
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2004

Swarm Intelligence for Digital Circuits Implementation on Field Swarm Intelligence for Digital Circuits Implementation on Field

Programmable Gate Arrays Platforms Programmable Gate Arrays Platforms

Ganesh K. Venayagamoorthy
Missouri University of Science and Technology

Venu Gopal Gudise

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
G. K. Venayagamoorthy and V. G. Gudise, "Swarm Intelligence for Digital Circuits Implementation on Field
Programmable Gate Arrays Platforms," Proceedings of the Conference on Evolvable Hardware, 2004.
2004 NASA/DoD, Institute of Electrical and Electronics Engineers (IEEE), Jan 2004.
The definitive version is available at https://doi.org/10.1109/EH.2004.1310813

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229177963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1898&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/EH.2004.1310813
mailto:scholarsmine@mst.edu

Swarm Intelligence for Digital Circuits Implementation on

Field Programmable Gate Arrays Platforms

Ganesh K. Venayagamoorthy and Venu G. Gudise

Dept. of Electrical and Computer Engineering

University of Missouri – Rolla, MO, 65409, USA

gkumar@ieee.org and venug@ieee.org

Abstract

Field programmable gate arrays (FPGAs) are
becoming increasingly important implementation

platforms for digital circuits. One of the necessary

requirements to effectively utilize the FPGA’s resources is
an efficient placement and routing mechanism. This paper

presents an optimization technique based on swarm

intelligence for FPGA placement and routing. Mentor
graphics technology mapping netlist file is used to

generate initial FPGA placements and routings which are

then optimized by particle swarm optimization (PSO).
Results for the implementation of a binary coded decimal

bidirectional counter and an arithmetic logic unit on a

Xilinx FPGA show that PSO is a potential technique for
solving the placement and routing problem.

1. Introduction

Field programmable gate arrays (FPGA’s) have been

attracting alot attention for digital platform

implementations because of their programmability and

relatively high density. In particular, SRAM-based

FPGA’s make use of lookup tables (LUT’s) or similar

circuits, as their basic blocks, called logic blocks.

Since logic blocks and routing resources are

predefined in an FPGA chip, it is difficult to fit a large,

dense design on any given FPGA while meeting

aggressive system-level delay constraints. Optimizing for

100% wirability is often at odds with optimization for

speed. Critical paths must be given priority during

placement. Simulated annealing has been applied to the

FPGA placement problem in a manner similar to the

placement of standard cells [1]. While standard cell

techniques are sufficient for those FPGAs that invest a

large portion of their chip area in routing resources [2],

special care must be taken in FPGA architectures that

seek to limit the cost of routing. Min-cut placement

combined with hierarchical global routing that introduces

signal congestion into placement process is used in [3]. A

penalty-driven improvement algorithm is used in [4].

A new technique called the PSO that emerges and

allies itself to evolutionary algorithms based on

simulation of the behavior of a flock of birds or school of

fish. Swarm algorithms differ from evolutionary

algorithms most importantly in both metaphorical

explanation and how they work. What is new with the

swarm algorithm is that the individuals (particles) persist

over time, influencing one another’s search of the

problem space. The particles in PSO are known to have

fast convergence to local/global optimum position(s) over

a small number of iterations [5].

In this paper the concept of PSO is applied to solve

FPGA placement and routing. Mentor graphics

technology mapped netlist file is used to generate the

initial FPGA placements and routings which are then

optimized by PSO. This is demonstrated on the

implementation of a 4-bit BCD counter and an ALU on a

Xilinx FPGA.

The organization of this paper is as follows: Section 2

gives a brief introduction of a FPGA, the placement and

routing problem; Section 3 explains the PSO algorithm.

Section 4 describes the PSO based placement and routing

and Section 5 presents some results.

2. FPGA placement and routing

FPGAs are programmable devices with relatively high

density. Symmetrical array (Fig. 1), row-based and

hierarchical-PLD are most commonly used architectures

with either multiplexer or look-up table logic. In this

paper, Xilinx FPGAs are considered.

Xilinx LCA (logic cell array) basic logic cells, called

as configurable logic blocks (CLBs) contain both

combinational logic and flip-flops. CLBs are based on the

use of SRAM as a look-up table. The truth table for a K-

input logic function is stored in a 2Kx1 SRAM. The

address lines of the SRAM function as inputs and output

line of the SRAM provides the value of the logic function.

