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Abstract  The time scales calculus, which includes the 
study of the nabla derivatives, is an emerging key topic due 
to many multidisciplinary applications.  We extend this 
calculus to Approximate Dynamic Programming. In 
particular, we investigate application of the nabla 
derivative, one of the fundamental dynamic derivatives of 
time scales.  We present a nabla-derivative based 
derivation and proof of the Hamilton-Jacobi-Bellman 
equation, the solution of which is the fundamental problem 
in the field of dynamic programming. By drawing together 
the calculus of time scales and the applied area of 
stochastic control via Approximate Dynamic 
Programming, we connect two major fields of research. 
 

Keywords approximate dynamic programming, time scales, 
reinforcement learning, Hamilton-Jacobi-Bellman equation  

I.  INTRODUCTION 
The mathematics of time scales seeks to bring together in an 
organized and rigorous way the discrete and continuous 
domains [29]. This calculus establishes a unified framework 
for analysis of both difference equations and differential 
equations. Such dynamic equations on time scales ([16],[17]) 
have been applied in population biology [11], quantum 
calculus [12], boundary value problems [20], real time 
communications networks [24],  intelligent robotic control 
[25], financial engineering [38], and switched linear circuits 
[33], among others. Due to its reconciliatory nature with 
respect to the discrete and the continuous, the time scales 
calculus admits a suite of dynamic derivatives.  The standard 
delta derivative most closely mirrors the derivative found in 
traditional analysis.  Other derivatives, such as the alpha, 
nabla, and diamond-alpha, are also widely studied ([1], [17], 
[37]).  This current work focuses on the nabla derivative. 

Dynamic programming [4] provides a method for 
generating optimal solutions for multi-stage decision 
processes.  The standard algorithm for dynamic programming 
involves a computationally intensive backwards induction 
update rule.  In [39], we extend this algorithm to general time 
scales using the delta derivative.  It is common to find, 
however, that industrial-scale applications prove intractable 
when attacked using this algorithm.  Therefore, in the face of 
impossible optimality, much research searches for suboptimal 

policies.  The field of Approximate Dynamic Programming 
(ADP) considers these approaches  ([21], [26]). 

ADP, also known as a branch of the more genral paradigm 
of reinforcement learning in various literature [21], seeks to 
solves the Hamilton-Jacobi-Bellman equation.  In discrete 
time, backwards induction is often used.  For continuous time 
domains the HJB equation must be consulted in its partial 
differential equation form.  In this paper, we extend the HJB 
equation to dynamic domains, those consisting of both discrete 
and contiuous areas.  Furthermore, in this pursuit we employ 
the use of the nabla derivative  

We assume familiarity with dynamic programming, and will 
briefly sketch our notation and assumptions here.  The 
requirements of our dynamic programming framework are as 
follows: a time scale  in which our decision points lie, 
controls ( , ), a stochastic disturbance ( ), states ( ) 
which evolve according to a rule ( , , , , ), 
and a cost/reward ( , , , , ) where the cost at 
a terminal decision point  is piecewise defined as ( ).  
A policy  is a set of state-control pairs for each point in  
such that each control is valid for both the state and time. We 
denote by  the tail of the policy  beginning with time step 
.  We also introduce a cost-to-go function given by 

 ( 0 , 0) = ( , , , , )0  (1) 

 
which measures the expected cost of a policy .  We assume 
these expected values are finite and well-defined. 

We limit ( ) to take on values in a countable set.  While 
this constraint prohibits the use of disturbances such as 
Gaussian noise or Brownian motion it does permit models 
which can find useful application and is not a case of 
mathematicizing an approach into obscurity. For example, the 
representation of state-space systems in Markov decision 
processes [36] gives the ( )  the form of transition 
probabilities ( , , )  which indicate the probability the 
system evolves from state  to state  in response to control 
signal .  Such ( ) are countable. 
     We consider the following state-space dynamical system 
defined on a time scale  : 
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 = , , , ,  (2) 
 
where t  
minimizes the cost-to-go function 
optimal policy and denote the optimal cost-to-go as 0 , 0 = min (  0 , 0) , where the minimum is 
considered over all policies.   
     ciple of Optimality aids in the solution to the 
optimization problem.  This principle can be framed in the 
following way.  Let  be an optimal policy.  Then the optimal 
policy for the tail problem starting at time n, which is to 
minimize  
 
