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Identifying and Quantifying Printed Circuit Board Inductance 
Todd H. Hubing, Thomas P. Van &rem, and James L. Drewniak 

University of Missouri-Rolla 
Rolla,MO 65401 

Abstract 
The concepts of inductance and partial inductance play a key role in 

printed circuit board (PCB) modeling. The inductance of the signal 
path is an important parameter in high-speed signal integrity calcula- 
tions. Delta-I noise modeling, crosstalk calculations, and 
common-mode some identification all rely heavily on accurate esti- 
mations of the partial inductance associated with traces, vias, and 
signal return paths on printed circuit boards. This paper begins by 
identifying and quantifying the parameters that affect the inductance 
of typical PCB geometries. Closed-form equations are provided for 
estimating the partial inductances of simple trace, via, and ground 
plane configurations. Finally, the issue of current "crowding" around 
via connections in planes and its affect on the partial inductance of 
the plane is addressed. 

Inductance 
At high frequencies the distributed inductance, capacitance, and 

resistance of tracts, vias, and planes on a printed circuit board can be 
just as important as the lumped parameters of the circuit components. 
Traditionally, the inductance of various circuit board geomCaies has 
been the most diffiult parameter to quantify. Unlike capacitance and 
resistance, inductance is a property of a closed current path. 

Inductance is defined as aratio of the total magnetic flux that couples 
@asses through) a closed path to the amplitude of the current that is 
the source of the magnetic flux, 

(1 1 Ljj I !!!k henries ii 

If a wire is configured in a closed loop, the inductance will be a 
function of the loop geometry as well as the shape and dimensions of 
the wire itself. 

Partial Inductance 
Although inductance is only defined for complete loops, it is often 

advantageous to assign parrial inductance values to sections of a 
current loop. This concept is useful for determining how the overall 
inductance of a current path is affected by individual segments of the 
path. For example, to lower the overall inductance of a particular 
geometry, one might focus attention on the segments of the path with 
the highest partial inductance. The concept of partial inductance is 
also useful for estimating the voltage dropped across part of a circuit 
due to inductance. This idea must be applied with care however, since 
voltage drop or potential difference is not uniquely defined in the 
presence of time-varying fields. 

We would like to define partial inductance such that for a current 
path with n segments, 

Since Ltotoi is the ratio of the total flux coupling the loop to the current 
in the loop, and since the current in each segment of a static current 
loop is equal, we can define the partial inductance of a particular 
segment as the ratio of the flux coupling the loop due to the current 
in that segment divided by the current, 

L l d  = k l d  S.?gliUnlI + blld SrgliUM 2 + . . . f S!-pUId ScgmC* n. (2) 

w due to segment i rhat couples l o q  
I amplirudc of current in segment i ' 

(3) 
~ p . n d  segmeru 1 = Y! =fr 

It is important to note that the calculation of partial inductance for 
each segment still requires a knowledge of the entire current path. 
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Therefore, the same wire segment located in two different loops will, 
in general, have a different partial inductance. 

Self and Mutual Partial Inductance 
Ruehli 111 developed a concept called selfparrial inductance that is 

defined for a given segment of a loop independent of the location or 
orientation of any other loop segment. For a straight wire segment 
with a finite wire radius as shown in Figure 1, a nominal rectangular 
loop is defined that is bounded by the wire segment on one si& and 
infinity on the other si&. Two lines perpendicular to the wire segment 
and extending from the ends of the segment to infi'ity form the other 
two sides of the loop. The self partial inductance is the ratio of the 
net flux passing through this loop to the current on the Wire segment 
(in the absence of all other segments and currents). Ruehli also dd ined  
a mutual partiii inductance existing between two wirc segments. 
Mutual partial inductance can be viewed as the net flux from one 
segment that passes through a second segment's infinite rectangular 
loop divided by the current in the fmt segment. Referring to Figure 
2, it is clear that for two parallel segments the quantity Lii-Li2 (i.e. 
the self partial inductance minus the mutual partial inductance) is 
equal to the total flux coupling the loop due to segment 1 divided by 
the current in segment 1. In other words, Lii-Liz is the part of the 
loop inductance due to segment 1. In general, we can define the 
partial inductance of a segment i to be its self inductance plus or minus 
the mutual inductances between segment i and all other loop seg- 
ments, 

n (4) 
Li='Liikx hj . 

f1 
ri 

Whether the mutual inductance is added or subtracted is determined 
by the relative orientation of the current on the two segments. If the 
flux from both segments passes through the infinite rectangular loop 
area in the same diraction, the sign is positive. For segments with 
c m n t  flowing in opposite directions as shown in Figure 2, the sign 
is negative. 

Conductors of arbitrary cross-section 
Ruehli's definitions of self and mutual partial inductance assume 

that the current is uniformly distributed on the surface of a thin wire 
filament. In order to calculate the partial inductance of other conduc- 
tor shapes, these conductors must be viewed as being composed of 
r 

*- 
Figure 1: Loop area used to define self partial inductance 



I * " a n t 1  I 
Figure 2: Loop area defining mutual partial inductance 

many thin filaments. For example, a wide flat printed circuit board 
trace might be modeled as several filaments side by side as shown in 
Figure 3. Analysis of the circuit containing this trace would require 
all of these filaments and their self and mutual partial inductances to 
be accounted for. 

