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Abstract—The function of natural immune system is to 
protect the living organisms against invaders/pathogens. 
Artificial Immune System (AIS) is a computational intelligence 
paradigm inspired by the natural immune system. Diverse 
engineering problems have been solved in the recent past using 
AIS. Clonal selection is one of the few algorithms that belong to 
the family of AIS techniques. Clonal selection algorithm is the 
computational implementation of the clonal selection principle. 
The process of affinity maturation of the immune system is 
explicitly incorporated in this algorithm. This paper presents 
the application of AIS for the optimal control of a class of 
non-linear plants which are affine in control. The clonal 
selection algorithm is adapted for optimal control. A new 
mutation operator that operates on real values and one that aids 
in fast convergence is developed in this paper. AIS is used to 
obtain constant coefficient Kalman gain matrices. The 
validation and evaluation of the results thus obtained are 
carried out by comparing with standard and the widely used 
State Dependent Algebraic Riccati Equation (SDARE) method 
for the non-linear plants. In case of non-linear systems with 
hard state constraints, the SDARE formulation requires the use 
of mathematically involved expressions to incorporate these 
state constraints. However, the modified clonal selection 
algorithm developed in this paper has been used with hardly 
any changes to incorporate the hard state constraints and obtain 
the Kalman gain matrix.  

I. INTRODUCTION 
rtificial Immune Systems (AIS) is a relatively new field 
and the interest in using AIS for solving engineering 

problems has been on the rise in the past few years [1]-[7]. 
AIS can be defined as computational systems that are inspired 
by theoretical immunology i.e. principles, mechanisms and 
the observed functions of the immune systems. Their 
development and domains of application are similar to those 
of other computational intelligence paradigms such as 
artificial neural networks, evolutionary algorithms, swarm 
intelligence and fuzzy logic based systems.  

In this paper, the clonal selection algorithm that belongs to 
the family of AIS techniques has been used to solve the 

 
Manuscript received January 9, 2007.  
S.A. Panimadai Ramaswamy is with the Department of Electrical and 

Computer Engineering, University of Missouri-Rolla, MO 65409 USA 
(e-mail: sph58@umr.edu).  

G.K Venayagamoorthy is with the Real-Time Power and Intelligent 
Systems Laboratory, Department of Electrical and Computer Engineering,  
University of Missouri-Rolla, MO 65409 USA (e-mail: gkumar@ieee.org). 

S.N. Balakrishnan is with the Department of Mechanical, Aerospace and 
Engineering Mechanics, University of Missouri-Rolla, MO 65409 USA 
(e-mail:  bala@umr.edu ). 

optimal control problem. The clonal selection algorithm 
developed by Castro et al. [1] has been adapted to suit the 
application considered in this paper. The problem of optimal 
control involves finding the optimal gains for state feedback 
control by optimizing (maximizing or minimizing) a cost 
function which represents some performance index. AIS was 
considered when compared to other soft computing 
algorithms as it offers certain advantages over the others. 
Genetic algorithms cannot find a global optimum when the 
number of parameters involved increases and when they are 
epistatic in nature. Simulated annealing is very slow. AIS do 
not suffer from the above drawbacks.  

The mutation operator encountered in clonal selection is 
generally applied to binary strings. In this paper, a mutation 
operator that performs goal directed mutation on real valued 
antibodies (control gains) is developed. The optimal gains 
have been found for both linear and non-linear plants using 
AIS. Non-linear plants considered are affine in control. The 
same algorithm without any modification has been used for 
scalar and vector plants. The work presented in this paper 
considers vector non-linear systems. In addition, the optimal 
control of plants with hard state constraints is performed. The 
results are compared with those obtained by using the State 
Dependent Algebraic Riccati Equation (SDARE) 
formulation, one of the most widely used methods for optimal 
control of non-linear systems [12]-[16]. There is plethora of 
literature available on the real time applications of SDARE 
technique. Note that the SDARE formulation requires the 
calculation of Kalman gain matrix by solving the Riccati 
equation at every time step. The new clonal selection 
algorithm returns a constant coefficient Kalman gain matrix 
calculated offline. Hence unlike the SDARE method the 
usage of clonal selection algorithm reduces the computational 
burden and saves time in real time applications.  

