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   Abstract--This paper presents a novel load frequency control 
design approach for a two-area power system that relies on 
unsupervised and supervised learning neural network structure. 
Central to this approach is the prediction of the load disturbance 
of each area at every minute interval that is uniquely assigned to 
a cluster via unsupervised learning process. The controller 
feedback gains corresponding to each cluster center are 
determined using modal control technique. Thereafter, 
supervised learning neural network (SLNN) is employed to learn 
the mapping between each cluster center and its feedback gains.  
A real time load disturbance in either or both areas activates the 
appropriate SLNN to generate the corresponding feedback gains. 
The effectiveness of the control framework is evaluated on the 
Nigerian hydrothermal system.  Several far-reaching simulation 
results obtained from the test system are presented and discussed 
to highlight the advantages of the proposed approach.   
 
   Index Terms: Load Frequency Control, Neural Network, 
Unsupervised Learning, Supervised Learning  

I.  INTRODUCTION 

HE load demand on a present-day power system is 
characterized by continual unknown variations that can 
adversely impact its dynamical process.  For this singular 

reason, it is desirable to balance generated power with time 
varying demand whilst allowing system real power losses. For 
the purpose of management and control, a large power system 
comprises a number of control areas, which are 
interconnected by tie lines. The generating units in each 
control area tend to swing in unionism in respect to a change 
in the demand on the system and therefore can be represented 
by a single equivalent generator. The input and output of the 
equivalent generator is equal to the sum of the inputs and 
outputs respectively of the constituent generators in the area 
and its frequency is equal to the frequency on the common 
bus bar in the area. 

Whenever an interconnected power system experiences a 
change in the demand imposed on it, the frequency of the bus 
voltages and currents and the inter-area tie line power flow 
among interconnected areas deviate from their specified 
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values. The share of the total power demand on the whole 
system carried by the individual generators deviate from their 
optimum values. The deviations in frequency and inter-area 
tie line flow are traditionally restored to their scheduled value 
by a load frequency control (LFC) strategy. In the last the last 
two decades, LFC has been analyzed using classical linear and 
optimal control approaches. 

In recent years, however, LFC design has gradually shifted 
to the use of artificial intelligence systems that admit fuzzy 
control and neural networks [1-6].  What has been clearly 
established is the fact that the satisfactory dynamic behavior 
of a power system can no longer be guaranteed by fixed gain 
controllers over wide operating conditions.  In order to ensure 
well-damped system dynamics over a wide range of operating 
conditions, it is pertinent to adjust controller gains recursively 
in accord with on-line information [4].  

In view of this, an adaptive neural network based load 
frequency control scheme is revisited in this paper.  It is 
essentially an improvement on the earlier work by 
Djoukanovic et al [5].  The parameters monitored on-line in 
ref. [5] which include power system time constant, 
synchronizing power coefficient and the frequency bias 
setting are replaced in this present work by direct monitoring 
of the area load changes.  Relying on the monitored load 
changes of each area, an adaptive LFC is then constructed via 
unsupervised and supervised neural networks. The 
effectiveness of the proposed control approach is reasonably 
well evaluated via computer simulation of a Nigerian grid 
system comprising a thermal area interconnected with a hydro 
area.  The simulation results obtained for realistic system 
parameters and over wide operating conditions are set forth 
and discussed. 

II.  SYSTEM MODEL AND STATE EQUATIONS 

The Nigerian electric system used as test system is 
essentially an interconnection of thermal area and hydro area.  
The two-area system model shown in Fig. 1 therefore, results 
with the derived equivalent parameters from available base 
data for each area given in the appendix. 
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Fig. 1. Nigerian two-area hydrothermal system. 