Although analysis of configurations like the one in Figure 3 can be 
done on the computer in a straightforward manner, it also helpful to 
have a more intuitive feel for the effect that different conductor shapes 
have on the partial inductance. For the configmtion in Figure 3, the 
partial inductance associated with each filament is the self partial 
inductance of that filament plus the mutual partial inductance between 
that filament and all the other filaments in the trace minus the partial 
inductance of that filament with the other parts of the loop, 

(5) n m  

L ~ J O ~ L ~  =Lii + C * C~ij . 
i-1 *l 
Itl 

Since the filaments in the same trace are tightly coupled, their mutual 
partial inductances will be high (but still necessarily less than the self 
partial inductance). Therefore, the partial inductance of each filament 
will be nearly n times greater when it is located near the other filaments 
than it would be if it were isolated from the others. However, the 
partial inductance of the wide trace overall is actually the parallel 
combination of all of the filament partial inductances. Assuming each 
filament had approximately the same partial inductance, the trace 
partial inductance would be the filament partial inductance divided by 
n. Widening the trace, lowers the partial inductance because the 
additional parallel inductance more than compensates for the added 
self partial inductance of each filament. A computer analysis of this 
configuration would also show that the partial inductance of the outer 
filaments is slightly lower than that of the inner filaments. As a result, 
more of the current flows on the outside edge of the trace. 

It is important to note that the concept of selfparrial inductance is 
only defined for the individual wire filaments and not for the wide 
trace. On the other hand, a partial inductance can be defined for the 
wide trace, but only if the current return path is specified. 

I 1 2 3 4  n 

Figure 3: Wide trace modeled with wire filaments 
I 

Partial inductance of short wires or vias 
Consider the pair of short wires with length h and radius a that are 

separated by a distance s illustrated in Figure 4. For a given loop area, 
the partial inductance of each wire is the ratio of the flux coupling the 
loop to the current in the wire. Placing one of the wire segments on 
the z-axis of a cylindrical coordinate system as shown, the expression 
for the magnetic field due to a current I flowing in the segment is, 

The total flux passing through the loop indicated in Figure 4 is, 

(7) 
The partial inductance of the wire is the total flux Y divided by the 
current I. If the separation s is much greater than the length h, the 
expression for the partial inductance reduces to, 

hi,, = 2% In(:) (s >> h). 

Note that when the separation s is large relative to the length of the 
wire or via, the partial inductance is independent of the separation. 

Partial inductance of long wires or vias between planes 
Vias between planes on a multilayer printed circuit board can often 

be treated in the same manner as long wires. This is due to the fact 
that the images of the via in the planes cause the magnetic field 
between the planes to resemble the field created by a long wire. This 
field is given by the expression, 

I &  H=--cp 
2m 

(9) 

where, in the case of the vias between planes, it is assumed that 1 is 
the conduction current on the via and that the displacement current 
between the planes can be neglected. 

Refemng to Figure 5, if the loop area is defined as the region 
bounded by the vias and the planes, the expression for the flux 
coupling this loop is, 

The partial inductance of the wire or via is then, 
(11) 

Note that unlike vias that are not between planes, the partial induc- 
tance of vias between planes is a function of the separation s. 

Figure 4: Short wire or via geometry 
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Figure 5: Vias between conducting planes 
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Partial inductance of a narrow trace above a plane 
The partial inductance of a thin narrow trace above a ground plane 

can be calculated using image theory and the formula for the magnetic 
field from a long wire, €Quation (9). For a wct of effective radius II 
that is a height h above a plane of width w (w> >h> >a) as shown in 
Figure 6, the appximate flux passing between the trace and the plane 
is, 

ot plane partial inductance 

The partial inductance of the trace is therefore, 

Note that the partial inductance of the trace equals the total induc- 
tance. This is because applying image theory was equivalent to 
assuming that the plane had infinite width. Since no flux lines wrap 
aFDund an infinite plane, it has zero partial inductance. All lines of 
flux wrap around the trace and therefore the partial inductance of the 
trace equals the tatal inductance. 

FiNte values of w do not have a significant effect on the total flux 
Wrapping around the trace pmvided w>>h. Therefore, the approxi- 
mate expression for the trace partial inductance in Equation (13) is 
valid as long as the plane is significantly wider than the trace height 
and mice radius. 

W 

Figure 6 Narrow trace above a plane 

Partial inductance of a plane 
While the partial inductance of the plane in Figure 6 is always much 

smaller than the trace paxtial inductance, it can not always be ne- 
gkcted. The small voltage dropped across the plane may be a 
significant source of unwanted coupling. 

In der to calculate the plane partial inductance, we begin by noting 
that the current density induced on the surface of the plane must equal 
the tangential magnetic field strength due to the current on the trace. 

