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Abstract

Field programmable gate arrays (FPGAs) are 
becoming increasingly important implementation 

platforms for digital circuits. One of the necessary 

requirements to effectively utilize the FPGA’s resources is 
an efficient placement and routing mechanism. This paper 

presents an optimization technique based on swarm 

intelligence for FPGA placement and routing. Mentor 
graphics technology mapping netlist file is used to 

generate initial FPGA placements and routings which are 

then optimized by particle swarm optimization (PSO). 
Results for the implementation of a binary coded decimal 

bidirectional counter and an arithmetic logic unit on a 

Xilinx FPGA show that PSO is a potential technique for 
solving the placement and routing problem. 

1. Introduction

Field programmable gate arrays (FPGA’s) have been 

attracting alot attention for digital platform 

implementations because of their programmability and 

relatively high density. In particular, SRAM-based 

FPGA’s make use of lookup tables (LUT’s) or similar 

circuits, as their basic blocks, called logic blocks. 

Since logic blocks and routing resources are 

predefined in an FPGA chip, it is difficult to fit a large, 

dense design on any given FPGA while meeting 

aggressive system-level delay constraints. Optimizing for 

100% wirability is often at odds with optimization for 

speed. Critical paths must be given priority during 

placement. Simulated annealing has been applied to the 

FPGA placement problem in a manner similar to the 

placement of standard cells [1]. While standard cell 

techniques are sufficient for those FPGAs that invest a 

large portion of their chip area in routing resources [2], 

special care must be taken in FPGA architectures that 

seek to limit the cost of routing. Min-cut placement 

combined with hierarchical global routing that introduces 

signal congestion into placement process is used in [3]. A 

penalty-driven improvement algorithm is used in [4]. 

A new technique called the PSO that emerges and 

allies itself to evolutionary algorithms based on 

simulation of the behavior of a flock of birds or school of 

fish. Swarm algorithms differ from evolutionary 

algorithms most importantly in both metaphorical 

explanation and how they work.  What is new with the 

swarm algorithm is that the individuals (particles) persist 

over time, influencing one another’s search of the 

problem space. The particles in PSO are known to have 

fast convergence to local/global optimum position(s) over 

a small number of iterations [5]. 

In this paper the concept of PSO is applied to solve 

FPGA placement and routing. Mentor graphics 

technology mapped netlist file is used to generate the 

initial FPGA placements and routings which are then 

optimized by PSO. This is demonstrated on the 

implementation of a 4-bit BCD counter and an ALU on a 

Xilinx FPGA.  

The organization of this paper is as follows: Section 2 

gives a brief introduction of a FPGA, the placement and 

routing problem; Section 3 explains the PSO algorithm. 

Section 4 describes the PSO based placement and routing 

and Section 5 presents some results. 

2. FPGA placement and routing

FPGAs are programmable devices with relatively high 

density. Symmetrical array (Fig. 1), row-based and 

hierarchical-PLD are most commonly used architectures 

with either multiplexer or look-up table logic. In this 

paper, Xilinx FPGAs are considered. 

Xilinx LCA (logic cell array) basic logic cells, called 

as configurable logic blocks (CLBs) contain both 

combinational logic and flip-flops. CLBs are based on the 

use of SRAM as a look-up table. The truth table for a K-

input logic function is stored in a 2Kx1 SRAM. The 

address lines of the SRAM function as inputs and output 

line of the SRAM provides the value of the logic function. 

Xilinx FPGA has three major configurable elements: 

configurable logic blocks (CLBs), input/output blocks 

(IOB), and interconnects. The CLBs provide the 
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functional elements for constructing logic. The IOBs 

provide the interface between the package pins and 

internal signal lines. The programmable interconnects 

provide routing paths to connect the inputs and outputs of 

the CLBs and IOBs to appropriate networks. 
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Fig. 1 Symmetrical array FPGA model 

3. Particle swarm optimization

PSO is a form of evolutionary computation technique 

developed by Kennedy and Eberhart [6-7]. PSO like a 

genetic algorithm (GA) is a population (swarm) based 

optimization tool. One major difference between PSO and 

traditional evolutionary computation methods is that 

particles’ velocities are adjusted, while evolutionary 

individuals’ positions are acted upon; it is as if the “fate” 

is altered rather than “state” of the PSO individuals [7]. 