 
The load frequency control problem at hand is that of 
maintaining zero steady state deviations of the frequency and 
tie line flows when either or both areas are subjected to time 
dependent load changes. For the problem formulation, the 
state equations for the two-area system are expressed in 
compact form as follows: 

v(t)Cx(t)y

Lw(t)Bu(t)Ax(t)(t)
.
x

+=

++=                             (1) 

Where  

x(t) = [∆f1,∆Pm1,∆Ps1,∆Pv1,∆Ptie12,∆f2,∆Pm2,∆Ph2,∆Pv2]
T 

   u(t) = [u1, u2]
T = [∆Pc1, ∆Pc2]

T 
   w(t) = [∆PL1, ∆PL2]

T 

 
The matrices A, B, C and L are real and appropriately 
dimensioned whilst w(t) and v(t) are the load disturbance and 
the measurement/modeling errors, respectively. Pertinent to 
obtaining solution of the problem is the well-known area 
control error (ACE) given by: 
 

1,2i
i

ACE(t)i∆fib(t)tie∆P
i

y ==+=         (2) 

 
The discrete form of the state equations is as follows: 
 

v(k)Hx(k)y(k)

Dw(k)Gu(k)Fx(k))1x(k

+=

++=+
                         (3) 

 
Where F, G, and D are derived from A, B and L respectively 
in the usual manner and H = C.  
 
Computation of LFC Feedback Gains 
 

In reality, the disturbances on a power system are complex 
and stochastic in nature.  Step load disturbances occur only 
very occasionally as a result of switching on or off of very 
large loads and sudden loss of a generating unit. The 
proportional control alone cannot reduce the deviation in the 
frequency and tie line flow to zero because of the finite 
disturbance. The disturbance rejection proportional plus 
integral control strategy can be employed to minimize the 
effect of the step disturbances. However, the generation of 
training examples is by the modal control technique (pole 

placement) rather than optimal control technique. It has been 
observed [7] and supported here that optimal control is 
unsuitable for LFC design because of the selection of one 
performance index from the many indices required by AGC. 

The modal control theory is to ensure that the eigenvalues 
{λI : i=1,2,3……n} of the system are placed well in the left 
half plane by choosing the elements of the feedback gain K.  
Of course, the poles should be located close to the origin in 
discrete equations to achieve near dead-beat response. The 
computational procedure of the feedback gain, well 
documented in [8-10], has been suppressed to accommodate 
new information. 

III.  THE NEURAL NETWORK BASED CONTROL SCHEME 

In most control schemes with neural network [11-12], the 
nonlinear mapping function, gnet, is established between the 
historic input and output, u and y, respectively thus: 
 

t)))my(tt),n(H(u(t(tgH(u(t)) net ∆−∆−=
Λ

 

 
                 n = 1, 2, 3, …, N & m=0, 1, 2, …, M                   (4) 
 
The controller is then estimated during the consultation phase 
via this relation: 

t)(u,gu net

ΛΛ

=                                          (5) 

 
Here, the mapping between area i load change ∆PLi and the 
elements of the controller feedback gain matrix, K is 
established thus: 

))
Li

P(H(net

Λ

gH(K) ∆=                            (6) 

 
Also, the elements of the controller gain matrix are 
determined as follows. 

            )LiP(netgK ∆
Λ

=
Λ

                                      (7) 

 
Here, ∆PLi i=1, 2, …, m, are the cluster centers at the end 

of an unsupervised clustering of the predicted area load 
demand changes.  
 
A.  Neural Network and Supervised Learning Concepts 
 

Artificial neural networks (ANNs) are composed of 
nonlinear computational elements called neurons operating in 
parallel. The neurons are interconnected through weights that 
are obtained by training the ANN so as to produce any desired 
association between the input space and output space. ANNs 
are capable of learning complex nonlinear relationship 
between the input space and the output space. ANN 
technology is described in detail in several literatures such as 
[13-14].  

