
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jun 2009 

Harmonic Identification Using an Echo State Network for Adaptive Harmonic Identification Using an Echo State Network for Adaptive 

Control of an Active Filter in an Electric Ship Control of an Active Filter in an Electric Ship 

Jing Dai 

Ganesh K. Venayagamoorthy 
Missouri University of Science and Technology 

Ronald G. Harley 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
J. Dai et al., "Harmonic Identification Using an Echo State Network for Adaptive Control of an Active Filter 
in an Electric Ship," Proceedings of the International Joint Conference on Neural Networks, 2009. IJCNN 
2009, Institute of Electrical and Electronics Engineers (IEEE), Jun 2009. 
The definitive version is available at https://doi.org/10.1109/IJCNN.2009.5178808 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1652&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/IJCNN.2009.5178808
mailto:scholarsmine@mst.edu


Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

Harmonic Identification using an Echo State Network for Adaptive
Control of an Active Filter in an Electric Ship

ling Dai, Ganesh K. Venayagamoorthyand Ronald G. Harley

Abstract- A shunt active filter is a power electronic device
used in a power system to decrease "harmonic current
pollution" caused by nonlinear loads. The Echo State Network
(ESN) has been widely used as an effective system identifier
with much faster training speed than the other Recurrent
Neural Networks (RNNs). However, only a few attempts have
been made to use an ESN as a system controller. As the first
attempt to use an ESN in indirect neurocontrol, this paper
proposes an indirect adaptive neurocontrol scheme using two
ESNs to control a shunt active filter in a multiple-reference
frame. As the first step in the proposed neurocontrol scheme,
an online system identifier using an ESN is implemented in the
Innovative Integration M67 card consisting of the
TMS320C6701 processor to identify the load harmonics in a
typical electric ship power system. The shunt active filter and
the ship power system are simulated using a Real-Time Digital
Simulator (RTDS) system. The required computational effort
and the system identification accuracy of an ESN with different
dynamic reservoir size are discussed, which can provide useful
information for similar applications in the future. The testing
results in the real-time implementation show that the ESN is
capable of providing fast and accurate system identification for
the indirect neurocontrol of a shunt active filter.

I. INTRODUCTION

Shunt active filters have been proven to be an effective
tool to filter the harmonic currents injected into the power
network by the wide use of power electronic devices [1].
Fig. 1 shows the structure of a shunt active filter connected
to a typical electric ship power system [2]. The active filter
is connected to the point of common coupling (PCC) via a
three phase inductor Lf . Based on monitoring the harmonics
in the three-phase load currents, iaL, ibL, icL, the shunt active
filter injects three-phase currents, iaj , hj, icfi with the exact
harmonics to cancel those present in iaL, hL, icL• This is done
by controlling the PWM inverter in an appropriate way.

The echo state network (ESN) [3] is a new type of
Recurrent Neural Network (RNN), which has a much faster
training speed than other types ofRNNs. Because of its low
training complexity, the ESN has been used for system
identification purposes in applications [4,5] . However, very
few attempts have been made to exploit the feasibility of
using an ESN as a system closed-loop controller. In [6] and
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[7], a direct neurocontrol method using an ESN is applied to
the traditional problem of motor speed control; however,
due to its training strategy, the direct neurocontrol method
can only be used over a limited operating range. In [8], a
Genetic Algorithm-aided direct adaptive control method
using an ESN is proposed, but the performance of the direct
adaptive neurocontrol method is highly dependent on the
performance of the genetic algorithm, which yields
computational complexity. Compared to the many
applications of using an ESN as a system identifier [4, 5, 9,
10], the feasibility of using an ESN for system control
purposes still needs to be investigated.
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A
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Fig.l. A shunt active filter connected to a typical shipboard power system.

As a first attempt to apply an ESN in a closed-loop
control system of a shunt active filter, this paper proposes an
indirect adaptive neurocontrol scheme using an ESN. The
overall neurocontrol scheme using an ESN in a multiple­
reference frame is shown in Section II. The online training
algorithm of an ESN as a system identifier in the proposed
indirect neurocontrol scheme is described in Section III. To
test the feasibility of the ESN system identifier for indirect
neurocontrol of a shunt active filter, the ESN system
identifier is implemented in the Innovative Integration M67
card consisting of the TMS320C670 1 processor to identify
the load harmonics. The shipboard power system and the
shunt active filter are implemented on a Real-Time Digital
Simulator (RTDS) interfaced to the M67 DSP card. Section
IV shows the testing results of the real-time hardware
implementation. These results show that the ESN is capable
of providing fast and accurate system identification for the
proposed indirect neurocontrol scheme.
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II. INDIRECT ADAPTIVE NEUROCONTROL SCHEME
USING AN ECHO STATE NETWORK

A. Multiple Reference Frame-Based Harmonic Extraction
Fig. 2 shows the overall scheme for the adaptive

neurocontrol of a shunt active filter in the multiple-reference
frame.