Using the coordinate system indicated in Figure 6, the induced c m n t  
density must be, 

J = -  I h  A 

&(?+ h? '' 
The total current induced on the top of the plane is therefore. 

The induced current does not produce lines of flux that wrap around 
the plane and is thmfoxe not included in calculation of the partial 
inductance of the plane. Note however, that there is a difference 
between the total current on the plate and the induced current, 

This remaining current must distribute itself on the plane in a manner 
that does not create any additional magnetic field within the metal 
interior of the plane. The problem of calculating the plane partial 
inductance is now found to be equivalent to the problem of calculating 
the partial inductance of the wide trace in Figure 3. Half of the 
remaining current flows on the top of the plane and the other half on 
the bottom. 

In order to get an expression for the magnetic flux near the center of 
the plane, we make the approximation that the current I - I d u e d  is 
uniformly distributed on both sides of the plane, which is a valid 
assumption at points away from the edges. The magnetic flux just 
above the surface of the plane (due to the current I - ] w e d )  is then, 

The partial inductance of the plane is thenfore, 

In order to verify this expression, a two-dimensional field solver was 
used to calculate the torid inductance of a 10 mil trace spaced 10 mils 
over a wide plane. The partial inductance of the trace was determined 
using Equation (13) and the partial inductance of the plane was 
calculated as the total inductance minus the trace partial inductance. 
The results are plotted in Figure 7. The agreement between the nu- 
merical results and the closed form expression in Equation (18) is very 
good provided the width of the plane is significantly greater than the 
width of the trace. 

Figure 7: Calculation of plane partial inductance 



Figure 8: Common mode current radiation model 

'Race over plane as a common mode voltage source 
The configuration illustrated in Figure 8 is often used to illustrate 

how the partial inductance of a plane creates a voltage that drives 
common mode current on cables. However, the plane partial induc- 
tance indicated in this figure is not the same as the plane partial 
inductance calculated using Equation (18). Any voltage drop calcu- 
lated using Equation (18) only affects currents flowing in the 
trace/plane path. The common mode current path indicated in Fig- 
ure 8 does not involve the trace. 

The inductance indicated in Figure 8 is actually a partial mutual 
inducrunce (not to be confused with mutual partial inductance). 
Where we define partial mutual inductance basedon the flux wrapping 
around one part of a current loop that couples to another loop involv- 
ing the same part. For the trace over plane geometry in Figure 6, the 
calculation of the partial mutual inductance of the plane and the 
radiation current path begins in the same manner as before. The 
calculation of I - Iindued is unchanged, but in this case the loop area 
is the region from the center of the plane to y = --. The expression 
for the flux density in this region is given by, 

s (1 9) 
Y = j ~ l f * d y  . 

0 

Since the magnetic field for large values of y falls off as Ilr, the 
calculated inductance inductance per unit length will be infinite Gust 
as it would be for a wire of infinite length). However, if we assume 
that the plane's length is approximately equal to its width, we can 
approximate the total flux to be that of the uniform flux density near 
the plane times w, 

W f201 

Common Mode Current for 5 Different Plane Widths I 

I 0 250 MHz Frequency 

Figure 9: Measured CM current for different plane widths 

and the partial mutual inductance of the plane is therefore, 

Note that while the expression for the partial inductance of the plane 
in Equation (18) is inversely proportional to the square of the width 
of the plane, the inductance in Equation (21) is inversely proportional 
to the width of the plane. A measurement of common mode current 
induced in a wire-over-plane configuration is presented in Figure 9. 
The test setup is described in another paper [2] printed in these 
proceedings. These results support the conclusion that the induced 
common mode current and the partial mutual inductance of the plane 
are inversely proportional to the plane width for a configuration of 
these dimensions. 

f \ 

Figure 10: Current distribution between vias on a plane 

Effect of current crowding on planes near vias 
In many cases, the two-dimensional models used in the previous 

sections can be applied to real three-dimensional printed circuit board 
geometries by simply multiplying the per-unit-length values of induc- 
tance by the length of the geometry. However, if the current 
distribution is perturbed (e.g. by a gap in the plane) there m y  be 
additional inductance. As Figure 10 illustrates, the current flowing 
between two vias attached to a plane is generally more concentrated 
in the vicinity of the vias. There is a tendency to conclude that this 
concentration of the current results in a higher partial inductance for 
the plane. However, in most cases, this conclusion is incorrect. To 
see this, recall that the partial inductance of any piece of the circuit 
depends on the amount of flux wrapping around that piece. Note that 
the magnetic field directly above the plane is perpendicular to the 
surface current. If the via is far from the edge of the plane, the flux 
associated with the concentrated current density surmunds the via, not 
the plane. Therefore the partial inductance of the via is influenced by 
this concentration of current, not the partial inductance of the plane. 
This is consistent with the observation that changes in the geometry 
of the via affect the current distribution in this region, while changes 
in the geometry of the plane do not. 

If the via is near a comer of the plane, the concentrated current 
density around the via will cause additional lines of flux to wrap 
around the plane. However, in most practical situations, this effect is 
unlikely to be strong enough to have a significant effect on the overall 
partial inductance of the plane. 
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