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Space-Time Fading Correlation Functions
of a 3-D MIMO Channel Model

Sang-Yick Leong, Yahong R. Zheng, and Chengshan Xiao
Dept. of ECE, University of Missouri, Columbia, MO 65211,USA

Abstract— Space-time correlation functions between the
links of MIMO Rayleigh fading channels are derived
using a new three-dimensional (3-D) cylinder scattering
model. Closed form, mathematically tractable formulas
are obtained for the space-time correlation functions for
general MIMO systems where the base station and mobile
station antennas may be arranged in 3-D space. It is
shown that the correlation functions computed by the 3-D
cylinder model are of significant difference than those of
the conventional 2-D Clarke’s isotropic scattering model
for vertically placed antennas. The general formulas of the
correlation functions includes the 2-D Clarke’s model and
the 3-D SIMO, MISO models as special cases.

I. INTRODUCTION

The Multiple-input multiple-output (MIMO)
communication technique has recently emerged as
a new paradigm for high data rate wireless com-
munications in rich multipath fading environments.
By effectively exploiting the multipath fadings in-
stead of mitigating them, the MIMO communication
system shows greatly improved channel capacity
potential far beyond that of traditional methods. It
has been reported [1], [2] that the MIMO capacity
scales linearly with the number of antennas under
some spatially uncorrelated, time quasi-static, and
frequency flat Rayleigh fading channels. However,
in practice, the optimum relative antenna separation
and placement may not be feasible due to space
limitations and other practical constraints. Conse-
quently, subchannels of a MIMO system are usually
correlated in both space and time. The correlation
between MIMO subchannels can substantially affect
the performances of the MIMO systems[3], [4], [5].
Furthermore, the correlation functions also provide
a critical tool and guidelines for system design
and performance analysis, such as the design of
space-time coding [6], the design of antenna arrays
[5], and the analysis of optimum combining and

equalization, etc. Therefore, further researches in
modeling the physical MIMO channels are essential
on providing accurate and in-depth understanding
and estimation of the MIMO channels.

There have been many studies on the MIMO
channel modeling and the space-time correlation of
the MIMO channels, see [4]–[18] and the references
therein. The most commonly used model is the
two-dimensional (2-D) Clarke’s isotropic scattering
model. This model assumes that all random scatter-
ers are uniformly reflected via a ring surrounding
the mobile station (MS) and no line-of-sight (LOS)
component is present between the MS and the base
station (BS). In the literature, there also exist a large
number of simulation models [9], [11], [12] based
on this 2-D isotropic scattering model.

Despite its wide acceptance in the area of wireless
communications, the 2-D isotropic scattering model
is argued by some 3-Dimensional models. A 3-D
cylinder model was first proposed by Aulin [14]
based on the fact that, in highly urbanized areas,
the locations of the random scatterers may be better
described by a cylinder rather than a ring. This
cylinder model has been improved and analyzed
for SISO, SIMO (single input multiple output),
and MISO (multiple input single output) channels
in [15], [16]. It was shown that the correlation
functions of the 3-D cylinder model is of significant
difference than those of the 2-D isotropic model for
vertically placed antennas. Experimental measure-
ments in [19] and [20] also shows good agreement
with the 3-D cylinder model. The cylinder model
includes the 2-D scattering model as a special case
by setting the maximum elevation angle (or (the
height) of the cylinder to zero.

In this paper, we extend the 3-D cylinder model
to frequency non-selective Rayleigh fading MIMO
channels. Closed form, mathematically tractable
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formulas are derived for the space-time correla-
tion functions between subchannels of the MIMO
channel where the BS and MS antennas may be
arranged in 3-D space. The effect of the mobility
(the Doppler) of the MS is also considered in our
derivation. As will be seen in Section III, the general
formulas includes the 2-D model and the SIMO,
MISO channels as special cases.