Xilinx FPGA has three major configurable elements:

configurable logic blocks (CLBs), input/output blocks

(IOB), and interconnects. The CLBs provide the

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

functional elements for constructing logic. The IOBs

provide the interface between the package pins and

internal signal lines. The programmable interconnects

provide routing paths to connect the inputs and outputs of

the CLBs and IOBs to appropriate networks.

C

C

C

C

C C

CC

C

CC

C

L

L

L

S

S

L

L

L

S

L

L

L

S

C

C

C

C

C C

CC

C

CC

C

L

L

L

S

S

L

L

L

S

L

L

L

S

Fig. 1 Symmetrical array FPGA model

3. Particle swarm optimization

PSO is a form of evolutionary computation technique

developed by Kennedy and Eberhart [6-7]. PSO like a

genetic algorithm (GA) is a population (swarm) based

optimization tool. One major difference between PSO and

traditional evolutionary computation methods is that

particles’ velocities are adjusted, while evolutionary

individuals’ positions are acted upon; it is as if the “fate”

is altered rather than “state” of the PSO individuals [7].

The system initially has a population of random

solutions. Each potential solution, called particle, is flown

through the problem space. The particles have memory

and each particle keeps track of previous best position and

corresponding fitness. The previous best value is called as

‘pbest’. It also has another value called ‘gbest’, which is the

best value of all the particles pbest in the swarm. The basic

concept of PSO technique lies in accelerating each

particle towards its pbest and the gbest locations at each time

step.

The main steps in the PSO are described as follows:

(i) Initialize a population (array) of particles with

random positions and velocities of d dimensions in

the problem space.

(ii) For each particle, evaluate the desired optimization

fitness function in d variables.

(iii) Compare particle’s fitness evaluation with particle’s

pbest. If current value is better than pbest, then set pbest

value equal to the current value and the pbest location

equal to the current location in d-dimensional space.

(iv) Compare fitness evaluation with the population’s

overall previous best. It the current value is better

than gbest, then reset gbest to the current particle’s array

index and value.

(v) Change the velocity and position of the particle

according to equations (1) and (2) respectively. Vid

and Xid represent the velocity and position of ith

particle with d dimensions respectively and, rand1

and rand2 are two uniform random functions.

)(

)(

22

11

idbestid

idbestididid

XGrandc

XPrandcVWV
 (1)

id id idX X V (2)

(vi) Repeat step (ii) until a convergence criterion is met.

The parameters of PSO are described as follows: W
called the inertia weight controls the exploration and

exploitation of the search space because it dynamically

adjusts velocity. Vmax is the maximum allowable velocity

for the particles. If Vmax is too high, then particles will

move beyond good solution and if Vmax is too low, then

particles will be trapped in local minima. c1, c2 termed as

cognition and social components respectively are the

acceleration constants which change the velocity of a

particle towards pbest and gbest. A swarm of particles can

be used locally or globally in a search space.

4. PSO placement and routing

For the preliminary PSO based placement and routing

work presented in this paper, the following assumptions

are made:

(i) The distances between the CLBs and IOBs are taken

in terms of the normalized units.

(ii) Congestion of the channels is not considered for

routing.

(iii) All channels are of equal capacity.

The PSO based placement and routing is demonstrated

on the implementation of a 4-bit BCD counter and a 4-bit

ALU on a Xilinx XC4000 FPGA platform.

4.1 X74_168 counter

X74_168 [8] is a 4-stage, 4-bit, synchronous, loadable,

cascadable, bidirectional binary-coded-decimal counter.

The data on the D - A inputs is loaded into the counter

when the load enable (LOAD) is Low. The LOAD input,

when Low, has priority over parallel clock enable (ENP),

trickle clock enable (ENT), and the bidirectional (U_D)

control. The outputs (QD - QA) increment when U_D and

LOAD are High and ENP and ENT are Low during the

Low-to-High clock transition. The outputs decrement

when LOAD is High and ENP, ENT, and U_D are Low

during the Low-to-High clock transition. The counter

ignores clock transitions when LOAD and either ENP or

ENT are High.