 
 ( , , , , ) , (3) 

 
is equal to the portion of which overlaps .   
      The dynamic programming algorithm, a form of 
backwards induction, involves stochastic optimization of 
control selection starting from the terminal time point .  
Beginning with setting , = ( ), the algorithm 
proceeds via the following update rule:  
 , = min , , , ,+ , ( , , , ,  
 
for t  .  This rule says that the cost-to-go of the current 
state  under a control ,  equals the expected value 
of the immediate cost  , , , ,  plus the 
future costs  , ( , , , , .  Recall 
that   and the use of 
this forward-jump operator constitutes one of the key tools 
injecting richness into the unification of discrete and 
continuous domains. 
      It is our task in this paper to move beyond this dynamic 
programming algorithm and to consider the time scales 
extension via nabla derivatives of the full continuous version 
of the HJB partial differential equation.  As such, this paper 
adds to our results in [39] by extending the Hamilton-Jacobi-
Bellman equation to the case of the nabla dynamic derivative. 
     This section has introduced the dynamic programming 
paradigm and its relation to the time scales calculus.  Section 
II reviews this calculus, Section III contains our proof of the 
Hamilton-Jacobi-Bellman equation using nabla derivatives, 
and Section IV concludes the paper with perspectives on 
merging this increasingly relevant area of mathematics with 
computational control and decision theory. 

II. THE TIME SCALES CALCULUS 

A. Fundamentals 
       We typically think of functions defined on a domain that 
is either entirely discrete or continuous.  The study of time 
scales allows us to consider functions on dynamic domains 
which can be a mixture of the two. As such, we discuss 

dynamic equation in a general sense rather than specifying 
difference or differential equations. 
     A generalized time scale ( , )  is such that  is 
nonempty and every Cauchy sequence in  converges to either 
a point within  or to a finite infimum or supremum of  and 

 is a function from  into .  Often in the time scales 
calculus we consider  to be any nonempty cosed subset of 
the real line and set  equal to the forward jump operator  
given by =  inf{ : > } .  However, we are not 
technically restricted to such domains in the general case. 
     In the nabla calculus we study time scales of the form ( , ), where  is the backwards jump operator defined by = sup{ : < } .  We can think of these jump 
operators  and  as allowing us to move through the time 
scale, with   returning = , then = = .  For a discrete time scale such as the integers =  then the jump operators give us elements = + 1 
and = 1 as we would expect.  These concepts begin 
to yield higher rewards when we consider time scales outside 
our routine mathematical experience. Consider, for example, 
the -time scale studed in the quantum calculus [32]: = 0  (where > 1 ).  The forward and backward jump 
operators are given by = +1  and = 1 , 
respectively.  We find the need to use the functions  and  
with such frequency that it is convenient to define two new 
symbols  and  as follows: = ( ) and =( ). 
     Also associated with each time scale is a graniness function 

which measures the uniformity of the domain.  For 
continuous domains the graininess is = 0  and for the 
integers the graininess is = 1.  This graininess function is 
defined by =  . This function is highly non-
differentiable and plays an importat role in many formulas of 
the time scales calculus, defining as it does perhaps the most 
critical characteristic of the dynamic domain. 
     The notion of density is important when we allow both 
discrete and continuous intervals in our domain. Formally, this 
concept is defined as follows:  a point  is right-scattered 
if > , left-scattered if < , isolated if it is both 
right- and left-scattered, right-dense if < sup  and =, left-dense if > inf  and =  , and, finally, if  is both 
right- and left- dense then we say simply that  is dense. 
 

