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A Novel Method for Determination of Dielectric
Properties of Materials Using a Combined

Embedded Modulated Scattering and Near-Field
Microwave Techniques—Part II: Dielectric

Property Recalculation
Dana Hughes and Reza Zoughi, Senior Member, IEEE

Abstract—The use of combined embedded modulated scattering
technique and near-field microwave nondestructive testing tech-
niques is investigated as a novel method for evaluating the dielectric
properties of a material. The forward formulation for determining
the reflection coefficient at the aperture of a waveguide radiating
into a dielectric half-space in which a PIN diode-loaded dipole (i.e.,
modulated scattering technique probe) is embedded was presented
in Part I of this paper. Here, in Part II, the recalculation of the di-
electric properties, using the results of the forward model, is pre-
sented along with some associated experimental results.

Index Terms—Dielectric material characterization, embedded
sensors, microwave nondestructive testing, modulated scattering
technique.

I. INTRODUCTION

THE first part of this investigation formulated the forward
model for determining the reflection coefficient at the

aperture of a waveguide radiating into a generally lossy di-
electric material, in which a modulated scattering technique
(MST) probe is embedded [1]. This formulation was based
on calculating the near-field coupling between the waveguide
radiator and the MST probe, and comparisons between the
measured and calculated reflection coefficient values for an
MST probe in free-space and when embedded in fine sand were
used to verify the validity of this model.

For nondestructive testing and evaluation (NDT&E) applica-
tions, it is more practical to determine the dielectric properties
of a material from the measured (modulated) reflection coeffi-
cient. Thus, it is of practical importance to apply a root-solving
technique to the forward formulation in order to determine the
dielectric properties of the material in which an MST probe is
embedded. For this, a function minimization algorithm, such as
the downhill simplex method may be used, as described in this
paper.
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II. THE DOWNHILL SIMPLEX METHOD

The downhill simplex method is a multivariable function min-
imization algorithm, which, while it may not be the most effi-
cient of all routines, it provides for a method that is easily and
rapidly applied to a function [2], [3]. Unlike the conjugate gra-
dient method or Powell’s method, this method requires only the
direct calculation of the function to be solved for [3]. However,
the method is not as efficient in terms of the required number of
iterations as the aforementioned techniques.

The complete description of this method is given elsewhere
[2]. However, a brief description of it is presented here. In this
technique, the simplex represents a geometric figure consisting
of 1 vertices, where is the number of variables to be
solved for. In this investigation, the permittivity and loss factor
are the two variables to be solved for, thus the simplex is a figure
consisting of three vertices. Each vertex in the simplex contains
a set of data consisting of a set of variables to be solved for (i.e.,
permittivity and loss factor), and the corresponding solution to
the forward model using the values of the variables (i.e., the re-
calculated value of the reflection coefficient). The simplex rou-
tine then attempts to determine the permittivity and loss factor
that would recalculate the actual measured reflection coefficient.

The vertices of the initial simplex is either assigned or
guessed. During each subsequent iteration, the simplex is rede-
fined through a series of operations [3]. The simplex transverses
the region of every possible permittivities and loss factors, and
defines the vertices of the simplex to reduce the error between
the recalculated and actual reflection coefficients (i.e., the
magnitude of the difference between the two). When expressed
as this error, the goal of the algorithm is to move the simplex
“downhill” to the lowest point possible. The algorithm attempts
to move the simplex in this manner, through the following steps.

1) The high and low vertices are initially determined. The
high point represents the vertex whose recalculated reflec-
tion coefficient is furthest from the actual reflection coef-
ficient, while the low point represents the vertex whose
recalculated reflection coefficient is closest to the actual
solution.

0018-9456/$20.00 © 2005 IEEE
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2) The high point is reflected through the opposite face of
the simplex. Essentially, the high point attempts to move
downhill toward a lower point.

3) If the reflection operation produces a new low vertex, the
vertex is expanded again in this direction, in an attempt to
obtain a better result in this direction. This corresponds to
moving the simplex even further downhill.