4.2 Arithmetic logic unit (ALU)

A four bit arithmetic logic unit (ALU) performing 32

functions [9] is considered for FPGA implementation. It

has four select signals and two modes of operation. There

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

are 16 logical functions and 16 arithmetic functions which

are performed when mode is set to high and low

respectively. Different functions are chosen based on the

select signals.

4.3 Xilinx XC4000 FPGA model

The Xilinx XC4000 FPGA contains 196 CLBs in a

14 14 matrix. The four bit BCD counter (X74_168) and

the arithmetic logic unit (SN74181 ALU) are

implemented on Xilinx XC4000 FPGA and its placement

and routing are carried out using Mentor Graphics (Figs.

2 and 3 respectively). The output of the netlist file uses 7

CLBs and 14 IOBs to implement the BCD counter (Fig.

2) and, 13 CLBs and 22 IOBs to implement ALU (Fig. 3).

The netlist files are used in generating random placement

and routing for use by PSO particles in the next

subsection.

Fig. 2 X74_168 Counter implementation by
mentor graphics using the xilinx XC4000 family

Fig. 3 ALU implementation by mentor graphics
using the xilinx XC4000 family of logic gates

4.4 PSO placement and routing

The position vectors for both the IOB and CLB

locations are randomly initialized. This is a two fold

process. First, the IOB positions selected randomly are

fixed and the CLBs are moved keeping their connections

same and changing the CLBs positions on the FPGA for

finding their optimal locations. After the CLBs move for

some iterations and get a relatively better position,

measured by the fitness function, the CLBs are fixed and

the IOBs are moved keeping the connections same and

changing the IOBs positions on the FPGA. This process is

repeated until no change in the fitness function is found.

Each PSO particle represents a Xilinx XC4000 FPGA

with 14 14 CLBs. For the BCD counter, the 7 CLBs and

14 IOBS are randomly placed on the FPGA and allowed

to move within the 14 14 space. First, the coordinates

(row, column) of the 7 CLBs on the FPGA are taken as

the “position vector” of each swarm particle. This means

each swarm particle position is matrix of 7 2. The

fitness function or the performance function of the

particles is evaluated as the sum of the distances of the

respective connections between the CLBs wherever

applicable. For example, if the output of a CLB at

location [row2, column2] is an input to a CLB at location

[row1, column1], the fitness is calculated as [absolute
(row1-row2) + absolute (column1-column2)].

The pbest of each particle stores the position vector

(locations of all the 7 CLBs on the FPGA) where the

fitness function is the lowest. The gbest stores the position

vector (locations of all the 7 CLBs) with the lowest

fitness function of the particle in the whole swarm. The

pbest and the gbest are continuously updated whenever a

position vector with a lower fitness is found for each

particle and the swarm respectively. The gbest is the global

optimal position vector for the FPGA placement. The

same process is then repeated but this time the CLBs

positions are fixed and IOBs are moved, and optimized.

The procedure is similar to the ALU circuit with the

only difference that the number of IOBs is now 22 and

CLBs is 13.

5. Results

A swarm of 25 particles randomly initialized is used

for FPGA placement and routing for the BCD counter and

ALU described above.

Figure 4 shows the position vector of the CLBs and

IOBs corresponding to initial gbest of the swarm for the

counter circuit with an initial fitness value of 533. A

number of trials yielded a fitness of 386 on average over

2000 PSO iterations. Figure 5 shows the position vector

of the gbest obtained after 2000 explorations on a given

trial.

Figure 6 shows the position vector of the CLBs and

IOBs corresponding to the initial gbest of the swarm for the

ALU circuit with an initial fitness value of 892. A number

of trials yielded a fitness of 672 on average over 2000

PSO iterations. Figure 7 shows the position vector of the

gbest for the ALU circuit obtained after 2000 iterations on

a given trial.