B. The Time Scales Calculus of a Single Variable 
     The usual derivative of the time scales calculus is defined 
as follows.  Let :  be a function.  Then the delta 
derivative ( )  of f at a point , where  coincides 
with  except at a left-scattered maximum, if one should exist, 
is defined to be the number such that given > 0 there is a 
neighborhood  of  such that 
 
 [ ) ( )[ ]  
 
for all , where neighborhood is defined such that = , +  for some > 0.  Note that this follows the 
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classical definition of the derivative, with the traditional +  
increment replaced by the forward jump operator ( ).  This 
sort of translation is a common theme in the calculus of time 
scales. The delta derivative ( ) becomes ( ) when =  
and becomes the standard difference operator on = . 
     This derivative is a forward measure.  Our results in [39] 
deal with the Hamilton-Jacobi-Bellman equaion and dynamic 
programming using this derivative. Here our attention is drawn 
to the backwards derivative, defined as follows.  Let :  
be a function.  Then the nabla derivative ( ) of  at a point 
 is given by the number, provided it exists, such that given > 0 there exists a neighborhood  of  such that  

 [ ) ( ) ( )[ ]
 

 
for every . At left-scattered points this becomes the left 
difference operator found in the traditional study of difference 
equations 
       Along with derivatives we study anti-derivatives.  The 
Fundamental Theorem of Calculus is valid on time scales and 
takes a familiar form: 
 
 = ( ) (4) 

 
and for nabla derivatives we have 
 = ( ) (5) 

 
    We do not delve deeply into the theory of integration on 
time scales in this paper. Instead, the presentation of these 
formulas will suffice for our proof of the Hamilton-Jacobi-
Bellman equation in the nabla calculus.  For a thorough 
overview of integration theory on time scales the reader is 
directed to [14], [16], and [27].  
 Not all results from the traditional calculus can be 
proven to hold on time scales, however. One critical and 
glaring example is that the classical chain rule fails on general 
time scales.  Potzche [15] gives the most general version of 
this chain rule. It turns out that many results of standard 
analysis, including the Hamilton-Jacobi-Bellman equation, are 
dependent on the chain rule as conceived on continuous time 
scales.  Therefore, extending notions which apply to the 
movement of particles through space to areas such as an 

the development of new mathematical structures to 
accommodate the abstraction. 

C. The Time Scales Calculus of Multiple Variables 
     We use a definition of partial derivatives on time scales 
given by Jackson [31].  Let  1, 2, ,  be time scales, set =   1 ×  2 × ×  , and let :  be a function.  
Define the operators on  as = 1 , 2 , ,  
and = 1 , 2 , , .  Also define = 1 ×2 × × , ( ) = ( 1, 2 , , 1, , , , ) , 

( ) = ( 1, 2 , , 1, , , , )  and =( 1, 2 , , 1, , , , ).   
     The partial delta derivative of  at  with respect to  is 
the number , provided it exists, such that given any > 0 
there exists a neighborhood of   for > 0 such that  
 [ ] ( )[ ]  
 
for all , where neighborhood is defined such that = , +  . 
      Similarly, the partial nabla derivative of  at  with 
respect to  is the number  such that given > 0  there 
exists a neighborhood of   for > 0 such that 
 [ ] ( )[ ]  
 
We can speak of higher order partials in the normal way. We 
can even consider mixed nabla and delta partials.  Further 
details can be found in [15]. For our purposes we only need to 
consider the nabla case. 
     Fundamental to our proof of the Hamilton-Jacobi-Bellman 
equation in the nabla calculus will be the chain rule.  This 
chain rule is an extension of the one presented in [15].  Let 

, : , : , = , = , and , .  Assume = ( )  and =
.  If = ( , )  is -completely differentiable 

and  and  are differentiable, then 
 
 = ,+ ( ), . (7) 

 
For more details on partial derivatives on time scales, 
includingthe reader is directed to [2] and [15].   
 

I. NABLA DERIVATIVE FORMULATION 
     The Hamilton-Jacobi equation is a result of the calculus of 
variations and work extending this calculus to time scales is in 
its infancy [8].  These problems typically take the general form 
of minimizing the cost functional given by the following 
integral [10]: 
 
 = ( , , ) . (8) 

 
From this the usual Euler and Legendre conditions can be 
derived on time scales.  Our next result takes this a step further 
and proves the Hamilton-Jacobi equation for an alternate 
version, given by 
 0 , 0 = ( , )0 , (9) 

 of the above integral (8).  Since equation (9) is the common 
cost functional of dynamic programming the resulting 
equation is given the name Hamilton-Jacobi-Bellman.  In this 
way, the following theorem is a contribution to the 
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development of the calculus of variations on time scales as 
well as to ADP.  However, as we prove the HJB equation for a 
form other than that given by (8), there is still work to be done 
on Hamilton-Jacobi equations for more generalized cost 
functionals. 
     Consider now the system  
 
