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Absfrucf - The design of nonlinear optimal neurocontrollers programming (DP) in classical optimal control theory [7], the 
based on the Adaptive Critic Designs (ACDs) family of ACD technique provides an effective method to construct an 
algorithms has recently attracted interest. This paper presents optimal and robust feedback controller by exploiting 
a summary of these algorithms, and compares their backpropagation for the calculation of all the derivatives of 
performance when implemented on two different types of user-defined target quantities [ l ]  in order to minimize the 
artificial neural networks, namely the multilayer perceptron heuristic cost-to-go approximation. 
neural network (MLPNN) and the radial basis function neural There are thee representative optimization control 
network (”). As an example for the application of the techniques among the ACDs family. ‘One is the heuristic 
ACDs, the control of synchronous generator on an electric dynamic programming (HDP), which approximates the 
power grid is considered and results are presented to compare heuristic cost-to.go function (J) itserf by the critic network 
the different ACD family members and their implementations adaptation. Another is the dual heuristic programming (DHP), 
on different n e w 1  network architectures. by which critic network performs the value iteration for 

derivatives of the heuristic cost-to-go function J with respect 
to the states of the plant. The other is the globalized dual 
heuristic programming (GDHP), which approximates both J 

proposed by Werbos [l], [2], is a novel nonlinear optimization In the literature, there exist many ACDs based application 
and control algorithm based on the mathematical analysis to and these have been implemented using the MLPNN for the 
handle the classical optimal control problem by combining HDP [3], [41, [6], [8]-[11], DHP [31, 141, 1121, or GDHP [I31 
concepts of reinforcement learning and approximate dynamic for the design of controllers. However, very few reports have 
programming (ADP). appeared on implementing the HDP [14], DHP, and GDHP 

networks (ANNs), allows the design of an optimal adaptive In Ref. [4], the authors compared HDP and DHP based on 
nonlinear controller and has the capability of optimization the MLPNN. In Ref. [ 5 ] ,  the authors compared the use of the 
over time under conditions of noise and uncertainty [3], [4]. In MLPNN and RBFNN for implementing indirect adaptive 
other words, the ACDs can be used to maximize or minimize control of a synchronous generator. In Ref. [6], the authors 
any utility function, such as total energy error, of a system compared the HDP based on the MLPNN and RBFNN. 
over time in a noisy nonstationary environment. This paper extends the earlier works [4]-[6] by adding 

The conventional continually on-line indirect adaptive comparison of the performance of the DHP based on the 
neurocontroller for generator control was described in [5], MLPNN and RBFNN. Also, the advantages, which can be 
which reported that the updatedadaptation of the parameters obtained through the ACDs based optimal control, are 
for the neurocontroller are carried out using a gradient descent discussed with comparison of the indirect adaptive control. 
algorithm based on the error only one time step ahead. This 
adaptation technique is therefore short sighted. A short-term 
goal does not guarantee a long-term satisfactoryioptimal 
trajectory. The adaptive critic method determines optimal control 

To overcome the above issue and provide strong robustness laws for a system by successively adapting two neural 
for the controller, the family of ACD techniques for infinite networks, namely, an action neural network (which dispenses 
time horizon optimal control can be seen as alternatives where the control signal) and a critic neural network (which “learns” 
the ANNs are used as tools to identify the system and the desired performance index for some function associated 
implement the ACD based control algorithms [6]. with the index). 

Also, without the extensive computational efforts and The model dependent designs for the HDP and DHP 
dificult mathematical analyses required by using the dynamic algorithms are briefly described 

1. INTRODUCTION 
The adaptive critic designs (ACDs) technique, which was and its derivatives by the critic network adaptation. 

Use of the ACD technique based on artificial neural usingtheRBFNN. 

11. ADAPTIVE CRITIC DESIGNS 
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A .  Heuristic Dynamic Programming (HDP) 

cost-to-go function J itsevin (1). 

J J ( t )  / JA(t) in Fig. 2 for the weights WA(t) and the output 
The critic network in the HDP approximates the heuristic vector A(t) of the action network. The expression for the 

weights' update in the action network is given in (4). 

J(k) = 2 y p U ( k  + p )  
p=0 

(4) 

where y is the discount factor (0 < y < 1) and U is the user- where rlA is the positive learning rate, 
defined utility or cost function. The configuration of the critic 
network training (for value iteration to minimize the value of action networks in the HDP is explained in [31 and 
J) by approximate dynamic programming is shown in Fig. 1. 
The following error equation [3] for the training of critic 
network is used. 