The paper is organized as follows. Section II presents a 
brief background on the optimal control problem and an 
introduction to SDARE formulation, which is a widely used 
optimal control method for non-linear systems. Section III 
deals with the review of the clonal selection principle and the 
affinity maturation process. In Section IV, a description of the 
new adapted clonal selection algorithm for optimal control is 
presented. In Section V, the results are presented. Section VI 
involves a discussion of the results and comparisons with 
conventional approaches. Finally, the conclusion is given in 
Section VII.  
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II. OPTIMAL CONTROL PROBLEM  
A common objective in many technical fields is to design 

control logic that commands a dynamic system to produce a 
desired output and augments the system's stability. When the 
control objective is expressed as a quantitative criterion, then 
optimization of this criterion results in a set of equations to be 
solved to obtain the controller. Optimal control theory 
governs strategies for maximizing a performance measure or 
minimizing a quantitative criterion as the state of a dynamic 
system evolves. The fundamentals of optimal control of 
continuous-time dynamic linear systems and non-linear 
systems are discussed below.  

The process of design of optimal control for linear systems 
which have quadratic performance indices is called the linear 
quadratic (LQ) problem. The theory for optimal control of 
linear systems using linear quadratic regulator (LQR) can be 
found in [8]. Consider a non-linear dynamic system affine in 
control given by  

( ) ( )f g= +x x x u                                                                                  
(1) 

In the recent years, the SDARE method has been used to 
obtain the optimal control for non-linear systems. Considered 
below is the SDARE formulation. The problem considered 
here is the infinite-horizon regulation of general autonomous 
nonlinear systems which are affine in input [8]. Given the 
system equation in (1) and the performance index (PI) 

0

1
( ( ) ( ) )

2
T T dt

∞

= +∫J x Q x x u R x u                                                 (2)                                                                                 

which allows for trading-off state error x  versus control 
input u , via the weighting matrices ( ) 0≥Q x , ( ) 0>R x , 

∀x , respectively. It is assumed that 
(0) 0f = and ( ) 0g ≠x , ∀x . A feedback control law 
( )u x which regulates the system to the origin can be found by 

using the SDARE method [12]-[16] which approaches the 
problem by mimicking the LQR formulation for discussed for 
linear systems. Accordingly, the system equations have to be 
first written in the form given by: 

( ) ( )= +x A x x B x u                                                                      (3)                                                                                                          

where the state vector n∈ ℜx , control input m∈ ℜu , 
nxn∈ ℜA , mxn∈ ℜB  , ( ) ( )f =x A x x and ( ) ( )g =x B x . The 

cost is denoted by J .The objective here is to find the control 
that minimizes the quadratic PI in (2). The control weighting 
matrix mxm∈ ℜR and the state weighting matrix nxn∈ℜQ  
are symmetric matrices. The former parameterization is 
possible if and only if (0) 0f = and ( )f x is continuously 
differentiable. Then as in the linear time-invariant case [8], a 
state-feedback control law of the form of 

1( ) ( ) ( ) ( ) ( )T−= − = −u x K x x R x B x S x x                                     (4)    
can be found. The Kalman given by ( )K x  in non-linear 
systems is state dependent and changes at every time step. 

( )S x is unique, symmetric, positive-definite solution of the 
state-dependent algebraic Riccati equation 

 ( ) ( ) ( ) ( ) ( )
T

+ +A x S x S x A x Q x  

                      
1

( ) ( ) ( ) ( ) ( ) 0
T−

− =S x B x R x B x S x              (5)                     
The pair ( ( ), ( ))A x B x should be pointwise controllable in the 
linear sense so that the algebraic Riccati equation has a 
solution at that particular state x  [9], [12]-[16].  Due to the 
nonuniqueness of ( )A x , different ( )A x  choices yield 
different controllability matrices and thus different pointwise 
controllability characteristics. From the many choices for the 
parameterization ( ( ), ( ))A x B x , a pointwise stabilizable pair 
is chosen. Parameterization is easy for lower order systems; it 
can be complicated for higher order systems. The solving of 
the state dependent algebraic Riccati equation is very 
cumbersome and hence numerical tools are used. 