Control is basically the determination of inputs that will 
result in a desired output.  The use of neural network involves 
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the generation of the control action from knowledge of the 
past input-output pairs and the desired output by learning the 
relation: 

  

)}(,......2u(n1),u(n

m),y(n2).....y(n1),y(n),(f{yu(n) d

mnu

n

−−−
−−−=

                (8) 

 
A generalized neural network controller with inputs and 

outputs is shown in Fig. 2. 
 

B.  Unsupervised Learning Scheme 
 

The unsupervised learning or self-organization in neural 
network [15] can be used to discover similarities in data and 
place similar data into cluster. The first pattern is selected as 
the center of the first cluster. The next pattern is clustered 
with the first pattern if its Euclidean distance is less than a 
threshold called the vigilance parameter. Otherwise it forms 
the center of another cluster. This process is reiterated until 
the all input patterns are classified. This algorithm is 
implemented here on the platform of the modified ‘follow the 
leader’ approach of Djoukanovic et al., [15].  This constitutes 
the learning phase of the neural network LFC to be described 
further later. 
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Fig. 2.  Generalized neural network controller with inputs and outputs. 

IV.  DESCRIPTION OF THE PROPOSED CONTROL SCHEME 

The proposed control scheme can be considered as 
comprising the training phase and the consulting phase.  The 
salient steps of the unsupervised learning phase are shown in 
Fig. 3. In here, predicted load changes in each interconnected 
power areas are reduced dimensionally by putting them into 
few clusters using the unsupervised learning process 
previously highlighted.  At the end of clustering process, a 
supervised learning neural network (SLNN) learns the 
relationship between each cluster center and the 
corresponding feedback gains. 

The main thrust of consulting phase of the proposed 
control scheme shown in Fig. 4 is essentially an adaptation of 
the indirect mode concept of Miodrag et al [16]. This concept 
is not only suitable for on-line implementation but also the 
problem of getting new controller for changes in the plant 
parameters that do not give significant changes in the output 
is avoided.  An unsupervised learning neural network places 
the monitored input into clusters and, depending on the 
number, activates one of supervised learning neural networks 
SLNN that generates the elements of the feedback matrix.  

The elements of the controller feedback matrix are 
determined at different cluster centers corresponding to the 
different operating conditions using the technique outlined 
above.  SLNN learn the mappings between feedback gains and 
the monitored input each cluster center. 
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Fig. 3.  Neural network learning phase algorithmic procedure. 

Interconnected Power System 
(Comprising n Areas) 

LW(t)BUAX(t)(t)
.
X ++=  

Monitor real time load Demand 
Change at time t for each area i 

∆PLi(t)=PLi(t)-PLiref 
i = 1,2,……n 

Un supervised Learning 
Based on { ∆PLi(t) i=1,2,…n} 
Identifies Appropriate Cluster 
Center for the Load Changes 

SLNN for 
Cluster 1 

SLNN for 
Cluster i 

SLNN for  
Cluster m ••

 •• 

••

Compute 
Feedback Gains 

K(1) 

Compute 
Feedback Gains 

K(i) 

Compute 
Feedback Gains 

K(m) 

CONTROLLER 
U=-KX 

U X 

 
Fig. 4.  Block diagram of adaptive neural network load frequency controller. 
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Characterization of Power System Variable Parameters 
 

As earlier observed, power system is continuously 
subjected to load changes thus resulting in wide operating 
points.  In load frequency control studies, time constants, bias, 
tie-line synchronizing coefficients and damping coefficients 
are subject to changes due load variations. Most existing work 
on neural networks and fuzzy controllers [3-6, 17] considered 
the aforementioned parameters.  The significant departure of 
this work lies in the use of the predicted load demand changes 
to capture the effects of the changing system parameters. 

The following linear relation reasonably approximates [10] 
the stiffness of an ith power system area. 

 
       Di = α PTi   -βPLi                             

 (10) 
  

Where PTi is the area turbine capacity and PLi is the load of the 
area; α and β are constants to be determined from the 
knowledge of the area’s load behavior. The system parameters 
that change with respect to the operating points are as follows: 
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                (11)     

 
The parameters defined in (11) can easily be computed from 
the knowledge of the power system operating state as well as 
the coefficients of the system equations that depend on them. 

