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Hamiltonian Theory Based Coordinated Nonlinear
Control of Generator Excitation and STATCOMs

Keyou Wang and Mariesa L. Crow
Electrical and Computer Engineering Department

Missouri University of Science & Technology
Rolla, MO 65409-0810, USA

Email: kw367@mst.edu, crow@mst.edu

Abstract— A coordinated controller for generator excitation
and STATCOMs is studied based on the Hamiltonian function
method. The Hamiltonian realization structure for multimachine
power systems including STATCOMs is developed leading to a
proposed coordinated scheme of excitation control and STAT-
COM control. Simulation results illustrate the effectiveness of
the proposed control strategy.

I. INTRODUCTION

Power oscillation damping is a critical issue for power
system dynamic security. These oscillations can occur due
to contingencies such as sudden faults or topology changes.
Traditionally, generator field excitation control has been used
to enhance transient stability. In recent years however, Flexible
AC Transmission Systems (FACTS) that utilize power elec-
tronics devices have offered an alternative means to mitigate
power system oscillations [1]. Typically, both generation exci-
tation and FACTS control has employed linear control methods
to improve transient performance. However, as power systems
become increasingly stressed, nonlinear behavior begins to
dominate their transient response. Therefore nonlinear con-
trollers are becoming increasingly attractive to provide better
oscillation damping.

In recent years, Hamiltonian system control has attracted
considerable attention [2]-[11]. In [2]-[3], the generalized port-
controlled hamiltonian (PCH) system has been proposed to
solve stabilization problems for general dynamics systems.
This introduction led to considerable attention in applying
generalized Hamiltonian theory into power system control and
has yeilded several promising results [4] -[11]. In [4]-[8],
the Hamiltonian system has been employed for generation
excitation control. In [9], the passivation controller design for
turbo-generators based on PCH has been proposed. In [10], the
port-controlled Hamiltonian model is revised for application to
a TCSC. In [11], a robust coordinated design is first proposed
with for generation excitation and STATCOM control based
on the generalized Hamiltonian theory, but without full con-
sideration of the STATCOM model and the network interface
between the STATCOM and the power system.

In this paper, we will extend the previous results and present
the development of coordinated controllers in a multimachine
power system with STATCOMs. First, the Hamiltonian real-
ization for a multimachine power system with STATCOMs is
developed. Secondly, the STATCOM model is extended to a

higher order state-space model as opposed for the first order
model used in [11]. Finally the excitation and STATCOM
control is developed to stabilize the power system.

II. PORT-CONTROLLED HAMILTONIAN SYSTEM

Consider the Hamiltonian system [2] described as

�̇� = [𝐽(𝑥)− 𝑅(𝑥)]
∂𝐻(𝑥)

∂𝑥
+ 𝑔(𝑥)𝑢 (1)

𝑦 = 𝑔𝑇 (𝑥)
∂𝐻(𝑥)

∂𝑥
(2)

where 𝑥𝑇 = [ 𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛 ]𝑇 ∈ 𝑅𝑛, 𝑢, 𝑦 ∈ 𝑅𝑠 denote con-
trol input and output. The matrix 𝐽(𝑥) is a skew-symmetric,
i.e. 𝐽(𝑥) = −𝐽𝑇 (𝑥) and 𝑅(𝑥) is a non-negative symmetric
matrix. In general, the Hamiltonian function 𝐻(𝑥) represents
the total stored energy of the system. If the Lyapunov stability
criterion is satisfied, then this function can also serve as a
Lyapunov function.

Port-controlled Hamiltonian systems with dissipation satisfy
the following the power balance equation:

�̇� = −∂𝑇𝐻

∂𝑥
(𝑥)𝑅(𝑥)

∂𝐻

∂𝑥
+ 𝑢𝑇 𝑦 (3)

where 𝑢𝑇 𝑦 is the power externally supplied to the system and
the first term on the right-hand side represents the energy
dissipation due to the resistive elements in the system. If
a system can be formulated in Hamiltonian form, then the
Hamiltonian function can guarantee local stability. However,
there is no general method to construct such a Hamiltonian
function, and this is often the most difficult and important
step in the controller development. References [5]-[11] have
explored the Hamiltonian function and established conditions
under which stability can satisfied in power systems. In this
paper, we focus on extending the a Hamiltonian realization to
power systems with STATCOMs.