III. CLONAL SELECTION PRINCIPLE 
An overview of the immune system fundamentals along 

with the clonal selection principle and the process of affinity 
maturation is presented here. A more detailed view on the 
subject can be obtained from [10]. The immune system is 
made up a vast array of cells, molecules and organs that work 
together to maintain life and protect us from foreign bodies 
and disease causing agents, called pathogens. It also helps in 
the elimination of malfunctioning self-cells in the body 
(cancerous cells).  Since there are many pathogens, they have 
to be recognized before elimination. The pathogens cannot be 
directly recognized by the components of the immune system, 
but some small portions/molecules of the pathogens, called 
antigens, are recognized by the immune system. After 
recognizing a disease causing agent, the immune system 
eliminates it from the body in order to prevent or curb 
diseases. B-cells have antibody molecules on its surface 
which is released into the blood stream during an immune 
response. The main function of an antibody molecule is to 
bind with an antigen. Antigens and antibodies have 
complementary shapes so that they can bind together. The 
immune response is triggered by the binding together of the 
antibodies with the antigens. Adaptive immune response is 
the process that occurs once the immune cells are generated 
and the antigens have been recognized. One of the important 
processes in the immune mechanism of defense is the 
reproduction of the cells capable of recognizing and binding 
with specific antigens and is based on a process called 
cloning, i.e. the process of creation of offspring that are 
copies of their parent cells. These clones are subject to 
mutation at the next stage. Affinity maturation is the 
combined process of mutation that affect the portions of 
antibodies that bind with the antigen and the process of 
selection that guarantees the survival of the offspring 
(outcome of mutation) that match the antigen better. The 
clones that better recognize the antigen, which elicited the 
immune response, are selected to have long life spans; and 
these cells go on to become what are called as memory cells.  
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This enables the immune system to have a memory and gives 
it the capability of dealing with antigens it has dealt with in 
the past with greater effectiveness. The complete process of 
antigen recognition, cell proliferation and differentiation into 
memory cells is what is called as clonal selection [10]-[11]. 

IV. CLONAL SELECTION ALGORITHM AND ITS APPLICATION 
TO OPTIMAL CONTROL  

Few of the immune aspects taken into account by Castro et 
al [1] in the development of the algorithm are namely - 
maintenance of a specific memory set, selection and cloning 
of the stimulated antibodies, affinity maturation and 
re-selection of the clones proportionally to their antigenic 
affinity, generation and maintenance of diversity. Finding 
optimal control and state histories for dynamic systems is an 
extension of the field of static optimization that involves 
finding control parameters that define maxima/minima of 
algebraic functions. Hence, the clonal selection algorithm for 
optimization described by Castro et al [1] is adapted in this 
paper for optimal control as follows:   
i. In the optimization process there is no explicit antigen 

population (Ag) to be recognized. So the objective 
function is to be optimized is taken as the Ag. In this 
case the PI given by (2) is the objective function/Ag to 
be minimized. So an antibody affinity corresponds to 
evaluation of the objective function for the given 
antibody.  

ii. A population N of antibodies (Ab) is randomly 
initialized. Each antibody represents a different constant 
coefficient Kalman gain matrix (refer to (1) and (4)). 

iii. Solve the system equation represented by the 
differential equation in (1). 

iv. In case of systems with state constraints, check if the 
constraints are satisfied and choose the N antibodies 
such that constraints are satisfied. 

v. Evaluate the cost or PI for each antibody in the 
population. 

vi. Sort the antibodies based on low to high cost.  
vii. All the antibodies are cloned/reproduced independently 

and proportionally to their affinity generating a set C of 
clones. The higher the affinity, the higher the number of 
clones generated. The number of clones generated is 
described by the equation  

       
1

*n

c
i

B N
N round

i=

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                                                 (6)                                                                                                       

        where N  =  total number of antibodies 
                    B =  multiplying factor and is taken to be 0.5           
                    i   =  1 for highest affinity (i.e. least cost function) 
                            and 2 for second highest affinity, etc   
                    n  =  lowest rank which is usually equal to total     
                             number of antibodies.        
viii. The set C of clones is submitted to an affinity maturation 

process which is inversely proportional to the antigenic 
affinity (i.e. higher the cost more the mutation). The 
mutation rate is given by the equation below  

        exp( * )fα ρ= −                                                           (7)                      
        where  α is the mutation rate  