The system initially has a population of random 

solutions. Each potential solution, called particle, is flown 

through the problem space. The particles have memory 

and each particle keeps track of previous best position and 

corresponding fitness. The previous best value is called as 

‘pbest’. It also has another value called ‘gbest’, which is the 

best value of all the particles pbest in the swarm. The basic 

concept of PSO technique lies in accelerating each 

particle towards its pbest and the gbest locations at each time 

step.

The main steps in the PSO are described as follows:  

(i) Initialize a population (array) of particles with 

random positions and velocities of d dimensions in 

the problem space. 

(ii) For each particle, evaluate the desired optimization 

fitness function in d variables. 

(iii) Compare particle’s fitness evaluation with particle’s 

pbest. If current value is better than pbest, then set pbest

value equal to the current value and the pbest location 

equal to the current location in d-dimensional space. 

(iv) Compare fitness evaluation with the population’s 

overall previous best. It the current value is better 

than gbest, then reset gbest to the current particle’s array 

index and value. 

(v) Change the velocity and position of the particle 

according to equations (1) and (2) respectively. Vid

and Xid represent the velocity and position of ith

particle with d dimensions respectively and, rand1

and rand2 are two uniform random functions. 

)(
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idbestid
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XGrandc
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(vi) Repeat step (ii) until a convergence criterion is met. 

The parameters of PSO are described as follows: W
called the inertia weight controls the exploration and 

exploitation of the search space because it dynamically 

adjusts velocity. Vmax is the maximum allowable velocity 

for the particles. If Vmax is too high, then particles will 

move beyond good solution and if Vmax is too low, then 

particles will be trapped in local minima. c1, c2 termed as 

cognition and social components respectively are the 

acceleration constants which change the velocity of a 

particle towards pbest and gbest. A swarm of particles can 

be used locally or globally in a search space. 

4. PSO placement and routing

For the preliminary PSO based placement and routing 

work presented in this paper, the following assumptions 

are made: 

(i) The distances between the CLBs and IOBs are taken 

in terms of the normalized units. 

(ii) Congestion of the channels is not considered for 

routing. 

(iii) All channels are of equal capacity. 

The PSO based placement and routing is demonstrated 

on the implementation of a 4-bit BCD counter and a 4-bit 

ALU on a Xilinx XC4000 FPGA platform. 

4.1 X74_168 counter

X74_168 [8] is a 4-stage, 4-bit, synchronous, loadable, 

cascadable, bidirectional binary-coded-decimal counter. 

The data on the D - A inputs is loaded into the counter 

when the load enable (LOAD) is Low. The LOAD input, 

when Low, has priority over parallel clock enable (ENP), 

trickle clock enable (ENT), and the bidirectional (U_D) 

control. The outputs (QD - QA) increment when U_D and 

LOAD are High and ENP and ENT are Low during the 

Low-to-High clock transition. The outputs decrement 

when LOAD is High and ENP, ENT, and U_D are Low 

during the Low-to-High clock transition. The counter 

ignores clock transitions when LOAD and either ENP or 

ENT are High. 

4.2 Arithmetic logic unit (ALU)  

A four bit arithmetic logic unit (ALU) performing 32 

functions [9] is considered for FPGA implementation. It 

has four select signals and two modes of operation. There 
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are 16 logical functions and 16 arithmetic functions which 

are performed when mode is set to high and low 

respectively. Different functions are chosen based on the 

select signals. 

4.3 Xilinx XC4000 FPGA model 

The Xilinx XC4000 FPGA contains 196 CLBs in a 

14 14 matrix. The four bit BCD counter (X74_168) and 

the arithmetic logic unit (SN74181 ALU) are 

implemented on Xilinx XC4000 FPGA and its placement 

and routing are carried out using Mentor Graphics (Figs. 

2 and 3 respectively).  The output of the netlist file uses 7 

CLBs and 14 IOBs to implement the BCD counter (Fig. 

2) and, 13 CLBs and 22 IOBs to implement ALU (Fig. 3). 

The netlist files are used in generating random placement 

and routing for use by PSO particles in the next 

subsection. 

Fig. 2 X74_168 Counter implementation by 
mentor graphics using the xilinx XC4000 family 

Fig. 3 ALU implementation by mentor graphics 
using the xilinx XC4000 family of logic gates 

4.4 PSO placement and routing

The position vectors for both the IOB and CLB 

locations are randomly initialized. This is a two fold 

process. First, the IOB positions selected randomly are 

fixed and the CLBs are moved keeping their connections 

same and changing the CLBs positions on the FPGA for 

finding their optimal locations. After the CLBs move for 

some iterations and get a relatively better position, 

measured by the fitness function, the CLBs are fixed and 

the IOBs are moved keeping the connections same and 

changing the IOBs positions on the FPGA. This process is 

repeated until no change in the fitness function is found. 