II. THE 3-D MIMO MODEL

Consider a downlink MIMO channel that em-
ploys n

BS
BS and n

MS
MS antennas. All antennas

are omni-directional without beamforming. The an-
tenna elements are numbered as 1 ≤ p ≤ q ≤ n

BS

and 1 ≤ l ≤ m ≤ n
MS

. The pth BS antenna
transmits a signal sp(t) and is received by the lth MS
antenna as rl(t) through a 3-D ”cylinder” scattering
environment, as shown in Fig. 1.
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Fig. 1. The Three-Dimensional MIMO Model

To aid our analysis, we define a Cartesian coor-
dinate system as follow: first define the X-Y plane
to contain the center circle of the cylinder, then
project the BS antennas p and q to the X-Y plane
as p̃ and q̃. Choose the center between p̃ and q̃
as the coordinate origin O and the Y axis as the
line connecting O and the center of the cylinder O′.
Denote Da,b as the distance between two points a
and b. Let the radius of the cylinder be R and the
distance between O and O′ be D. The elevation of
the BS antenna q is H = Dq,q̃ and the displacement
between the two BS antennas is V = Dp,p̃ − Dq,q̃.

Suppose there are N effective scatterers impinging
on the MS antennas from a random position S on
the cylinder. The elevation angle of S relative to
the cylinder center O′ is β and the azimuth angle
is θ. Other parameters are better presented in Fig. 2
which is the projection on the X-Y plane.
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Fig. 2. Projection of the 3-D MIMO model on the X-Y plane, where
ν is the direction of motion of the MS. The narrow angle of spread
is ∆ ≈ arcsin(R/D) ≈ R/D when D � R� max(Dp,q, Dl,m).

The baseband input-output relationship of the
MIMO system can be written as the following
matrix notation:

r(t) = H(t)s(t) + u(t), (1)

where the input vector s(t) = [s1(t), · · · , sn
BS

(t)]′,
the output vector r(t) = [r1(t), · · · , rn

MS
(t)]′, and

the additive white Gaussian noise (AWGN) u(t) =
[u1(t), · · · , un

MS
(t)]′, with the superscript (·)′ being

the transpose. Assume that the MIMO channel is
frequency nonselective, then the channel matrix
H(t) is an n

MS
×n

BS
matrix whose (l, p)th element

is the subchannel fading coefficient connecting the
antenna elements p and l, that is [H(t)]lp = hlp(t).

Without the line-of-sight component, the sub-
channel impulse response hlp(t) can be expressed
as

hlp(t) = lim
N→∞

1√
N

N∑
k=1

gk · exp

{
−j 2π

λ
(Dp,S +DS,l)

+ j2πfdt cos(ξ − (θ + σ)) + jφk

}
(2)

where gk and φk are, respectively, the amplitude
and random phase of the kth scatterer, fd is the
maximum Doppler frequency, and λ is the wave-
length of the carrier frequency. When the gain of
hlp(t) is normalized, we have N−1

∑N
k=1E [g2

k] = 1
as N → ∞, where E[·] is the expectation opera-
tor. According to the central limit theorem, when
N → ∞, the impulse response hlp(t) in (2) can be
modeled as a low pass zero mean complex Gaussian
process [21]. Thus its envelope |hlp(t)| is Rayleigh
distributed.
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III. THE NEW SPACE-TIME CORRELATION

FUNCTIONS

The space-time cross-correlation ρlp,mq(τ) be-
tween two subchannels hlp(t) and hmq(t) can be
written as

ρlp,mq (τ) = E[hlp(t)h∗
mq(t+ τ)]

=

∫ +βm

−βm

∫ 2π

0

pθ (θ)pβ (β) exp

{
−2πj

λ
[Dp,S −Dq,S

+Dl,S −Dm,S ] − j2πfdτ cos(ξ − (θ + σ))
}
dθdβ (3)

where p
θ
(θ) and p

β
(β) are the probability density

functions (PDF) of the random angles of arrival θ
and β, and βm is the maximum elevation angle. We
adopt the uniform distribution for p

θ
(θ) and the PDF

of p
β
(β) used in [15], [16]. That is

pθ (θ) =
1

2π
0 ≤ θ ≤ 2π. (4)

pβ (β) =
π

4|βm| cos

(
π

2

β

βm

)
|β| ≤ |βm| ≤ π

2
(5)