V.  TEST SYSTEM AND CASE STUDY 

The test system used in this work is a two-area system 
comprising a hydro area and thermal area.  This is 
representative of the aggregate thermal and hydro generations 
of the Nigerian power system. The base case system 
parameters used in the simulations are given in Table I. The 
load disturbances of each area are predicted at one-minute 
interval for about 50 minutes. The predicted load changes are 
depicted in Fig. 5. An unsupervised learning process with 
vigilance parameter of 0.3 partitions the predicted loads into 
six clusters.  The six cluster centers are shown in Table II. 

Using the parameters of Table 1, the coefficients of the 
system matrices are calculated for each of the cluster centers.  
A set of controller feedback gain is calculated for the load 
condition in each cluster center. A supervised learning neural 
network learns the relation between the cluster centers and 
their respective feedback gains.  A supervised learning neural 
network with 2-input nodes, 20-hidden nodes and 10-output 
nodes learn the relation between each cluster center and its K.  
These feedback gains are generated whenever the conditions 
on the power system are such as to be classified into that 
cluster. 
 

 

 

 

TABLE I 
 PARAMETERS OF THE TEST SYSTEM 

 
Areas Parameters – Base 3000 MVA 

 
Thermal 

(1) 

Tg1=0.59s; Tt1=0.4s; TR1=8s; TR2=3.2s; R1=2.6Hz/pu MW 
   Kp1=130Hz/pu MW; H1=6.5s & Ttie

0 = 0.245 B1=.425 

 
Hydro 

(2) 

Tg2=0.51s; ThR=10 s; Th2=50s; Tw=1.7s;R2=2.24Hz/pu MW;  
Kp2=112Hz/pu MW & H2=8s; B2=.425 

 
TABLE II 

 PARAMETERS OF THE TEST SYSTEM CLUSTER CENTERS AND THEIR 

FEEDBACK GAINS 

 
Cluster 

No. 
Cluster Center 

∆PL1            ∆PL1 
Feedback Gains K 

1 0.09          0.04 .12,.34,.22,.35,-.56,.01,.25,.01,.15 
.11, .28,.24,.25,-.46,.02,.34,.02,.18 

2 0.06          0.03 .12,.31,.22,.32,-.54,.01,.24,.01,.16 
.11, .27,.22,.26,-.48,.01,.32,.02,.17 

3 0.10          0.01 .11,.34,.22,.35,-.56,.01,.25,.01,.15 
.11, .28,.24,.25,-.46,.02,.34,.02,.18 

4 0.06        -0.01 .12,.32,.21,.32,-.59,.07,.22,.01,.14 
.11, .28,.24,.22,-.42,.02,.32,.02,.16 

5 -0.03        -0.07 .12,.34,.22,.32,-.56,.04,.25,.05,.17 
.11, .23,.24,.21,-.46,.02,.32,.02,.19 

6 0.02         -0.03 .12,.32,.22,.35,-.56,.01,.25,.01,.151 
.11, .23,.27,.22,-.44,.05,.32,.02,.17 
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Fig. 5. Predicted load changes in the two areas. 

VI.  SIMULATION RESULTS 

 The frequency error, tie line power error and area control 
error of the two areas for an uncontrolled system is shown in 
Figs. 6, 7 and 8 respectively. The effectiveness of the (P+I) 
control in reducing the errors to zero is shown in Figs. 9, 10 
and 11 for a load change of 0.1 p.u in area 1. The 
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performance of the neural network based LFC has been 
evaluated by considering simultaneous load changes of 
simultaneous actual load changes of ∆PL1 = 0.05 and ∆P12 = 
0.04 which falls in the second cluster with cluster center ∆PL1 