III. HAMILTONIAN REALIZATION OF MULTI-MACHINE

MULTI-STATCOM POWER SYSTEMS

A. Power Network Equations

Consider the power network which is modeled by 𝑛 gen-
erators and 𝑚 STATCOMs. Assume that the bus admittance
matrix has been reduced to the generator internal buses with
the STATCOM ac terminal buses explicitly retained as shown



in Fig.1. In this case, the reduced bus admittance matrix
equation can be written as:

Power Network

EG1

EGn

IF1

IFm

Fig. 1. Bus admittance matrix depiction

[
IG
IF

]
=

[
YGG YGF

YFG YFF

] [
EG

VF

]
(4)

where EG ∈ 𝐶𝑛 is the generator bus voltage vector and VF ∈
𝐶𝑚 is the STATCOM terminal bus voltage vector. The currents
IG ∈ 𝐶𝑛 and IF ∈ 𝐶𝑚 are the generator injected current
vector and the STATCOM injected current vector respectively.
Note that EGi

= 𝐸′
𝑞𝑖

∕ 𝛿𝑖, 𝑖 = 1 ⋅ ⋅ ⋅𝑛 and IFj
= 𝑖𝑑𝑗

+𝑗𝑖𝑞𝑗 , 𝑗 =
1 ⋅ ⋅ ⋅𝑚. 𝐸′

𝑞 and 𝛿 are the state variables of the generator and
𝑖𝑑 and 𝑖𝑞 are the state variables of the STATCOM.

From the second equation of (4), the STATCOM terminal
bus voltage equals

VF = Y−1
FF(IF −YFGEG)

Substituting this expression into the first equation of (4) yields:

IG = YGEG +YFIF (5)

where

YG = GG + 𝑗BG = YGG −YGFY
−1
FFYFG

YF = GF + 𝑗BF = YGFY
−1
FF

B. Single-Axis Generator Model

The third-order single-axis generator model is given by

�̇�𝑖 = 𝜔𝑖 − 𝜔𝑠 (6)
𝑀𝑖

𝜔𝑠
�̇�𝑖 = 𝑃𝑚𝑖

− 𝑃𝑒𝑖 − 𝐷𝑖
𝜔𝑖 − 𝜔𝑠

𝜔𝑠
(7)

𝑇 ′
𝑑0𝑖�̇�

′
𝑞𝑖

= −𝐸′
𝑞𝑖 − 𝐼𝑑𝑖

(𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
) + 𝐸𝑠

𝑓𝑑𝑖
+ 𝑢𝑓𝑖 (8)

where

𝑃𝑒𝑖 = 𝑅𝑒 (EGi
IG

★) = 𝑃𝑒𝐺𝑖
+ 𝑃𝑒𝐹𝑖

(9)

𝐼𝑑𝑖
= 𝐼𝑚 (EGi

IG
★) /𝐸′

𝑞𝑖 = 𝐼𝑑𝐺𝑖
+ 𝐼𝑑𝐹𝑖

(10)

and 𝛿 is the rotor angle, 𝜔 is the rotor speed, and 𝐸′
𝑞 is

the quadrature-axis voltage behind transient reactance. The
subscript 𝑖 denotes the ith generator. The constant 𝜔𝑠 = 2𝜋𝑓𝑠
is the synchronous speed. The powers 𝑃𝑚 and 𝑃𝑒 are the
mechanical and electrical powers respectively, and constants
𝐷 and 𝑀 are the damping coefficient and inertia constant.
The reactances 𝑥𝑑 and 𝑥′

𝑑 are the direct axis reactance and

direct axis transient reactance respectively. 𝐸𝑓𝑑 and 𝐸𝑠
𝑓𝑑 are

the field voltage and the steady-state field voltage. The input
𝑢𝑓 is the field voltage control input, where 𝐸𝑓𝑑 = 𝐸𝑠

𝑓𝑑 + 𝑢𝑓 .
From equations (4), (9), and (10), the active powers injected

by the generators and STATCOMs are

𝑃𝑒𝐺𝑖
= 𝐸′

𝑞𝑖

∑𝑛
𝑗=1 𝐸′

𝑞𝑗

(
𝐺𝐺𝑖𝑗

cos 𝛿𝑖𝑗 + 𝐵𝐺𝑖𝑗
sin 𝛿𝑖𝑗

)