4) If the reflection does not produce a better result, the orig-
inal high point is instead contracted toward the opposite
face. This occurs if the reflection operation moves the sim-
plex up an opposite hill.

5) In the event that the high vertex cannot be improved upon
by any of the above steps, the entire original simplex is
contracted around the low vertex. This is the same as
pulling the simplex around the best point, in an attempt
to move it down a sharp decline.

This method may be customized or optimized by changing
the coefficients for the reflection, expansion and contraction op-
erations, which determine the weight of each.

The simplex algorithm continues until a minimum is ob-
tained. For a function that produces a single solution, this may
be the determined by assigning a tolerance limit for the error
between the actual and recalculated solutions. This is the case
for when using either the forward- or reverse-biased state of
the MST probe only. For more complex functions, as when
using both states of the probe as a measurement criterion, the
root mean square of the overall error may be used as a criterion
for convergence. The minimum is obtained when this error is
sufficiently small. However, due to the potential presence of a
local minima in the solution region, the simplex may converge
to an inaccurate point. In this instance, the algorithm must be
reinitialized with an updated set of vertices in an attempt to
move the simplex out of a local minimum.

III. FORWARD-BIASED RECALCULATIONS

Recalculations for the dielectric properties of the sand used
in Part I [1] were made based on the measurements and calcu-
lations for a half-space of fine sand. As in Part I, the dielectric
constant of the sand was measured using a two-port filled wave-
guide technique [1], [4]. The average value over S-band (i.e.,
2.6–3.95 GHz) for sand was measured to be .
Because of the low-loss nature of the sand, recalculation of the
exact loss factor is difficult. Furthermore, slight variations in
such a small value will result in a large percentage in error be-
tween the recalculated and actual vales for loss factor. Thus, the
convergence of permittivity will determine the potential use of
the inversion routine here.

Table I summarizes the recalculated dielectric properties from
the measured forward-biased reflection coefficient at 3 GHz.
This includes the recalculated dielectric constant, the percent
variation between the measured and recalculated reflection co-
efficient (i.e., the error in reflection coefficient), the required
number of iterations to reach this solution, and the percent error
from the actual permittivity and loss factor as calculated using
a two-port technique. As can be seen, the measured and recal-
culated permittivity values agree quite well. The error in the
loss factor is relatively large; however, this is attributed to the

TABLE I
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM MEASURED

FORWARD-BIASED REFLECTION COEFFICIENT AT 3 GHZ

TABLE II
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM CALCULATED

FORWARD-BIASED REFLECTION COEFFICIENT AT 3 GHZ

TABLE III
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM MEASURED

FORWARD-BIASED REFLECTION COEFFICIENT AT 3.5 GHZ

TABLE IV
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM CALCULATED

FORWARD-BIASED REFLECTION COEFFICIENT AT 3.5 GHZ

low-loss nature of sand, as mentioned earlier. The results for loss
factor, although not close percentage wise, are still close from
an absolution point of view. However, the former result is ex-
pected to significantly improve for materials with larger loss fac-
tors. For this material, however, the actual value for loss factor
is small, making it difficult to converge to an accurate value.
Table II summarizes the recalculation of the dielectric constant
of sand at 3 GHz using the forward-biased state of the probe,
as in Table I. However, the calculated reflection coefficient was
used, rather than the measured value, as the solution criterion
for the technique. Table III summarizes the recalculation of the
dielectric constant of sand at 3.5 GHz using the forward-biased
state of the probe from the measured reflection coefficient, while
Table IV summarizes the recalculation of dielectric constant at
3.5 GHz using the forward-biased state of the probe from the
calculated reflection coefficient. The same conclusions are ob-
served here as with the recalculations using 3 GHz.