Each PSO particle represents a Xilinx XC4000 FPGA 

with 14 14 CLBs. For the BCD counter, the 7 CLBs and 

14 IOBS are randomly placed on the FPGA and allowed 

to move within the 14 14 space. First, the coordinates 

(row, column) of the 7 CLBs on the FPGA are taken as 

the “position vector” of each swarm particle. This means 

each swarm particle position is matrix of 7 2. The 

fitness function or the performance function of the 

particles is evaluated as the sum of the distances of the 

respective connections between the CLBs wherever 

applicable.  For example, if the output of a CLB at 

location [row2, column2] is an input to a CLB at location 

[row1, column1], the fitness is calculated as [absolute 
(row1-row2) + absolute (column1-column2)].

The pbest of each particle stores the position vector 

(locations of all the 7 CLBs on the FPGA) where the 

fitness function is the lowest. The gbest stores the position 

vector (locations of all the 7 CLBs) with the lowest 

fitness function of the particle in the whole swarm. The 

pbest and the gbest are continuously updated whenever a 

position vector with a lower fitness is found for each 

particle and the swarm respectively. The gbest is the global 

optimal position vector for the FPGA placement. The 

same process is then repeated but this time the CLBs 

positions are fixed and IOBs are moved, and optimized. 

The procedure is similar to the ALU circuit with the 

only difference that the number of IOBs is now 22 and 

CLBs is 13. 

5. Results

A swarm of 25 particles randomly initialized is used 

for FPGA placement and routing for the BCD counter and 

ALU described above.  

Figure 4 shows the position vector of the CLBs and 

IOBs corresponding to initial gbest of the swarm for the 

counter circuit with an initial fitness value of 533. A 

number of trials yielded a fitness of 386 on average over 

2000 PSO iterations. Figure 5 shows the position vector 

of the gbest obtained after 2000 explorations on a given 

trial.

Figure 6 shows the position vector of the CLBs and 

IOBs corresponding to the initial gbest of the swarm for the 

ALU circuit with an initial fitness value of 892. A number 

of trials yielded a fitness of 672 on average over 2000 

PSO iterations. Figure 7 shows the position vector of the 

gbest for the ALU circuit obtained after 2000 iterations on 

a given trial.  

The results show that when PSO is applied to choose 

optimal positions for the CLBs placement and routing, the 

CLBs have been found to be placed close to each other. In 

this experiment, the CLBs’ positions are restricted from 

overlapping. If this restriction is removed, all the CLBs 

are found to overlap with the pbest and gbest fitness’s of the 

particles and the swarm respectively zero.  The results 

obtained above for the counter and the ALU can be 

further improved over a large number of PSO iterations. 

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



2

3

4

5

6

7

8

9

10

11

12

13

14

15

2             3            4           5           6            7            8             9         10          11          12 13          14          15

2             3            4           5           6            7            8             9         10          11          12 13          14          15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7

19

27

1

2

6

3

5

30

22

20

29

26

18

24

28

25

21

23

17

2

2

2

2

2

4

4

2

2

4

2

2

4

4

2

2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2             3            4           5           6            7            8             9         10          11          12 13          14          15

2             3            4           5           6            7            8             9         10          11          12 13          14          15

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7

19

27

1

2

6

3

5

30

22

20

29

26

18

24

28

25

21

23

17

2

2

2

2

2

4

4

2

2

4

2

2

4

4

2

2

Fig. 4 initial gbest vector for counter (cost 533) 
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Fig. 5 Final gbest vector for counter (cost 337) 
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Fig. 6 Initial gbest vector for ALU (cost 892) 

Conclusions

The preliminary work presented in this paper shows 

that PSO has the potential to be used for solving the 

FPGA placement and routing problem. The digital circuit 

implementation of FPGA platforms can be carried out 

more efficiently by optimizing the placement and routing 

of the logic blocks. Preliminary results on the Xilinx 

FPGA have been presented to minimize the 

interconnection lengths between the CLBs and IOBs for a 

counter and an ALU. Future work is to include the 

minimization of the interconnection distances between the 

CLBs and the IOBs subject to the channel congestion of 

the FPGA and the compare with existing placement 

algorithms. Different fitness functions for the PSO search 

will be explored such as the bounding box function. 
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