𝑃𝑒𝐹𝑖
= 𝐸′

𝑞𝑖

∑𝑚
𝑗=1

{(
𝐺𝐹𝑖𝑗

cos 𝛿𝑖 + 𝐵𝐹𝑖𝑗
sin 𝛿𝑖

)
𝑖𝑑𝑗

(𝐺𝐹𝑖𝑗
sin 𝛿𝑖 − 𝐵𝐹𝑖𝑗

cos 𝛿𝑖)𝑖𝑞𝑗
}

where 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗 .
The direct-axis currents injected by the generators and

STATCOMs are:

𝐼𝑑𝐺𝑖
=

∑𝑛
𝑗=1 𝐸′

𝑞𝑗

(
𝐺𝐺𝑖𝑗

sin 𝛿𝑖𝑗 − 𝐵𝐺𝑖𝑗
cos 𝛿𝑖𝑗

)

𝐼𝑑𝐹𝑖
=

∑𝑚
𝑗=1

{(
𝐺𝐹𝑖𝑗

sin 𝛿𝑖 − 𝐵𝐹𝑖𝑗
cos 𝛿𝑖

)
𝑖𝑑𝑗

−(𝐺𝐹𝑖𝑗
cos 𝛿𝑖 + 𝐵𝐹𝑖𝑗

sin 𝛿𝑖)𝑖𝑞𝑗
}

C. The STATCOM model

The STATCOM equivalent circuit model is shown in Fig. 2.
The model of the 𝑗-th STATCOM in the 𝑑𝑞 reference frames
is given by:

𝑑

𝑑𝑡
𝑖𝑑𝑗

= −𝑎𝑗𝑖𝑑𝑗
+ 𝑏𝑗𝑖𝑞𝑗 + 𝑐𝑗(𝑢𝑑𝑗

− 𝑉𝑑𝑗
) (11)

𝑑

𝑑𝑡
𝑖𝑞𝑗 = −𝑎𝑗𝑖𝑞𝑗 − 𝑏𝑗𝑖𝑑𝑗

+ 𝑐𝑗(𝑢𝑞𝑗 − 𝑉𝑞𝑗 ) (12)

where 𝑎𝑗 =
𝜔𝑠𝑅𝑠𝑗

𝐿𝑠𝑗
, 𝑏𝑗 = 𝜔, 𝑐𝑗 =

𝜔𝑠

𝐿𝑠𝑖
𝑗 = 1 ⋅ ⋅ ⋅𝑚, and 𝑖𝑑𝑗

and

𝑖𝑞𝑗 are the injected 𝑑𝑞 STATCOM currents. The parameters
𝑅𝑠𝑗 and 𝐿𝑠𝑗 are the coupling transformer resistance and
inductance respectively. The STATCOM terminal bus voltage
is VFj

= 𝑉𝑑𝑖
+ 𝑗𝑉𝑞𝑗 . The 𝑢𝑑 and 𝑢𝑞 are the 𝑑𝑞 components

of the internal voltages EFj
of the STATCOM voltage source

converter (VSC).

VSC

VF EF

RS , LS

IF

Fig. 2. STATCOM Equivalent Circuit

D. The Hamiltonian function

A Hamiltonian function 𝐻(𝑥) can be given by:

𝐻(𝑥) =
6∑

𝑘=1

𝐻𝑘(𝑥) (13)



where

𝐻1(𝑥) =
1

2

𝑛∑
𝑖=1

𝑀𝑖

𝜔𝑠
(𝜔𝑖 − 𝜔𝑠)

2

𝐻2(𝑥) = −
𝑛∑

𝑖=1

𝑃 𝑠′
𝑚𝑖

(𝛿𝑖 − 𝛿𝑠𝑖 )

𝐻3(𝑥) = −1

2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

(𝐸′
𝑞𝑖𝐸

′
𝑞𝑗𝐵𝐺𝑖𝑗

cos 𝛿𝑖𝑗

−𝐸′
𝑞𝑖𝐸

′
𝑞𝑗𝐵𝐺𝑖𝑗

cos 𝛿𝑖𝑗 ∣𝑠)