ρ controls the decay of the mutation rate and is 
taken to be 1 

                   f  represents the normalized antigenic affinity. 
        The process of mutation developed in this paper is given  
         by        
         * * * * * ( )C C randn C randn C Abbestα α= + + −   (8)                       

         where  *C  is the population of set C clones after the  
         affinity maturation process and 

bestAb is the antibody  

         with least cost in the set C of clones.  Hence equation  
         (8) results in a goal directed mutation process. 
ix. In case of systems with constraints, check if the 

constraints are satisfied for the set *C  of mutated clones 
and chose only those that satisfy. Denote new set 
by newC* . 

x. Determine the affinity of the mutated clones/affinity 
matured clones by evaluating the cost function and then 
sorting them based on cost. In the case of constrained 
systems, determine the affinity of the set newC* . 

xi. Then compare the affinity of the available population N 
of antibodies and the affinity matured clones *C . Set 

*

newC  is used instead of *C in the case of systems with 
hard state constraints. 

xii. Reselect N antibodies from the above set, i.e. select N 
highest affinity antibodies from the population of 
available antibodies and affinity matured clones.  

xiii. Repeat the process until stopping condition is reached. 
The stopping condition used is this paper is that if the 
cost of the highest affinity antibody does not change 
over a number of generations denoted by genN then the 

algorithm is stopped. genN  is a user defined parameter. 

Thus the Kalman gain matrix that gives the least cost is 
found. 

V. RESULTS 
A new adapted clonal selection algorithm is used to obtain 

the Kalman gains directly without having to solve the 
SDARE. In all the cases discussed below, the control 
weighting matrix R and the state weighting matrix Q are 
taken to be identity matrices. The number of antibodies used 
is 15 and the stopping condition is negligible or no change in 
cost for 500 generations. Case 1 is given by the non-linear 
plant  

2 2
1 1 5 3 2 4 1x x x x x x u= + + + +                                                 (9) 

3
2 3 2 5 1x x x x x= + +                                                                 (10) 

2
3 2 4 1 3 2x x x x x u= + + + +                                                    (11) 

2 2
4 2 1 3 5 1x x x x x u= + + +                                                        (12) 

2
5 1 5 2 3 4 2x x x x x x u= + + + + +                                               (13) 
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Equations (9) through (13) can be parameterized and 
expressed in the form suitable for application of the SDARE 
method as follows 

1 11 2 5
2

2 21 2
1

3 33
2

4 42 1 5

5 54

0 1 1 0
0 1 0 0 0

1 1 1 0 0 1
0 0 1 0
1 1 1 1 0 1

x xx x x
x xx x

u
x xx

u
x xx x x
x xx

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

                           (14) 

The above parameterization is one of the many possible 
parameterizations. The “best” Kalman gain matrix obtained 
by using clonal selection algorithm is given 
by

⎥
⎦

⎤
⎢
⎣

⎡
=

6266.34062.18558.26765.14795.1
9903.16606.11757.30399.28141.0

BESTK . In the SDARE 

method K has to be calculated at every step.  The plots for the 
states (Figs. 1 to 5), cost (Fig. 6) and control (Figs. 7 and 8) 
are as given below.  
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using AIS
using SDARE

 
   Fig. 1. State history of  1x obtained using AIS and SDARE        

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time in seconds

S
ta

te
 x

2

State history of x2

 

 
using AIS
using SDARE

 
   Fig. 2. State history of  2x obtained  using AIS and SDARE     

0 2 4 6 8 10 12 14 16 18 20
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time in seconds

S
ta

te
 x

3

State history of x3

 

 
using AIS
using SDARE

 
   Fig. 3. State history of  3x obtained  using AIS and SDARE  
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using AIS
using SDARE

 
Fig. 4. State history of  4x  obtained using AIS and SDARE 
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using AIS
using SDARE

 
    Fig. 5. State history of  5x  obtained using AIS and SDARE 
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using AIS
using SDARE

 
   Fig. 6. Plot of cost/PI obtained using AIS and SDARE 
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using AIS
using SDARE

