 and 1 and held constant thereafter. The 

initial weights of the output layer are set to zero and then 
tuned online according to (18). There is no preliminary off-
line training phase. This is a significant improvement over 
other NN control techniques where one must find some 
initial stabilizing weights, which is generally difficult for 
complex nonlinear systems. 

Remark 2: The weight updating rule (18) can be seen as 
an unsupervised version of backpropagation in that the ideal 
plant output is not needed; instead the filtered error, which is 
easily measurable in the closed-loop system, is used in 
tuning NN weights. It should also be realized that this is a 
version of the backpropagation through time algorithm, as 
the weights are continuously tuned as a function of time. 

Remark 3: Although an auxiliary signal is introduced to 
speed up the learning of NN, the proposed control scheme 
cannot be seen as reinforcement learning or adaptive critic 
design based controller design. The main reason is that there 
is no optimization process with the auxiliary signal.  

V. OPTIMIZATION OF CPSS PARAMETERS USING PARTICLE 
SWARM OPTIMIZATION 

Fig. 2 shows the typical block diagram of CPSS 
recommended by IEEE [22]. Usually the parameters of the 
two lead lag compensator blocks are the same (T1= T3, T2= 
T4), thus the tunable parameters of CPSS are T1, T2, T5, T6, 
and Kpss. To design a CPSS with good damping 
performance, the above parameters need to be fine-tuned, 
which is a time-consuming job. To compare the proposed 
NN controller design with the best possible performance of 
CPSS, inspired by [4], Particle Swarm Optimization (PSO) is 
used in this paper to find a good CPSS design. 

sT
sT
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1

1
1

+
+

sT
sT

5

5

1+ sT61
1

+sT
sT

4

3

1
1

+
+)(sωΔ

PSSK
)(sVpss

 

Fig. 2. Structure of CPSS suggested by IEEE Std. 421.5 

PSO is one of the recent evolutionary computation techniques 
that is simple in concept, easy to implement and computational 
efficient [23]. The updating rules of PSO are given in (35). 

new 1 1 2 2( ) ( )old best old best old

new old new

V w V c rand P P c rand L P
P P V

= × + × × − + × × −

= +   
(32) 

where Vnew is the new velocity vector calculated for each 
particle, Vold is the velocity vector of the robot from the 
previous iteration, Pnew is the new position vector  calculated 
for each robot, Pold is the position vector of the robot from 
the previous iteration, W is the inertia weight constant, c1 
and c2 is the acceleration constant, and rand is the generates 
a uniform random value between [0 1]. 

For the optimization of CPSS, there are five parameters, 
thus the dimension of xi is 5. The range of the five 
parameters are set as follows, ]11.0[1 ∈T , ]1.001.0[2 ∈T , 

]101[5 ∈T , ]01.0100.0[6 ∈T , and ]1.010.0[∈PSSK . The 
population size is chosen to be 10. The values for the 
positive constant w, c1, and c2 are 0.8, 2, and 2 respectively. 
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To evaluate a particle (a vector of CPSS parameters), the 
system is simulated with the set of parameters for some kind 
of fault. Before the fault is applied, the system is running 
stable. For evaluation of dynamic performance, only the 
response after fault is considered. The sampling time is 0.01 
second. 500 samples data are collected for each candidate 
solutions, which means 5-second performance after the fault 
is applied. Then the cost is calculated from the simulation 
data according to (33). The details of the PSO optimization 
process can be found in [23].  

∑
=

Δ⋅=
n

i

iitt
1

)()(cos ω   (33) 

where n is the number of samples, t(i) is the time of the ith 
sample data, and 

sii ωωω −=Δ )()(  is the speed deviation at 
time t(i). The multiplication of t(i) and )(iωΔ  will give faster 

damping a lower cost. 
Table I shows the value of the parameters during 

simulation. 
TABLE I 

SYSTEM PARAMETERS 
H=3.01 Xd=1.3125 Xq=1.2578 Xd

’=0.1813 
Xq

’=0.25 Td0
’=5.89 Tq0

’=0.6 Te=0.314 
Ka=20 Ta=0.2 Re=0.025 Xep=0.085 

In the following section, the PSO-optimized CPSS is 
compared with the new NN controller design under three 
kinds of operating conditions, which are  

Case 1, a 200ms 3-phase short circuit fault at the infinite 
bus happens at 0.5s and cleared at 0.7s. 

Case 2, the operating point changes from Pg=0.5p.u. and 
Qg=0.1p.u. to Pg=0.7p.u. and Qg=0.2p.u. at 0.5s. 

Case 3, the impedance of the transmission line between the 
generator and infinite buses changes from Re=0.025 
and Xep=0.085 to Re=0.05 and Xep=0.17 at 0.5s. 

Table II shows the obtained optimal sets of CPSS 
parameters.  

TABLE II 
OPTIMAL CPSS PARAMETERS TUNED BY PSO 

 KPSS T1 T2 T5 T6 
Case 1 0.0403 0.7827 0.0651 5.7049 0.0069 
Case 2 0.0396 0.5226 0.0590 2.8453 0.0048 
Case 3 0.0418 0.5047 0.0592 6.9329 0.0024 

From Table II, it can be seen that the three sets of CPSS 
parameters optimized for three different operating 
conditions are different. Simulation studies also show that a 
CPSS optimized for some operating condition may not work 
well for another operating condition. This is the reason why 
the tuning of CPSS parameters is difficult. 

VI. SIMULATION RESULTS 

The neural network used has 10 inputs corresponding to 
the systems states, error dynamics and bias respectively. 

' '[ , , , , , , , , ,1]T
d q fd rE E E Vδ ω ω ω ω& && &&&  (34) 

The number of hidden neurons is empirically selected to 
be 10 based on controller performance. The activation 
function of the hidden layer is hyperbolic tangent function. 
Other parameters used are as follows: Kv=0.1, Λ=[10000, 
4000, 600, 40]T, umax=0.5, Γ=5, and α=5.  

The comparisons of simulation results for the three cases 
are shown in Figs 3~8. In these figure, the “magenta dotted 
line” represents the simulation results without stabilizing 
control – “no cpss”, the “blue dash-dot line” represents the 
simulation results for CPSS optimized only for one of the 
three cases – “cpss i”, and “red solid line” for the proposed 
NN based power system stabilizer – “nn pss”. 

A. Comparison of system response for Case 1 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

373

374

375

376

377

378

379

380

time in seconds

sp
ee

d 
de

vi
at

io
n 

in
 ra

d/
s

no pss
cpss 1
nn pss

 
Fig. 3. Speed deviation responses comparison for Case 1 
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Fig. 4. Terminal voltage responses comparison for Case 1 

B.  Comparison of system response for Case 2 
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Fig. 5. Speed deviation responses comparison for Case 2 
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Fig. 6. Terminal voltage responses comparison for Case 2 
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C. Comparison of system response for Case 3 
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Fig. 7. Speed deviation responses comparison for Case 3 
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Fig. 8. Terminal voltage responses comparison for Case 3 

As can be observed from the above Figs that the proposed 
NN controller always provides better damping. Furthermore, 
the proposed stabilizing controller does not have detrimental 
impact on the existing AVR. 

VII. CONCLUSION 

This paper proposed a neural network based stabilizing 
controller for single machine infinite bus power system. The 
weight updating rule does not require the persistently 
excitation condition and can guarantee the stability of the 
closed loop system when the control signal is subject to 
magnitude constraints. Comparisons with PSO optimized 
CPSSs under different operating conditions demonstrate the 
effectiveness of the proposed controller. The proposed 
control scheme can also be applied to the control of similar 
nonlinear systems.  
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