𝐻4(𝑥) =
1

2

𝑛∑
𝑖=1

1

𝑥𝑑𝑖
− 𝑥′

𝑑𝑖

(𝐸′
𝑞𝑖 − 𝐸𝑠′

𝑓𝑑𝑖)
2

𝐻5(𝑥) = −
𝑛∑

𝑖=1

𝑚∑
𝑗=1

{
𝐸′

𝑞𝑖𝐵𝐹𝑖𝑗
(cos 𝛿𝑖𝑖𝑑𝑗

+ sin 𝛿𝑖𝑖𝑞𝑗 )

−𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

(cos 𝛿𝑖𝑖𝑑𝑗
+ sin 𝛿𝑖𝑖𝑞𝑗 )∣𝑠

}

𝐻6(𝑥) =
1

2

𝑚∑
𝑗=1

{
(𝑖𝑑𝑗

− 𝑖𝑠𝑑𝑗
)2 + (𝑖𝑞𝑗 − 𝑖𝑠𝑞𝑗 )

2
}

where 𝐻1 denotes the rotating kinetic energy, 𝐻2 − 𝐻6 are
terms of the potential energy. The superscript 𝑠 denotes the
value at the equilibrium point. Let the equilibrium point be
expressed as ( 𝛿𝑠𝑖 , 𝜔𝑠

𝑖 , 𝐸′𝑠
𝑞𝑖) for the generators and ( 𝑖𝑠𝑑𝑖

, 𝑖𝑠𝑞𝑖)
for the STATCOMs. Then,

𝑃 𝑠
𝑚𝑖

= 𝑃 𝑠′
𝑚𝑖

+ 𝑃 𝑠′′
𝑚𝑖

= 𝑃 𝑠
𝑒𝑖 (14)

𝐸𝑠
𝑓𝑑𝑖

= 𝐸𝑠′
𝑓𝑑𝑖

+ 𝐸𝑠′′
𝑓𝑑𝑖

= 𝐸′𝑠
𝑞𝑖 + 𝐼𝑠𝑑𝑖

(𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
) (15)

where

𝑃 𝑠′
𝑚𝑖

= 𝐸′𝑠
𝑞𝑖

𝑛∑
𝑗=1

𝐸′𝑠
𝑞𝑗𝐵𝐺𝑖𝑗

sin 𝛿𝑠𝑖𝑗

+𝐸′𝑠
𝑞𝑖

𝑛∑
𝑗=1

𝐵𝐹𝑖𝑗
(sin 𝛿𝑠𝑖 𝑖

𝑠
𝑑𝑗

− cos 𝛿𝑠𝑖 𝑖
𝑠
𝑞𝑗 )

𝑃 𝑠′′
𝑚𝑖

= 𝐸′𝑠
𝑞𝑖

𝑛∑
𝑗=1

𝐸′𝑠
𝑞𝑗𝐺𝐺𝑖𝑗

cos 𝛿𝑠𝑖𝑗

+𝐸′𝑠
𝑞𝑖

𝑛∑
𝑗=1

𝐺𝐹𝑖𝑗
(cos 𝛿𝑠𝑖 𝑖

𝑠
𝑑𝑗

+ sin 𝛿𝑠𝑖 𝑖
𝑠
𝑞𝑗 )

and

𝐸𝑠′
𝑓𝑑𝑖

= 𝐸′𝑠
𝑞𝑖 − (𝑥𝑑𝑖

− 𝑥′
𝑑𝑖
)

𝑛∑
𝑗=1

𝐸′𝑠
𝑞𝑗𝐵𝐺𝑖𝑗

cos 𝛿𝑠𝑖𝑗

−(𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
)

𝑛∑
𝑗=1

𝐵𝐹𝑖𝑗
(cos 𝛿𝑠𝑖 𝑖

𝑠
𝑑𝑗

+ sin 𝛿𝑠𝑖 𝑖
𝑠
𝑞𝑗 )

𝐸𝑠′′
𝑓𝑑𝑖

= (𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
)

𝑛∑
𝑗=1

𝐸′𝑠
𝑞𝑗𝐺𝐺𝑖𝑗

sin 𝛿𝑠𝑖𝑗

+(𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
)

𝑛∑
𝑗=1

𝐵𝐹𝑖𝑗
(sin 𝛿𝑠𝑖 𝑖

𝑠
𝑑𝑗

− cos 𝛿𝑠𝑖 𝑖
𝑠
𝑞𝑗 )