 = ( , ) (10) 
 
where  represents states and  is the control.  Let , : , and = .  The cost-to-go function : ×  is given by 
 
 0 , 0 = ( , )0  (11) 

where 0  is the initial decision point and ( , ) is the 
cost. Assume  is delta-differentiable and  is -completely 
delta differentiable.  Furthermore, require  to satisfy  
 
 = . (12) 
 
Then the HJB equation on time scales is given by 
 
 0 = min , , + ,+ x , ( ) ( , ) . (13) 

 
This is an equation that any optimal policy of our 
minimization problem must satisfy.  Since precious few 
industrial-scale applications admit an analytic solution of this 
equation, ADP is employed to develop approximation 
techniques for this purpose. The proof of this equation is our 
next theorem.   

 
Theorem: 

 Let ,  be a solution to equation (15) such that 
 

 0 = min , , + ,+ , ( ) ( , ) . (14) 

 
Assume the boundary condition , = ( )  and 0 =  0  and suppose ( , )  attains the minimum 
called for in equation (14) for all states and all time.  Let  
be the state trajectory, subject to the condition 0 = 0 , that  corresponds to applying the controls ( , ) at 
each decision point .   
 Then the function ( , ) is the optimal cost-to-go 
function ( , ) and the control ( , ) is optimal. 
 
Proof:  
 Let ,  be a control policy with state trajectory ( ).  Our goal is to show that the policy ( , ) achieves 
a cost equal to at most this arbitrary , which will mean 
that ( , )  is our optimal control.  We begin using 
equation (14) to give  
 

 
 0 , , + ,+ , ( ) ( , ). (15) 

 
Noting that, via (10), we have = ( , ), we can 
rewrite (15) as 
 
 0 , , + t ,+ , ( ) . (16) 

 
and, by using the chain rule we can rewrite as  
 
 0 , , + ( ). (17) 
 
Integrating over the time horizon yields 
 
 0 , ,0 + 0 ( ) . (18) 

 
Using the fundamental theorem (5) gives 
 0 , ,0 + , ( 0 , 0). 
 
Substituting in our boundary conditions , =( ) and 0 =  0  gives us 
 0 , ,0 + ( ) ( 0 , 0) 

 
which can be rewritten as 
 

0 , 0 , ,0 + . 
 
From our hypothesis, we assume the controls ( , ) and 
their corresponding state trajectory  minimize the value 
function , .   Using this information and the initial 
condition 0 =  0 , we can replace the inequality with 
equality in the case of these quantities: 
 

0 , 0 = , ,0 + . 
Combining with the previous equation, we have 
 , ,0 +

, ,0 + . 
 
This equation tells us that the cost of the policy ( , ) is 
less than or equal to the cost of any admissible policy , .  We conclude the policy ( , ) is optimal and 
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that, since ,  is arbitrary, we have , =( , ).  Therefore, any optimal policy must satisfy the 
HJB equation given by (14).  

 

II. CONCLUSION AND PERSPECTIVES  
     The calculus of time scales in general, and the nabla 
calculus studied in this paper in particular, is an increasingly 
relevant and emerging area of mathematics with wide-ranging 
opportunities for application.  We have established that the 
Hamilton-Jacobi-Bellman equation obtains using the nabla 
calculus.  This equation forms the foundation of Approximate 
Dynamic Programming, which is now extended to the nabla 
calculus as well. 
     Simulations and other computationally grounded research 
and modeling in time scales remains a promising  and open 
arena. Of particular utility is the Time Scales MatLab Toolbox 
from the Baylor University Time Scales Group [5].   Also of 
need are demonstrations of ADP-based controllers operating in 
a time scales framework in an applied and meaningful setting.  
Interesting here, too, would be examples of the distinctions 
among the classes of dynamic derivatives which populate the 
time scales calculus.   
   It is our position that while the study of time scales can be 
used in the development of  a theoretical unification of 
decision theory on domains which are both discrete and 
continuous in parts, it has at the same time the potential to be 
utilized far beyond such purposes.  We believe that there are 
important application areas where dealing simultaneously with 
discrete and continuous variables is critical ([42], [43]) and 
that the time scales calculus provides a natural and powerful 
framework for such exploration. 
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