= 0.06 and ∆P12 = 0.03. The response curves obtained with 
neural network based LFC are shown in Figs. 12, 13 and 14.  
Several other simulation studies were carried out for all the 
cluster centers and the results obtained are summarized in 
Table III for an optimal controller, fixed proportional plus 
integral controller and the proposed neural based LFC with a 
common performance index used to facilitate comparison.  
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Fig. 6. Frequency error in area 1 and area 2 for an uncontrolled system. 
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Fig. 7. Tie line power error in area 1 and area 2 for an uncontrolled system. 
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Fig. 8. Area control error in area 1 and area 2 for an uncontrolled system. 
 

 It is clear that whenever the load disturbance on a power 
system changes, entire system matrices change. Therefore 
fixed controllers are not ideal for power system control. The 
ideal thing is to have a set of controller gains for each load 
disturbance, which is practically realizable. 
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Fig. 9. Frequency error in area 1 and area 2 for a PI controlled system with 0.1 
pu load change in area 1 only. 

 

T
IE

 L
IN

E
 P

O
W

E
R

 E
R

R
O

R
 (

pu
)

T
IE

 L
IN

E
 P

O
W

E
R

 E
R

R
O

R
 (

pu
)

 
Fig. 10. Tie line power error in area 1 and area 2 for a PI controlled system with 
0.1 pu load change in area 1 only. 
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Fig. 11. Area control error in area 1 and area 2 for a PI controlled system with 
0.1 pu load change in area 1 only. 
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Fig. 12. Frequency error in area 1 and area 2 for neuro-controlled system with 
0.05 pu load change in area 1 and 0.04 pu load change in area 2. 
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Fig. 13. Tie line power error in area 1 and area 2 for neuro-controlled system 
with 0.05 pu load change in area 1 and 0.04 pu load change in area 2. 
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Fig. 14. Area control error (ACE) in area 1 and area 2 for neuro-controlled 
system with 0.05 pu load change in area 1 and 0.04 pu load change in area 2. 

  
TABLE III 

COMPARISON OF PERFORMANCE INDEX FOR THREE DESIGN TECHNIQUES 
 

Cluster 
Centers 

Optimal 
Controller 

x102 

P+I 
Controller 

x102 

Neural Based 
Controller 

x102 

1 1.34 1.64 1.32 
2 1.43 1.76 1.37 
3 1.56 1.86 1.42 
4 1.24 1.36 1.24 
5 1.28 1.38 1.28 
6 1.26 1.45 1.32 

VII.  CONCLUSION 

In this paper, an adaptive neural network based load 
frequency control system design has been presented in which 
load disturbance with great similarities are represented by one 
load disturbance using an unsupervised neural network. 
Controller gains are obtained for this representative 
disturbance. In all, the technique presented here in which an 
unsupervised learning process partitions the stochastic load 
disturbances into several cluster and different sets of feedback 
gains generated for each cluster center performed better than 
fixed feedback gain controllers. 

VIII.  APPENDIX 

Definitions of symbols used in the paper are given below. 
i  = Subscript referring to area i 
∆fi  = Frequency deviation of area i; 

∆Pci  = Change in speed changer setting of area i; 
Hi  = Inertia constant of area i; 
Ri  = Aggregate speed regulation of area i; 
Di  = Load frequency characteristics of area i ( Kpi=1/Di , Tpi=2Hi/f 

Di); 
Tgi  = Governor time constant of area i; 
Tw  = Water time constant of hydro area; 
T12

0  = Synchronizing power coefficient (pu) (T12
0 = 

2πV1V2cos(δ1
0−δ2

0)/X12) 
Tt1 = Thermal area turbine time constant 
Tr1  = Thermal area Reheat time constant 
ThR and Th2 = Hydro area time constants 
δi

0 = Operating voltage of area i 
Vi = nominal voltage of area I 
X12 =Tie-line equivalent reactance (pu) between areas 1 & 2 
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