Differentiating the function 𝐻(𝑥) results in

∂𝐻

∂𝛿𝑖
= −𝑃 𝑠′

𝑚𝑖
+ 𝐸′

𝑞𝑖

𝑛∑
𝑗=1

𝐸′
𝑞𝑗𝐵𝐺𝑖𝑗

sin 𝛿𝑖𝑗

+𝐸′
𝑞𝑖

𝑚∑
𝑗=1

𝐵𝐹𝑖𝑗
(sin 𝛿𝑖𝑖𝑑𝑗

− cos 𝛿𝑖𝑖𝑞𝑗 )

∂𝐻

∂𝜔𝑖
=

𝑀𝑖

𝜔𝑠
(𝜔𝑖 − 𝜔𝑠)

∂𝐻

∂𝐸′
𝑞𝑖

= −
𝑛∑

𝑗=1

𝐸′
𝑞𝑖𝐵𝐺𝑖𝑗

cos 𝛿𝑖𝑗 +
1

𝑥𝑑𝑖
− 𝑥′

𝑑𝑖

(𝐸′
𝑞𝑖 − 𝐸𝑠′

𝑓𝑑𝑖
)

−
𝑚∑
𝑗=1

𝐵𝐹𝑖𝑗
(cos 𝛿𝑖𝑖𝑑𝑗

+ sin 𝛿𝑖𝑖𝑞𝑗 )

∂𝐻

∂𝑖𝑑𝑗

= 𝑖𝑑𝑗
− 𝑖𝑠𝑑𝑗

−
𝑛∑

𝑖=1

𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

cos 𝛿𝑖

∂𝐻

∂𝑖𝑞𝑗
= 𝑖𝑞𝑗 − 𝑖𝑠𝑞𝑗 −

𝑛∑
𝑖=1

𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

sin 𝛿𝑖

Therefore, the generator model can be written as

�̇�𝑖 =
𝜔𝑠

𝑀𝑖

∂𝐻

∂𝜔𝑖
(16)

𝑀𝑖�̇�𝑖 = −𝜔𝑠
∂𝐻

∂𝛿𝑖
− 𝐷𝑖𝜔𝑠

𝑀𝑖

∂𝐻

∂𝜔𝑖

+𝜔𝑠

⎛
⎝𝑃 𝑠′′

𝑚𝑖
− 𝐸′

𝑞𝑖

𝑛∑
𝑗=1

𝐺𝐺𝑖𝑗
𝐸′

𝑞𝑗 cos 𝛿𝑖𝑗

−𝐸′
𝑞𝑖

𝑚∑
𝑗=1

𝐺𝐹𝑖𝑗
(cos 𝛿𝑖𝑖𝑑𝑗

+ sin 𝛿𝑖𝑖𝑞𝑗 )

⎞
⎠ (17)

𝑇 ′
𝑑0�̇�

′
𝑞𝑖

= −(𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
)

∂𝐻

∂𝐸′
𝑞𝑖

+ 𝑢𝑓𝑖

−(𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
)

𝑚∑
𝑗=1

𝐺𝐹𝑖𝑗
(sin 𝛿𝑖𝑖𝑑𝑗

− cos 𝛿𝑖𝑖𝑞𝑗 )

+𝐸𝑠′′
𝑓𝑑𝑖

− (𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
)

𝑛∑
𝑗=1

𝐸′
𝑞𝑖𝐺𝐺𝑖𝑗

sin 𝛿𝑖𝑗 (18)

and the STATCOM model is
𝑑

𝑑𝑡
𝑖𝑑𝑗

= −𝑎𝑗
∂𝐻

∂𝑖𝑑𝑗

+ 𝑏𝑗
∂𝐻

∂𝑖𝑞𝑗
+ 𝑐𝑗(𝑢𝑑𝑗

− 𝑉𝑑𝑗
)

−𝑎𝑗(𝑖
𝑠
𝑑𝑗

+

𝑛∑
𝑖=1

𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

cos 𝛿𝑖)

+𝑏𝑗(𝑖
𝑠
𝑞𝑗 +

𝑛∑
𝑖=1

𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

sin 𝛿𝑖) (19)

𝑑

𝑑𝑡
𝑖𝑞𝑗 = −𝑎𝑗

∂𝐻

∂𝑖𝑞𝑗
− 𝑏𝑗

∂𝐻

∂𝑖𝑑𝑗

+ 𝑐𝑗(𝑢𝑞𝑗 − 𝑉𝑞𝑗 )