The general training procedure for the model, critic, and 

where A+(() is a vector of observables of the plant, which is 
the output vector from the model network (Fig. 2). 
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Fig. I. Critic adaptation in HDP: The same crilic network is shown far 
two c o n s ~ c u t i v c  times. ,+I and 1. ThC Cri t ic 's  output J(A+(,+()) at 

time I+I is required for the ADP 10 generate a target signal 
. , ~ ( a + ( ~ +  1)) + " ( & + ( I ) )  fortrainingthecrilicnetwork. 

The input of the action network in Fig. 2 is the output 
vector of the plant (Y(1)) and its time-delayed values. After 
minimizing J in ( I )  by the critic network, the action network 
is trained with the estimated output backpropagated from the 
critic network to obtain the converged weight for the optimal 
control U*. In other words, the objective of thepction network 
shown in Fig. 2, is to find the optimal control U to minimize J 
in the immediate future, thereby optimizing the overall cost 
expressed as a sum of all U over the horizon of the problem in 
(I). This is achieved by training the action network with an 
error vector eA(t) in (3). 

(3) 

The derivative of the cost function J( t )  with respect to A([) 
in (3) is obtained by backpropagating JJlJJ = 1 (recall that the 
HDP approximates the function J itself) through the critic 
network and then through the pretrained model network to the 
action network. This gives signals aJ(t)/aA+(r) and 

Fig. 2. The configuration for the action network adaptation in HDP 

E. Dual Heuristic Programming (DHP) 
The critic network in the DHP approximates the derivatives 

of the heuristic cost-to-go function J in ( I )  with respect to the 
states of the plant. In other words, the value iteration by the 
critic network in the DHP is carried out with perfect state 
information of the plant, which means that the actual 
suboptimal path to minimize J is changed, and the 
corresponding optimal control U* is determined in the different 
optimal policy set. 

The configuration for the critic network adaptation in the 
DHP is shown in Fig. 3. The input and output vectors of the 
model, action, and critic networks are the same as those in the 
HDP. For the critic network adaptation in the DHP, it learns to 
minimize the following error measure over time: 

I I E ~ I I =  e ; ( t ) e , ( f )  (5 )  

After exploiting all relevant pathways of backpropagation 
as shown in Fig. 3, where the paths of derivatives and 
adaptation of the critic network are depicted by dotted and 
dash-dot lines, the error signal edt) is used for training to 
update the weights of the critic network. 

The j" component of the second term in ( 6 )  can be 
expressed by the output of critic network at time t+1,  

i j ( t + i ) =  ~j[~Y(1+1)1/aAY,(1+1)asfollows. 
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(7) 

where n and m are the numbers of outputs of the model and 
the action networks, respectively. 

Fig. 3. Critic network adaptation in the DHP a$ in (8). The Same critic 
network i s  shown for two consecutive times. t and 1+1. Thc discount 
factor y i s  chosen to be 0.5.  Backpropagation paths are shown by dotted 
and dash-dot lints. The output of the critic network j,,+,) is  
backpropagated through the model from its outputs to its inputs. 
yielding the first term of (6) and JJ(/+l)/JA(/) .  The lattcr is 
backpropagated through the action network from its outputs 1 0  i t s  inputs 
forming the second term of (6 ) .  Backpropagation of the vector 
aU(r)lJA(r) through the action rcsuI1s in a vector with components 
computed as the last tern? of (8). The summation of all these signals 
produces the error vector e.(r) used far training the critic network. 

By using (7), each o f j  components of the vector ec(t)  from 
(6) is detennined by 

The adaptation of the action network in Fig. 3 is illustrated 
in Fig. 4, which propagates / i ( t  + 1) back through the model 
network to the action network. The goal of this adaptation is 
expressed in (9) [3], and the weights of the action network are 
updated by ( IO) .  

where qA is a positive learning rate and W, contains the 
weights of the DHP action network. 

Fig. 4. Action network adaptation in the DHP: Backpropagation paths are 
shown by dotted lines. The output of the critic network i(,+t, at time (el) 
is backpropagated through the model network from its outputs to its inputs 
(output of the action), and the resulting vector multiplied by the discount 
factor ( y  = 0.5) and added to aU(t)lJA(t). Then, an incremental adaptation of 
the action network is carried out by (9) and (IO).  