Vat
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ltpcc, a
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ltpcc, c

Neurocontrol
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Fig. 2. Adaptive control structure foranactive filter.

An AC-DC power electronic converter supplying an
adjustable resistance is used as a nonlinear load, which
injects current harmonics into the load currents iaL, ibL, icL•

The 5th and 7th harmonics in the load current, which are the
major current harmonics present, are extracted using
multiple-reference frames. The multiple-reference frame
consists of multiple abc-to-dq transforms using a
transformation angle rotating at multiples of the fundamental
frequency, (e.g. Os), which converts the harmonics in iaL, lu,
icL to de currents idS*, iqs* in a reference frame called the 5th

harmonic reference frame (HRF). A low pass filter then
extracts these de currents by eliminating all the higher
frequency components. The iaj , ibj , icj currents are also
transformed into the 5th HRF, and their d, q components idS,

iqs are each compared with the idS*, iqs* respectively, to form
the two errors edS, eqs. The r: harmonic currents are

d i h . thprocesse In t e same way usmg a 7 HRF. edS, eqs, ed7, eq7

are used by the neurocontrol scheme and fed to the
neurocontroller to control the voltage command of the PWM
inverter. When the errors are eliminated by the
neurocontroller, the shunt active filter injects exactly the
correct current harmonics to cancel the current harmonics
caused by the nonlinear load, and hence no current

harmonics are injected to the power source.

B. Indirect Adaptive Neurocontrol using ESN

The structure of the proposed indirect adaptive ESN­
based control is shown in Fig. 3. It consists of two separate
ESNs, namely, one as the neuroidentifier and the other as
the neurocontroller.

'----Erro-r----- '-------,__---J

Propagation

Fig. 3. Structure oftheindirect adaptive ESN-based control.

The ESN based neuroidentifier is used to provide the
dynamic model of the plant in an online fashion. The plant
input v= [VdS*, vqs*, Vd7*, Vq7*J and output ei= redS, eqs, ed7,
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eq7] at time k are fed into the ESN identifier to estimate the
plant output ej =[ed5,eq5,ed7,eq7] at time k+1. The error

between e and e(as defined in equation (7) in Appendix) is
used to update the weights inside the ESN identifier. At
each time step, the ESN based neurocontroller generates the
control signals as the plant inputs in order to drive the plant
output to the desired value , which is e

j
*= [0, 0, 0, 0], and

finally the error between e
j

and e
j
* is back propagated

through the ESN identifier to update the weights inside the
ESN controller.

III. ONLINETRAINING OF THE ECHO STATE NETWORK
FOR SYSTEM IDENTIFICATION

A. Structure ofthe ESN
The ESN [3], [11-14] is a special form of recurrent neural

network proposed in recent years for modeling complex
dynamic systems. A large (e.g. 100 hidden neurons) RNN is
used as a "dynamic reservoir" in the hidden layer, which can
be excited by suitably presented input and/or feedback of
output. The architecture of the ESN used in this paper is
shown in Fig. 4.

Internal Units

C6~0

j
\~0 , .

Input Unit)'T 0" ~\ Output Unit

0 ········....0 1J.l~O ~ 0
~~ ~.

u(n) x(n) yen)

Fig. 4. ESNarehiteeture[3].

The input weight matrix Wn
, internal weight matrix Wand

output feedback matrix T0ack do not change during the entire
training process, after initially generated as shown in [4].
Only the output matrix wut, is updated during online
training. Therefore, maintaining the capability of modeling
complex dynamic systems, the training of the ESN is much
less complex compared to the other RNNs. The detailed
training algorithm ofthe ESN is shown in the Appendix.

B. Online Training ofthe ESN Identifier

The ESN identifier is trained to predict the errors between
the load current harmonics and the harmonics of the current
injected by the shunt active filter , as shown in Fig. 3.

The training process consists of two stages [15]: in the
first stage, which is called forced training, the ESN identifier
is trained to track the plant dynamics when the inputs to the
plant are perturbed using Pseudo Random Binary Signals
(PRBS); in the second stage , which is called natural training,
the ESN identifier is trained to learn the dynamics of the
plant when the PRBS is removed and the system is exposed
to a large disturbance such as a sudden load change. In each
case the estimated output of the identifier is compared with
the actual output of the plant and the resultant error vector is
back-propagated through the ESN identifier to adjust its
weights.

Fig. 5 shows the schematic diagram of forced training.
First, the switches S, through S4 are at position 1.
Conventional PI controllers are used to obtain the steady­
state inputs of the plant, namely, v= [VdS*, vqs*, Vd7*, Vq7*]'
The steady state values are listed in Table I for a particular
condition of the load.