−𝑎𝑗(𝑖
𝑠
𝑞𝑗 +

𝑛∑
𝑖=1

𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

sin 𝛿𝑖)

−𝑏𝑗(𝑖
𝑠
𝑑𝑗

+

𝑛∑
𝑖=1

𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

cos 𝛿𝑖) (20)



Let the virtual control input be defined as 𝑣𝑗 = [𝑣𝑑𝑗
𝑣𝑞𝑗 ]

𝑇

and let 𝑢𝑗 = [𝑢𝑑𝑗
𝑢𝑞𝑗 ]

𝑇 , then:

𝑣𝑗 = 𝑢𝑗 + 𝑤𝑗 (21)

where

𝑤𝑗 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑉𝑑𝑗
− 𝑎𝑗/𝑐𝑗(𝑖

𝑠
𝑑𝑗

+
∑𝑛

𝑖=1 𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

cos 𝛿𝑖)

+𝑏𝑗/𝑐𝑗(𝑖
𝑠
𝑞𝑗 +

∑𝑛
𝑖=1 𝐸′

𝑞𝑖𝐵𝐹𝑖𝑗
sin 𝛿𝑖)

−𝑉𝑞𝑗 − 𝑎𝑗/𝑐𝑗(𝑖
𝑠
𝑞𝑗 +

∑𝑛
𝑖=1 𝐸′

𝑞𝑖𝐵𝐹𝑖𝑗
sin 𝛿𝑖)

+𝑏𝑗/𝑐𝑗(𝑖
𝑠
𝑑𝑗

+
∑𝑛

𝑖=1 𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

cos 𝛿𝑖)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If equations (19)-(20) are rewritten in Hamiltonian formu-
lation using vector form, then:

�̇�𝑖 = [𝐽𝑖 − 𝑅𝑖]
∂𝐻

∂𝑥𝑖
+ 𝑔1𝑖𝑤1𝑖 + 𝑔2𝑖𝑢𝑓𝑖 (22)

�̇�𝑗 = [𝐽𝑗 − 𝑅𝑗 ]
∂𝐻

∂𝑥𝑗
+ 𝑔3𝑗𝑣𝑗 (23)

where 𝑥𝑖 = [ 𝛿𝑖 𝜔𝑖 𝐸′
𝑞𝑖 ]𝑇 , ∂𝐻

∂𝑥𝑖
= [ ∂𝐻

∂𝛿𝑖
∂𝐻
∂𝜔𝑖

∂𝐻
∂𝐸′

𝑞𝑖

]𝑇 , 𝑖 =

1 . . . 𝑛 and 𝑥𝑗 = [ 𝑖𝑑𝑗
𝑖𝑞𝑗 ]

𝑇 , ∂𝐻
∂𝑥𝑗

= [ ∂𝐻
∂𝑖𝑑𝑗

∂𝐻
∂𝑖𝑞𝑗

]𝑇 , 𝑗 = 1 . . .𝑚,
and

𝐽𝑖 =

⎡
⎣ 0 𝜔𝑠

𝑀𝑖
0

− 𝜔𝑠

𝑀𝑖
0 0

0 0 0

⎤
⎦ , 𝑅𝑖 =

⎡
⎢⎢⎣

0 0 0
0 𝐷𝑖𝜔𝑠

𝑀2
𝑖

0

0 0
𝑥𝑑𝑖

−𝑥′
𝑑𝑖

𝑇 ′
𝑑0𝑖

⎤
⎥⎥⎦

𝑔1𝑖 =

⎡
⎢⎣

0 0
𝜔𝑠

𝑀𝑖
0

0 1
𝑇 ′
𝑑0𝑖

⎤
⎥⎦ , 𝑔2𝑖 =

⎡
⎢⎣

0
0
1

𝑇 ′
𝑑0𝑖

⎤
⎥⎦

𝑤1𝑖 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
𝑃 𝑠′′
𝑚𝑖

− 𝐸′
𝑞𝑖

∑𝑛
𝑗=1 𝐸𝑞𝑗𝐺𝐺𝑖𝑗

cos 𝛿𝑖𝑗

−𝐸′
𝑞𝑖

∑𝑛
𝑗=1 𝐺𝐹𝑖𝑗

(cos 𝛿𝑖𝑖𝑑𝑗
+ sin 𝛿𝑖𝑖𝑞𝑗 )