The structures and equations for the MLPNN and RBFNN 
used in this paper appear in [SI, [6], and [16]. 

111. CASE STUDY: SYNCHRONOUS GENERATOR CONTROL 

A .  Plant Modeling 
The synchronous gencrator, turbine, exciter and 

transmission system connected to an infinite bus form the 
plant (dotted block) in Fig. S that has to be controlled [SI, [6]. 

,.PJwt .___ _._ .....____.... _ _ _  ___.__ ________.  

Fig 5 .  Plant model used for the control of a synchronous generator connected 
to an infinite bus. 

In the plant, P,  and Q, are the real and reactive power at the 
generator terminal, respectively, 2, is the transmission line 
impedance, P, is the mechanical input power to the generator, 
VId is the exciter field voltage, Vb is the infinite bus voltage, 
Am is the speed deviation, AV, is the terminal voltage 
deviation, V, is the terminal voltage, is the reference 
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voltage deviation, V,,is the reference voltage, U,, is the input Moreover, the MDHPC shows a slightly faster rise time and 
power deviation, and P,. is the turbine input power. 

The position of the switches SI and S2 in Fig. 5 determines 
whether the optimal neurocontroller, or the conventional 
controller (CONVC) consisting of govemor and AVR, is 

smaller overshoot than the RDHPC. 

RHDPC 
CONVC --- MDHPC - RDHPC 

controlling the plant. Block diagrams, time constants, and 
gains for the CONVC (AVWexciter and turbine/governor 

90 systems) are given in [6]. 

B. Simulation Results 
With the fixed parameters after off-line training by the 

same procedures (explained in [3] and [6]) for the model, 
critic, and action networks in the HDP and DHP, the dynamic 
performances of the following nonlinear optimal 
neurocontrollers are evaluated and compared with the 
CONVC. 

70 

65 

60 

I Neurocontrollers designed by the HDP using the MLPNN 0 1 2 3 4 5 6 7 8  
and R B F "  are called the MHDPC and RHDPC, nme [SI 

and RBFNN are called the MDHPC and RDHPC, 85 

respectively. Fig. 6.  Three phase short circuit test: Rotor angle. 
Ncurocontrollers designed by the DHP using the MLPNN 

respectively. 

80 
The following two different types of disturbances are 

applied to the plant for the tests of improvement of system 
damping and transient stability. 75 

T A three phase short circuit at the infinite bus in Fig. 5:  At 
t = 0.3 s, a temporary three phase short circuit is applied 
at the infinite bus for IO0 ms from -0.3 s to 0.4 s for the 
plant operating at,the steady state condition. 

Fig. 5:  The synchronous generator of the plant is 
operating at a steady state condition. At t = 1 s, a 5% step 
increase (AVr4) in the reference voltage of the exciter is 
applied. At t=12 s, the 5% step increase is removed, and 
the system returns to its initial operating point. 

53 
~ 7~ 

+5% step changes in the reference voltage of the exciter in 65 

60 
0 5 10 15 20 25 

"e [SI  

Fig. 7.  tS% Step changes in reference voltage of exciter: Rotor angle. 

The results in Figs. 6 to 8 show that the optimal 1.14 

1.12 
neurocontrollers improve the damping of low-frequency 
oscillations more effectively compared to the CONVC (in Fig. 

dynamic transient response (for the new reference value), i.e. 

and 8). Note that the increased damping is important for 
generators in power system networks. From Fig. 6, it is shown 
that two optimal neurocontrollers (MDHPC/RDHPC) based 
on the DHP improve the damping of low-frequency 

the CONVC. 
The results in Figs. 7 and 8 for a step change show that the 

DHP based neurocontrollers outperform the HDP based 

6), and that the RHDPC outperforms the MHDPC for the 1.1 

the RHDPC has a faster rising time than the MHDPC (Figs. 7 1.06 

l,ol 

oscillations more effectively than the MHDPCiRHDPC and 1.02 

1 

0.98 neurocontrollers. Also, the RHDPC has a faster rise time than 0 5 10 15 20 25 

the MHDPC. Especially, the performance of the MDHPC is 7" [S I  

significantly improved compared to that of the MHDPC. Fig. 8. 
voltage. 

fS% Step changes in reference voltage of exciter: Terminal 
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C. Adaptive Critic Optimal control vs. Indirect Adaptive 
Control 

The robusmess of a controller [7j, [17], [18j is judged by 
how well it controls a process even during uncertain changing 
system configurations. Therefore, the HDP and DHP 
techniques, which are based on the infinite horizon optimal 
control method, provide robust feedback control; this 
powerful dynamic control capability of adaptive critic optimal 
controllers has been evaluated in the previous subsection B. 
This robustness comes because the parameters for the critic 
and action networks are only trained off-line (not on-line), and 
remainfixed during real-time control. 