TABLEI STEADY STATEVALUES OF PLANT INPUTS
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Fig. 5. Forced training ofthe ESN identifier.
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Fig.7. L aboratory hardware setup for the online train ing of the ESN
identifier. T DL denotes tim e delay

between the actual values and these predicted values are
calculated and used to update the weights of the ESN
identifier. As the entire implementation is under real-time
operation, the DSP and the RTDS can emulate the actual
performance ofthe ESN identifier in practical applications.

0.14 ,--~-~-~-~---,

I , ... • ~ :r" \ .
0 .12 -,-, * eq 5V d 7 0.1

0.08

*V q5 ~ 0.06

,/ ~ ,/ ed 5w 0.04

'" * ]
Vq 7

0

*
V d- -0.02,/ .)

The plant is then stopped and switches S1 to S4 are
switched from position I to position 2. Under this
condition, the previously steady inputs to the plant, [VdS* ,
vqs*, Vd7* , Vq7*] ' are disturbed by adding a pseudo random
binary signal (PRBS) to the steady-state inputs. Each
injected PRBS magnitude is limited to ± 10% of its stead­
state value, and contains frequencies of 30, 60 and 90 Hz.
The PRBS disturbs the system and causes small deviations
of edS, eqs, ed7and eq7, so that the ESN identifier can learn the
system dynamics close to the normal operating range. Fig.
6-(a) shows the waveforms of disturbed VdS* , vqs*, Vd7* and
Vq7*. Fig. 6-(b) shows the waveforms of the corresponding
edS, eqs, ed7 and eq7 caused by the disturbance. So the vector
v= [VdS* , vqs*, Vd7*, Vq7*] which is the input to the power
system, and the vector ej= [edS, eqs, ed7, eq7] which is the
output from the power system, are used, for the training the
ESN identifier.

0.4 0.6
Time (seond)

(a) Adding 10% PRBS to . .
sreadv state PI output (b) Deviation of ei

Fig. 6. Inputs and outputs of the plant with PRBS disturbance.

IV. HARDWARE IMPLEMENTATION OF THEESN
IDENTI FIER

o

5

-5

-10

A. Hardware Setup

The ESN identifier in the proposed indirect adaptive
neurocontrol scheme is implemented on the Innovative
Integration M67 card consisting of a TMS320C6701 DSP.
The shunt active filter and the shipboard power system are
simulated on a real-time digital simulator (RTDS) [16]. The
connections and the flow of the data between the DSP and
the RTDS are shown in Fig. 7-(a). First, the system is
modeled with the simulation software RSCAD in the remote
workstation, and then RTDS downloads and runs the
runtime file generated by the software, finally the real time
simulation values calculated by RTDS are sent to the M67
DSP card host personal computer via the DSP-RTDS
interface and used for online training of the ESN identifier.
Fig. 7-(b) shows the online training algorithm of the ESN
identifier. At each time step, the ESN identifier predicts the
outputs, which is the error vector between the harmonics of
the load currents and those of the current injected by the
shunt active filter, with the voltages transformed by the 5-th
and 7-th reference frames as the inputs. Then, the errors

B. Input Output Scaling

The relevant inputs and outputs of the simulated shipboard
power system on the RTDS are divided by a scaling factor,
because the range of the RTDS AID channels have to be
kept within [-10, 10] volts. In order to find the proper
scaling factors for each channel, the simulation is run for a
sufficiently long time, and the maximum absolute values of
the data are used as the scaling factors for each harmonic
component. The data are divided by these scaling factors
before sent to the output channels of the RTDS, which are
the inputs to the ESN identifier. Table II lists the scaling
factors for each harmonic component.

TABLE II Scaling Factors of RTDS Outputs

5-d 5-q 7-d 7-q
Input v* 15 1.9 12 3
Output e, 0.2 0.333 0.05 0.2
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Fig.S. Online training results of the ESN identifier with 50 internal units .
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Fig.8 shows that the ESN with 50 internal units is capable
of providing accurate modeling of the dynamic plant. The
curve of the ESN estimated output and the curve of the
simulation value fit well in all four figures .

D. The Effe ct of the Internal Unit Size on the ESN
Identifier

To evaluate the dynamic system modeling capability of
the ESN with different sizes of "dynamic reservoir", two
other ESNs with 20 and 100 internal units respectively are
tested and compared with the ESN with 50 internal units.
For convenience only one of the estimated outputs of the

ESN identifier (ed 7 ) and its desired output (ed 7 , simulation

output obtained from the RTDS) are shown in Figs. 9-(a)
and (b) respectively. The comparison of Fig. 9 and Fig. 8-(c)
shows that all three ESN identifier s are capable of providing
accurate modeling of the dynamic plant. Comparisons of the
other three outputs yield similar results.