The PDF defined in (4) is a flexible function of
the degree of the urbanization. The parameter βm
is in the range of 10◦ to 20◦, according to the
experimental results reported in [14], [20]. When βm
is zero and p

β
(β) = 1, the cylinder model becomes

the commomly used 2-D one-ring scattering model.
Generally, the far field propagation assumption

is held in practical wireless MIMO communication
systems such that D � R � max(Dp,q, Dl,m).
Therefore we can approximate the distances in (3)
as

Dp,S −Dq,S ≈ Dp,q cos γ, (6)

Dl,S −Dm,S ≈ Dl,m cosψ. (7)

Apparently, it is necessary to express cos γ and
cosψ in terms of the random variables θ or β
and other measurable parameters. Following the
procedures in [15], [16], we can obtain

cosψ = (sinβ sin ρ− cosβ cos ρ cos(θ + σ)) (8)

Similarly, using the law of cosines and the small
angle approximations sinx ≈ x and cos x ≈ 1, we
can obtain

Dp,q cos γ =

[
η2Dp̃,q̃ cos(α− Ω) − (H −R tanβ)V√

η2
2 + (H −R tanβ)2

]
(9)

When V is small comparing to η2 or D, the eq.
(9) can be further simplified to

Dp,q cos γ ≈ Dp̃,q̃ cos(α− Ω)

≈ Dp̃,q̃(cosα+ ∆ sinα sin θ) (10)

Substitute eqns. (4)-(10) into (3) and use the
integral of exponential function [22]

∫ π

−π

exp(x sin z + y cos z)dz = 2πI0
(√

x2 + y2
)

(11)

where I0(jx) = J0(x), and I0(·) is the zero-th order
modified Bessel function of the first kind and J0(·)
the zero-th order Bessel function of the first kind,
we derive the cross-correlation function as (12) and
(13) at the top of next page, where the simplified
notations are a = 2πDp̃,q̃/λ, b = 2πDl,m/λ, c =
2πfdτ , and d = π/(2βm), e = 2πV∆/λ. The
second approximations in (12) and (13) are obtained
under the assumption that ∆ is very small.

The general formulas of the MIMO channel
correlation functions (12) and (13) can be further
simplified for the special cases of SIMO and MISO
channels.

CASE I: In MISO channels with multiple BS
antennas and one MS antenna, if V � D, H � D,
and fd = 0, then the correlation function between
the subchannels hlp(t) and hlq(t) is simplified from
(12) as

ρlp,lq(τ) ≈ exp

{−j2π
λ

Dp̃q̃ cosα

}
J0

(
2π

λ
Dp̃q̃∆ sinα

)
(14)

The closed-form equation (14) agrees with the
results in [4].

CASE II: In SIMO channels with one BS antenna
and multiple MS antennas, if the MS antennas are
on the same horizontal plane meaning that ρ = 0◦,
and fd = 0, then the correlation function between
the subchannels hlp(t) and hmp(t) is simplified as

ρlp,mp(τ) ≈
∫ βm

−βm

pβ(β)J0

(
2π

λ
Dl,m cosβ

)
dβ

≈ J0

(
2π

λ
Dl,m

)
(15)

The second approximation is derived under the
condition that βm is in the range of 10◦ to 20◦

and cos β ≈ 1. This result is in agreement with the
formulas in [15] and [4] derived from the 2-D scat-
tering model. It is apparent that if the MS antennas
are in the same horizontal plane and βm < 20◦, the
3-D fading model does not differ significantly from
the commonly used 2-D model.

CASE III: In SIMO channels with one BS antenna
and multiple MS antennas, if the MS antennas are
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When V � D,

ρlp,mq(τ) ≈ 1

2π

∫ βm

−βm

∫ 2π

0

pβ (β) · exp

{
−2πj

λ
[Dp̃,q̃(cosα+ ∆ sin Ω sin θ)

+Dl,m(sinβ sin ρ− cosβ cos ρ cos(θ + σ)] − 2πfdτ cos(ξ − (θ + σ))
}
dθdβ

≈ exp{−ja cosα}
∫ βm

−βm

pβ(β) exp{−jb sinβ sin ρ} · J0({(a∆ sinα)2 + (b cosβ cos ρ)2 + c2

+2a∆ sinα[b cosβ cos ρ sinσ + c sin(ξ − σ)] − 2bc cosβ cos ρ cos ξ} 1
2 )dβ

≈ cos(βmb sin ρ)