}
{
𝐸𝑠′′

𝑓𝑑𝑖
− (𝑥𝑑𝑖

− 𝑥′
𝑑𝑖
)
∑𝑛

𝑗=1 𝐸𝑞𝑗𝐺𝐺𝑖𝑗
sin 𝛿𝑖𝑗

−(𝑥𝑑𝑖
− 𝑥′

𝑑𝑖
)
∑𝑚

𝑗=1 𝐺𝐹𝑖𝑗
(sin 𝛿𝑖𝑖𝑑𝑗

− cos 𝛿𝑖𝑖𝑞𝑗 )
}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐽𝑗 =

[
0 𝑏𝑗

−𝑏𝑗 0

]
, 𝑅𝑗 =

[ −𝑎𝑗 0
0 −𝑎𝑗

]
, 𝑔3𝑗 =

[
𝑐𝑗 0
0 𝑐𝑗

]

E. Control Law

If the power network is lossless, then 𝑤1𝑖 = [ 0, 0 ]𝑇 . The
output signal of the 𝑖th generator is given by

𝑦𝑖 = 𝑔𝑇2𝑖
∂𝐻

∂𝑥𝑖

=
1

𝑇 ′
𝑑0𝑖

⎛
⎝ 1

𝑥𝑑𝑖
− 𝑥′

𝑑𝑖

(
𝐸′

𝑞𝑖 − 𝐸𝑠′
𝑓𝑑𝑖

)−
𝑛∑

𝑗=1

𝐸′
𝑞𝑗𝐵𝐺𝑖𝑗

cos 𝛿𝑖𝑗

−
𝑛∑

𝑗=1

𝐵𝐹𝑖𝑗
(cos 𝛿𝑖𝑖𝑑𝑗

+ sin 𝛿𝑖𝑖𝑞𝑗 )

⎞
⎠ (24)

then the control law for excitation is

𝑢𝑓𝑖 = −𝑘𝑖𝑦𝑖 (25)

where 𝑘𝑖 is the feedback gain.
Similarly, the 𝑗th STATCOM has the output signal given by

𝑦𝑗 = 𝑔𝑇3𝑗
∂𝐻

∂𝑥𝑗

= 𝑐𝑗

[
𝑖𝑑𝑗

− 𝑖𝑠𝑑𝑗
−∑𝑛

𝑖=1 𝐸′
𝑞𝑖𝐵𝐹𝑖𝑗

cos 𝛿𝑖
𝑖𝑞𝑗 − 𝑖𝑠𝑞𝑗 −

∑𝑛
𝑖=1 𝐸′

𝑞𝑖𝐵𝐹𝑖𝑗
sin 𝛿𝑖

]
(26)

Then the virtual control input of STATCOM is given by

𝑣𝑗 = −
[

𝑘𝑗 0
0 𝑘𝑗

]
𝑦𝑗 (27)

where 𝑘𝑗 is feedback gain.
From (21), the control input for STATCOM is as follows

𝑢𝑗 = 𝑣𝑗 − 𝑤𝑗 (28)

IV. SIMULATION

A simple two-area system has been used to validate the
proposed controller. The diagram of the network is shown in
Fig. 3. This system has four generators located in two areas.
The generator parameters, network parameters and operating
condition can be found in [12]. The STATCOM has been
installed in the system on bus 8. The parameters of the
STATCOM is shown in Table I. The feedback gain for the
Hamiltonian control are chosen as 𝑘𝑖 = 0.01 and 𝑘𝑗 = 0.02.
A solid symmetrical fault has been applied on bus 9 of at
0.1 seconds and has been cleared at 0.2 seconds. Transient
simulations have been carried out using single-axis generator
models and the STATCOM model described in Section III.
Two cases have been considered for comparison. Case I is
uncontrolled and case II is the proposed control. Fig. 4 shows
the response of the rotor angles (𝛿𝑖1 = 𝛿𝑖 − 𝛿1, (𝑖 = 2 ⋅ ⋅ ⋅ 4)).
Fig. 5 shows the voltage response of STATCOM terminal bus.
As the figures show, the proposed controllers can not only
mitigate the oscillation of the rotor angles between area 1 and
area 2, but also exhibit good performance in maintaining the
bus voltage magnitude.
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Fig. 3. two-area system