In contrast, the model reference indirect adaptive control 
(MRAC) shown in [5j depends on the outputs of the desired 
response predictor (DRP). The response of this controller 
therefore varies according to the design of DRP using 
information from the changing system outputs. 

Also, the parameters for the ANN identifier and controller 
in indirect adaptive control must be updated on-line at every 
time step in order to force the plant outputs back to the 
response of the DRP. 

The results of the indirect adaptive control scheme [SI are 
compared in Figs. 9 to 11 with the responses of the MDHPC 
and RDHPC. In these figures, the neurocontrollers designed 
by the indirect adaptive control (IAC) scheme using the 
MLPh" and RBFNN are called the MlAC and MAC, 
respectively. 

From Fig. 9, the DHP neurocontrollers still have a better 
damping performance compared to the MIAC and MAC in 
the case of a severe disturbance (three phase short circuit). 

On the other hand, the results in Figs. 10 and 11 show that 
the MIAC is less damped and slightly oscillatory with respect 
to the DHP controllers. The MAC response lies between that 
of the MIAC and the DHP. 

Whether the ACD family of controllers or the IAC family 
of controllers give better results for large or small 
disturbances, depends on choices such as the utility function 
for the ACD family, and the D M  for the IAC family. The 
purpose of this paper is not to claim that one of these families 
will always perform better than the other one, but to show that 
the ACD has a comparable performance to the IAC, even with 
fixed control parameters in real-time operation. 

More detailed explanations of the indirect adaptive control 
and the ACD based optimal control methodologies for the 
synchronous generator control are explained in [ 5 ]  and [6],  
respectively. 

55 - 
0 1 2 3 4 5 6 7 8  

lime Is1 

Fig. 9. Three phase short circuit test: Rotor angle 

85 
CONVC n E l l  ...... 

1 1- CONVC I 
J 

0 5 10 15 20 25 
lime 14 

60 1 

Fig. 10. f5% Step changes in reference voltage of exciter: Rotor angle. 

1.08 

1.06 

1.04 

1.02 

0 5 10 15 20 25 

Fig. 11. 15% Step changes in reference voltage of exciter: Terminal 
voltage 
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IV. CONCLUSIONS 

This paper has presented the design of optimal 
neurocontrollers based on the heuristic dynamic programming 
(HDP) and dual heuristic programming (DHP) for the control 
of a ‘synchronous generator in an electric power gird. To 
implement the HDPiDHP algorithm, the multilayer perceptron 
neural network (MLPNN) and radial basis function neural 
network (RBFNN) were used as  function’approximators. The 
comprehensive comparisons were carried out based on time- 
domain simulations to evaluate the dynamic transient and 
damping performances of the HDPiDHP based optimal 
neurocontrollers using the MLPNN/RBF”. From the case 
study illustrated, the following conclusions can he d r a w .  

When using the HDP, the RBFNN is preferred as function 
approximators for the model, critic, and action networks 
than the MLPNN. 

The DHP algorithm provides the effective dynamic and 
more robust control capability than the HDP. 

With DHP control designs, either the RBFNN or the 
MLPNN can be used as function approximators. However, 
the MLPNN is easy for hardware implementation because 
the RBFNN requires the feature extraction techniques to 
determine the centers of the RBF units, which is the most 
important characteristic of the RBFNN. In other words, the 
off-line computation to determine the centers of the RBF 
units must be paid the careful attention; otherwise the on- 
line updates for the centers of the RBF units require the 
highly expensive computational efforts. 

Generally, the proposed neurocontrollers have fired 
parameters for their model, action, and critic neural networks, 
which are trained off-line based on the infinite horizon 
optimal control approach. This means that there are no 
adaptive parameters in a real-time operation. Therefore, they 
provide a robust feedback with a powerful dynamic control 
capability under uncertain environments, and the possible 
instability issue associated with artificial neural networks 
(ANNs) based controllers can be avoided. 

Investigations are continuing into more detailed treatment 
of different optimality conditions according to approximations 
for the value iteration J in the HDP and DHP. 
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