1 − ( b sin ρ
d

)2
exp{−ja cosα}

·J0({(a∆ sinα)2 + b cos ρ)2 + c2 + 2a∆ sinα[b cos ρ sinσ + c sin(ξ − σ)] − 2bc cos ρ cos ξ} 1
2 ) (12)

When V is not very small comparing to D or R,

ρlp,mq(τ) ≈ 1

2π

∫ βm

−βm

∫ 2π

0

pβ(β) · exp

{
−2πj

λ
[Dp̃,q̃(cosα+ ∆ sin Ω sin θ) − V |H −R tanβ|

η2

+Dl,m(sinβ sin ρ− cosβ cos ρ cos(θ + σ)] − 2πfdτ cos(ξ − (θ + σ))} dθdβ
≈ exp(−ja cosα)

{
a2

2(a2 − (b+ e)2)
exp

(
jeH

R

)

×
[
sin(aΛ) exp{−j(b+ e)Λ} − j(b+ e)

a
cos(aΛ) exp{−j(b+ e)Λ}

]Λ=H/R

Λ=−βm

+
a2

2(a2 − j(b− e)2)
exp

(
− jeH

R

)

×
[
sin(aΛ) exp{−j(b− e)Λ} − j(b− e)

a
cos(aΛ) exp{−j(b− e)Λ}

]Λ=βm

Λ=H/R

}

×J0({(a∆ sinα)2 + b cos ρ)2 + c2 + 2a∆ sinα[b cos ρ sinσ + c sin(ξ − σ)] − 2bc cos ρ cos ξ} 1
2 ) (13)

not placed on the same horizontal plane meaning
that ρ �= 0◦, we have

ρlp,mp(τ) ≈ cos(bβm sin ρ)

1 − ( b sin ρ
d

)2
(16)

The equation (16) shows that βm and ρ have big
impact on the cross-correlation function. The cross-
correlation function from the 3-D model will differ
significantly from those of the 2-D fading model. As
will be shown in Fig. 3, the vertically placed MS
antennas will not be completely correlated under
the 3-D fading thus they can provide significant
diversity gain.

IV. SIMULATION RESULTS

Extensive simulations have been carried out and
verified the derived formulas of the space-time cor-
relation functions of the 3-D cylinder model. Several
examples are presented here to show the effect of
the new 3-D model and its difference from the
conventional 2-D model. The effects of the antenna
spacing and arrangement are also demonstrated. In

all examples, we used the following parameters: the
distance between the BS and MS was D = 1200
meters, the radius of the cylinder was R = 100
meters, the elevation of the lower BS antenna was
H = 30 meters, and the angles α = 0, and σ = 0.
The angle spread was then ∆ = arcsin(R/D) ≈ 5◦.

The first example is a SIMO channel (with one
BS antenna and two MS antennas). The correlation
functions of two vertically placed antennas are plot-
ted in Fig. 3. As the maximum elevation angle βm
of the fading channel changes from 1◦ to 20◦, the
correlations between the two subchannels reduces
dramatically. For instance, at the MS antenna sepa-
ration DMS = Dm,l = 1.5λ, the correlation ρmp,lp =
0.3 when βm = 20◦; while ρmp,lp = 0.92 when
βm = 5◦. When β = 0, the 3-D cylinder model
becomes the conventional 2-D fading model and
we obtain ρmp,lp = 1 which suggests that the two
vertically placed antenna are completely correlated
and no diversity gain is available. However, the new
3-D fading model show that vertically placed BS
antennas can have small correlations and are able to
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V. CONCLUSION

The cross-correlation functions of MIMO fading
channels have been analyzed under the new 3-D
cylinder model. in contrast of the conventional 2-
D Clarke’s isotropic scattering model. Closed form
formulas have been derived for the correlation be-
tween two arbitrary subchannels – no restrictions
are imposed on the configurations of either BS or
MS antennas. Computer simulations have verified
our formula.
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