IV. REVERSE-BIASED RECALCULATIONS

Tables V and VI show the recalculation of the dielectric con-
stant of sand from the measured and calculated reflection coef-
ficient, respectively, at 3 GHz using the reverse-biased state of
the probe. Tables VII and VIII show the recalculated dielectric
constant of sand using the reverse-biased state of the probe at
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TABLE V
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM MEASURED

REVERSE-BIASED REFLECTION COEFFICIENT AT 3 GHZ

TABLE VI
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM CALCULATED

REVERSE-BIASED REFLECTION COEFFICIENT AT 3 GHZ

TABLE VII
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM MEASURED

REVERSE-BIASED REFLECTION COEFFICIENT AT 3.5 GHZ

TABLE VIII
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM CALCULATED

REVERSE-BIASED REFLECTION COEFFICIENT AT 3.5 GHZ

3.5 GHz from measured and calculated reflection coefficients,
respectively. Again, the same observations may be made as with
the recalculations using the forward-biased state of the probe.

V. COMBINED FORWARD- AND REVERSE-BIASED

RECALCULATIONS

As mentioned above, it is possible to utilize multiple solutions
from a single function as criteria for convergence by taking the
error function as the root mean square value of the overall error.
Thus, it is possible to utilize both the forward- and reverse-bi-
ased reflection coefficient (i.e., modulated) measurements at the
same time in this method.

Tables IX–XII summarize the recalculation of the dielectric
constant of sand at 3 and 3.5 GHz using the measured and cal-
culated reflection coefficient values, as with the forward- and
reverse-biased recalculated results.

Similar results were obtained using modulated state of the
MST probe as with the forward- or reverse-biased state. How-
ever, the results presented in Tables IX–XII seem to show much
better results in terms of error in permittivity and loss factor.
This is due to using both states of the probe for the criterion
for convergence and indicates that more accurate results may be
obtained from this. From the measured reflection coefficients at

TABLE IX
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM MEASURED

MODULATED REFLECTION COEFFICIENT AT 3 GHZ

TABLE X
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM CALCULATED

MODULATED REFLECTION COEFFICIENT AT 3 GHZ

TABLE XI
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM MEASURED

MODULATED REFLECTION COEFFICIENT AT 3.5 GHZ

TABLE XII
RECALCULATED DIELECTRIC CONSTANT OF SAND FROM CALCULATED

MODULATED REFLECTION COEFFICIENT AT 3.5 GHZ

3 GHz for the forward-biased, reverse-biased, and both modu-
lated states, the recalculated permittivity was found to be ap-
proximately . As this value was recalculated consis-
tently for all states of the probe, this technique implies that the
permittivity is slightly higher at 3 GHz than the average value
over S-band.

From the above results, it is clear that the use of an iterative
technique to determine the dielectric constant of the material
from measured reflection coefficient values provides for quite
accurate results. Furthermore, as the recalculated values con-
verged to the actual dielectric constant of the material for both
calculated and measured reflection coefficients, the cases above
provide for a strong indication that the forward formulation pre-
sented above is valid.

VI. CONCLUSION

The inverse problem of determining the dielectric constant
of the material from modulated reflection coefficient measure-
ments is of a great practical importance for the embedded MST
technique. The application of the downhill simplex method, a
function minimization routine used to determine the correct set
of parameters for a given solution, was employed. This method
allows for determination of the permittivity and loss factor of
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the dielectric material under investigation from measured reflec-
tion coefficients. It must be noted that in the microwave material
characterization regime, special measurement precautions may
be necessary when measuring the loss factor of low loss mate-
rials. Some of the results shown in this paper indicate high per-
centage of error associated with the loss factor recalculations.
The calculated percent error is with respect to a small value to
begin with; therefore a slight difference causes large errors. Ad-
ditionally, for very low loss materials another method may be
used (e.g., resonant cavity method).

Use of the inversion routine for determining the dielectric
constant of sand produces results that converge very well with
the permittivity of sand, as measured from a separate technique,
for both the measured and calculated values. This is very en-
couraging, as it shows the validity of the forward model, the
ability of applying an inversion routine to this, and the potential
for using this technique in the investigation of dielectric mate-
rials.
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