However , ESN identifiers with more internal units yield
better dynamic modeling capability, but also require more
computational effort and start introducing a noticeable time
lag, therefore making them less acceptable as a dynami c
system identifier .
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(a) ESN estimated output ed 5 and RTDS simulation value ed 5 .

Number of intemal units=50.

-1

0.1

(b) ESN estimated output e q5 and RTDS simulation value e q5 .

Number of internal units=50.
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a
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0. 2
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~

(c) ESN estimated output ed7 and RTDS simulation value ed 7 .

Number of internal units=50 .

0.3

0.4

2.5

-0.5

1.5
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a

C. Test Results of the ESN Identifier
The online training results of an ESN identifier with 50

internal units is shown in Fig. 8. Figs. 8-(a), (b), (c) and (d)
show the four outputs estimated by the ESN identifier and
the desired values obtained from the RTDS simulation
respectively.
0. 7 ,--- - - - - - - - - - - - - - - - -----,
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10.1r:--~--~-~--~-~--~---,

This paper proposes an indirect adaptive neurocontrol
scheme which uses two Echo State Networks (ESNs) to
control a shunt active filter. As the first step in the proposed
neurocontrol scheme , the feasibility of the ESN identifier is
evaluated in a real-time environment. The ESN identifier is
implemented on an Innovative Integration M67 DSP card to
identify the load harmonics. The shunt active filter and a
typical shipboard power system are simulated using a real­
time digital simulator system. Three ESN identifiers with
different numbers of internal units are tested and evaluated,
and the results could provide an empirical reference for
similar applications in the future. The testing results in the
real-time implementation show that the ESN is capable of
providing fast and accurate system identification for the
indirect neurocontrol of shunt active filter.

ApPENDIX

The detailed steps of the online training algorithm for the
ESN [4, 15] are summarized below :
I) Generate a recurrent neural network following certain

rules to ensure its "echo state property"
Four weight matrices are needed. They are the input

weight matrix win, internal weight matrix W, output
feedback matrix J-0ack and the output weight matrix W"ut.
Once win, Wand J-0ack have been generated, they will not
change during the entire training process. Only the output
weight matrix is updated at each time step.

The echo state property is related to the algebraic
properties of the weight matrix W; however, there is no
known necessary and sufficient algebraic condition which
allows one to decide whether the network has the echo state
property , given win, Wand J-0ack. However, there are certain
conditions which increase the possibility of the RNN having
the echo state property. Usually W is generated by
following the principles described below:

• Generate a sparse matrix Wo and make sure the

mean value of all the weights in it is about zero.
• Normalize Wo to a matrix ~ with unit spectral

radius as:

computational time, given the computational capability of
the implementation hardware.

V. CONCLUSIONS
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(a) Computational time versus number of internal units
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h
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o

o
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10.1,-----~--~---~--~--~----,

10.3 '--_ ---'---__-'----_----"-__--'---_---'__---'---_----'

o

(b) ESN estimated output ed 7 and RTDS simulation value ed 7 .

Number of internal units=100

Fig. 9. Comparison of the ESN estimated output ed 7 and RTDS

0.5

w.=~,
I IAm., I

where Amax is the spectral radius of Wo •

• Scale ~ to W , as

W=a~ ,

(I)

(2)

where a <l.
2) Feed the teacher input and teacher output data

(training data) to the ESN
When the training data is fed to the ESN, it will activate

the dynamics within the dynamic reservoir. At each
sampling step, compute the internal dynamic reservoir states
according to equation (3):

x(n + I) =tanh(u(n + I)W in + x(n)W + y(n)W back
) (3)

where u is the input vector, x is the vector of internal units
and y is the output vector.
Since at sampling step n = 0, x(O) and yeO) are not defined,
the following initial conditions are used:
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• Initialize the network state arbitrarily, e.g. to the
zero state x(0)=0;

• Sety(O)=O.
3) Compute the estimated output of the ESN

Now the output yen) of the ESN is calculated by

equation (4):
y(n+l)=x(n+l)Wout(n) (4)

where Wout(n) denotes the output weight matrix at time step

n.

4) Update the output weights
The estimated output y (n + 1) is compared with the

actual output y(n+1) collected from the RTDS and the error
vector ey is calculated as:

ey=y(n+1)-y(n+1) (5)

The output weights are updated according to equation (6),
as described in [15]:
Wout(n +1)=Wout(n) +nxin +l)Tey(n+ 1)+yx(n)Tey(n) (6)

Where 17 is the learning gain and r is the momentum gain,
and each one is in the range of [0, 1], just like the
parameters used in other types of neural network training
schemes.

The output weights are updated such that the mean
squared training error (MSE) is minimized.

1 r 1 r L

MSE =- L(y(n) - y(n))2 =- L(y(n) - L~out .x(n))2 (7)
r n=l r n=l i=l

where r is the length of the Input/Output sequence used for
training and x(n) contains the states within the dynamic
reservoir.
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