TABLE I

STATCOM PARAMETERS

Symbol 𝑅𝑠 𝐿𝑠 𝜔𝑠

Unit p.u. p.u. rad/sec

Value 0.01 0.15 377
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Fig. 4. Generator Angle (uncontrolled: thin, proposed: bold)
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Fig. 5. STATCOM terminal bus voltage (uncontrolled: thin, proposed: bold)

V. CONCLUSION

A coordinated control scheme of generation excitation and
STATCOM has been proposed to stabilize the power system
based on the Hamiltonian function method. The Hamiltonian
realization structure for a power system with multiple ma-
chines and STATCOMs is developed. The illustrative example

shows the effectiveness of the proposed control. Further inves-
tigation will consider the effect of uncertain parameters and
unmodeled dynamics using robust control.

REFERENCES

[1] N. G. Hingorani, and L. Gyugyi, Understanding FACTS: Concepts and
Technology of Flexible AC Transmission Systems, Wiley-IEEE Press Dec.
1999.

[2] B. Maschke, R. Ortega. and A. J. van der Schaft, “Energy-Based Lya-
punov Functions for Forced Hamiltonian Systems with Dissipation,” IEEE
Trans. on Autom. and Control, Vol. 45, No. 8, Aug. 2000.

[3] D.Z. Cheng, Z.R. Xi, Q.Lu, and S. W. Mei, “Geometrical Structure and
Application of Generalized Controlled Hamiltonian Systems,” Sci. China
E, 30(4), pp. 341-355, 2000.

[4] Y. Wang, D. Cheng, and C. Li, etl. “Dissipative Hamiltonian Realization
and Energy-Based L2 Disturbance Attenuation Control of Multimachine
Power Systems,” IEEE Trans. Autom. Control, Vol. 48, No. 8, Aug. 2003.

[5] J. Hao, J. Wang, C.Chen, and L. Shi, “Nonlinear Excitation Control of
Multi-Machine Power Systems with Structure Preserving Models Based
on Hamiltonian System Theory, ” Electr. Power Syst. Res., Vol. 74, No.
3, Aug. 2005.

[6] J. Hao, C. Chen, L.Shi, and J. Wang, “Nonlinear Decentralized Distur-
bance Attenuation Excitation control for Power Systems with Nonlinear
Loads Based on the Hamiltonian theory ,” IEEE Trans. on Energy
Conversion, Vol. 22, No. 2, June 2007.

[7] Y. Liu, T. Chen. C. Li.etl, “Energy-based L2 Disturbance Attenuation
Excitation Control of Differential Algebraic Power Systems,” IEEE Trans.
on Circuits. and Syst. II, Vol. 55, No. 10, Oct. 2008.

[8] B. He, X. Zhang. and X. Zhao, “Transient Stabilization of Structure
Preserving Power System with Excitation Control via Energy-Shaping,”
Electr. Power Syst. Res., Vol. 29, No. 10, pp 822-830, Dec. 2007.

[9] Y.Z. Sun, M. Cao, T. L. Shen, and Y. H. Song, “Passivation Controller
Design for Turbo-Generators Based on Generalised Hamiltonian System
Theory,” IEE Proc.- Gener. Transm. Distrib., Vol. 149, No. 3, pp. 305-
309, May 2002.

[10] Y.Z. Sun, Q. J. Liu, Y. H. Song, and T. L. Shen, “Hamiltonian Modeling
and Nonlinear Disturbance Attenuation Control of TCSC for Improving
Power System Stability”, Proc. Inst. Elect. Eng. - Control Theory Appl.,
Vol. 149, No. 4, pp 278-284, Jul. 2002.

[11] Q. J. Liu, Y.Z. Sun,T. L. Shen, and Y. H. Song, “Adaptive Nonlinear
Coordinated Excitation and STATCOM Controller Based on Hamiltonian
Structure For Multi Machine Power System Stability Enhancement”,
Proc. Inst. Elect. Eng. - Control Theory Appl., Vol. 150, No. 3, pp 285-
294, May 2003.

[12] P. Kundur, Power System Stability and Control. New York: McGraw-
Hill, 1994.


	Hamiltonian Theory Based Coordinated Nonlinear Control of Generator Excitation and STATCOMs
	Recommended Citation

	untitled