 
   Fig. 7.  Control input  1u  obtained using AIS and SDARE 
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using AIS
using SDARE

 
    Fig. 8. Control input  2u  obtained using AIS and SDARE 
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using ais for constraints
using sdare unconstrained

 
    Fig. 9. State history of  1x obtained  using AIS and SDARE 
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using ais for constraints
using sdare unconstrained

 
    Fig. 10. State history of  2x obtained  using AIS and SDARE 
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using ais for constraints
using sdare unconstrained

 
    Fig. 11.  Control input  u obtained using AIS and SDARE 
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using ais for constraints
using sdare unconstrained

 
    Fig. 12. Plot of cost/PI obtained using AIS and SDARE 

VI. DISCUSSION 
In case 1, a nonlinear plant has been considered and the 

optimal control obtained using SDARE and AIS methods are 
compared. It can be observed from the plots that using AIS 
method results in better regulation of the states and also 
results in the reduction of the cost and control effort needed. 
In case 2, there is a state constraint 2 0x > always. Note that 
these types of constraints are common in many fields. For 
example, in biosystems, there is a constraint on blood 
pressure, and in the case of vehicle dynamics, there is a 
constraint on the maximum and minimum velocity. From the 
plots, it can be seen that the state 2x is constrained.  Due to the 
constraint, the control effort needed to meet the constraint is 
more and this shows in the control plot for the constrained 
case. This in turn increases the overall cost.  Highly involved 
mathematical expressions are required to incorporate hard 
state constraints in the SDARE formulation. AIS allows the 
constraints to be incorporated  without any significant 
changes in the algorithm and gives out constant coefficient 
Kalman gain matrix for optimal control of a class of 
constrained non-linear systems. The simulations were also 
carried out for different Q and R matrices and it was found 
that AIS gave better results when compared to SDARE 
method. Different parameterizations of the A(x) matrix were 
also investigated and it was found that AIS gave better results 
for the problems considered. Note that in the algorithm the 
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upper bound on ρ  (controls mutation rate) is 1. An increase 
in ρ  defeats the purpose of equation (14). When 1ρ > the 
diversity in mutated is very less and when 1ρ < the diversity 
in mutated particles is more. Decay of mutation rate is faster 
when 1ρ > , which will not help in the convergence to global 
optimum. To have balance in diversity of the mutated 
particles ρ  has been chosen equal to 1. B (multiplying factor) 
affects the number of clones generated and hence the 
computation time and the number of computations. Increase 
in B increases the search capability but at the same time also 
increases the computation time. It is to be noted that AIS 
works for all classes of non-linear systems. AIS can be 
employed for systems that are non-affine in control but not 
SDARE. Due to lack of comparison measure, results for such 
a case have not been presented.  

VII. CONCLUSIONS 
It can be concluded that artificial immune system based 

clonal selection algorithm is successfully applied to obtain 
the Kalman gains for optimal state feedback control. It is 
shown that the new adapted clonal selection algorithm 
performs at par with the standard and widely used technique 
for optimal control of non-linear systems namely, the SDARE 
method.  It can also be seen from the results that the adapted 
clonal selection is able to perform optimal control of 
non-linear systems with ease, while avoiding the 
mathematically involved expressions required for the same in 
SDARE formulation. It gives results better than SDARE and 
this outcome can be associated with the difficulty of finding 
the right parameterization while using the SDARE method. 
The advantages of using AIS to obtain the optimal control 
gains over the conventional methods are: 1) it is a compact 
algorithm which can be used for both linear and non-linear 
cases; 2) also takes into account the constraints imposed on 
state with ease, unlike its conventional counterpart; 3) 
performs better than the SDARE and this is because most 
often it is very difficult to obtain the right parameterizations 
for the SDARE method; 4) the optimal gains are calculated 
offline unlike the SDARE method and hence saves 
computational time in real time; and 5) it gives a constant gain 
for non-linear plants unlike the SDARE method. This makes 
it a compact method for performing optimal control 
satisfactorily. Hence, AIS allows constrained optimization, in 
turn constrained sub-optimal control is made possible. The 
constrained SDARE case is very mathematically involved the 
reference for one of the ways for using the SDARE method 
when state constraints are used is given in [17]. 
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