The results show that when PSO is applied to choose

optimal positions for the CLBs placement and routing, the

CLBs have been found to be placed close to each other. In

this experiment, the CLBs’ positions are restricted from

overlapping. If this restriction is removed, all the CLBs

are found to overlap with the pbest and gbest fitness’s of the

particles and the swarm respectively zero. The results

obtained above for the counter and the ALU can be

further improved over a large number of PSO iterations.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7

19

27

1

2

6

3

5

30

22

20

29

26

18

24

28

25

21

23

17

2

2

2

2

2

4

4

2

2

4

2

2

4

4

2

2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7

19

27

1

2

6

3

5

30

22

20

29

26

18

24

28

25

21

23

17

2

2

2

2

2

4

4

2

2

4

2

2

4

4

2

2

Fig. 4 initial gbest vector for counter (cost 533)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3 4

6

7

17

21

20

27

25

26

22

18

29

30 24

28

23

19 4

2

2

4

2

2

4

2

2

2

2

2

4

2

2

5

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3 4

6

7

17

21

20

27

25

26

22

18

29

30 24

28

23

19 4

2

2

4

2

2

4

2

2

2

2

2

4

2

2

5

Fig. 5 Final gbest vector for counter (cost 337)

2

13

9

3

5

4 12

11

1

7

8

2

10

6

2

3

2

2

3

2

2

17

18

19

20

2122

23

24

25

26

27

2829 30

31

32

33

34

35 36

37

38

2

2

13

9

3

5

4 12

11

1

7

8

2

10

6

2

3

2

2

3

2

2

17

18

19

20

2122

23

24

25

26

27

2829 30

31

32

33

34

35 36

37

38

2

Fig. 6 Initial gbest vector for ALU (cost 892)

Conclusions

The preliminary work presented in this paper shows

that PSO has the potential to be used for solving the

FPGA placement and routing problem. The digital circuit

implementation of FPGA platforms can be carried out

more efficiently by optimizing the placement and routing

of the logic blocks. Preliminary results on the Xilinx

FPGA have been presented to minimize the

interconnection lengths between the CLBs and IOBs for a

counter and an ALU. Future work is to include the

minimization of the interconnection distances between the

CLBs and the IOBs subject to the channel congestion of

the FPGA and the compare with existing placement

algorithms. Different fitness functions for the PSO search

will be explored such as the bounding box function.

1

2

3

4

5

6

7

8

910

11

12

13

21

17

34

23

26

32

31

25

30

18

36

37

38

27

33

28 35

19

22

2920 24

2

2

3

2

2

2
2

2

1

2

3

4

5

6

7

8

910

11

12

13

21

17

34

23

26

32

31

25

30

18

36

37

38

27

33

28 35

19

22

2920 24

2

2

3

2

2

2
2

2

Fig. 7 final gbest vector for ALU (cost 669)

References

[1] C. Sechen, K. Lee, “An Improved Simulated Annealing

Algorithm for Row-Based Pplacement,” Proc. IEEE Int.

Conf. Computer-Aided Design, pp. 478 – 481, Nov 1987.

[2] Xilinx, Inc., XACT Development System Reference Guide,

Jan 1993.

[3] N. Togawa, M. Sato, T. Ohtsuki, “A Simultaneous

Placement and Global Routing Algorithm for Field-

programmable Gate Arrays,” presented at FPGA94,

Berkeley, CA, 1994.

[4] J. Beetem, “Simultaneous Placement and Routing of the

LABYRINTH Reconfigurable Logic Array,” Int.

Workshop on Field-Programmable Logic and Applications,

pp.232 – 243, Oxford, England, 1991.

[5] V. G. Gudise, G. K. Venayagamoorthy, “Comparison of

Particle Swarm Optimization and Backpropagation as

Training Algorithms for Neural Networks”, IEEE Swarm

Intelligence Symposium, April, 2003, pp. 110 - 117.

[6] J. Kennedy, R. Eberhart, "Particle swarm optimization".

Proceedings, IEEE International Conf. on Neural

Networks, Perth, Australia. Vol. IV, pp. 1942–1948, 1995.

[7] J. Kennedy, Russell C. Eberhart, Yuhui Shi, Swarm

Intelligence, Morgan Kaufmann Publishers, 2001.

[8] http://toolbox.xilinx.com/docsan/2_1i/data/common/lib/lib

11_20.htm

[9] K. Hwang, Computer Arithmetic: Principles, Architecture

and Design, John Wiley, 1979, ISBN 0-471-03496-7.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04)
0-7695-2145-2/04 $ 20.00 © 2004 IEEE

	Swarm Intelligence for Digital Circuits Implementation on Field Programmable Gate Arrays Platforms
	Recommended Citation

	Swarm intelligence for digital circuits implementation on field programmable gate arrays platforms

