
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jun 2003

A Software Debugger Interface for an 8051 Hardware Model A Software Debugger Interface for an 8051 Hardware Model

Lokesh Verma

Hardy J. Pottinger
Missouri University of Science and Technology, hjp@mst.edu

Daryl G. Beetner
Missouri University of Science and Technology, daryl@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
L. Verma et al., "A Software Debugger Interface for an 8051 Hardware Model," Proceedings of the IEEE
International Conference on Microelectronic Systems Education (2003, Anaheim, CA), pp. 112-114,
Institute of Electrical and Electronics Engineers (IEEE), Jun 2003.
The definitive version is available at https://doi.org/10.1109/MSE.2003.1205279

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229177597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1399&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1399&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MSE.2003.1205279
mailto:scholarsmine@mst.edu

A Software Debugger Interface for an 8051 Hardware Model

Lokesh Verma, Hardy J. Pottinger, and Daryl G. Beetner

Department of Electrical and Computer Engineering

University of Missouri-Rolla

1870 Miner Circle, Rolla, MO 65409-0040

{verma,hjp,daryl}@umr.edu

Abstract

A VHDL model of the 8051 microcontroller is a key

component for a course in hardware-software codesign, in

its second year of development at University of Missouri-

Rolla. Our paper discusses a software-centric user interface

developed for this model using Tcl/Tk. Preliminary

experience with using the debugger in an undergraduate

laboratory is discussed.

1. Introduction

The University of Missouri-Rolla offers a microelectronic

systems course featuring embedded systems and hardware-

software co-design as well as an associated laboratory. The

laboratory course is being developed under a grant from the

National Science Foundation (NSF) as a series of laboratory

experiments teaching fundamentals of microcontrollers,

digital systems, and hardware-software co-design through

hands-on development of simple embedded systems [1, 2].

The laboratories are built around the 8051 microcontroller

and the Xilinx Field Programmable Gate Array (FPGA). The

areas of hardware-software co-design and embedded

systems covered by the laboratories include:

Hardware-software co-development

Hardware-software co-verification

Partitioning tasks between hardware and software

Re-use of IP

Interfacing the 8051 with external devices

Implementation of digital logic in an FPGA

Programming microcontrollers in assembly and C

A key component to the development of the laboratories

is a VHDL model of the 8051 microcontroller. A board-

level model that combines the 8051 model with an SRAM

model that can read Intel Hex files, a seven-segment display

model, and a Xilinx XC4005XL FPGA was also developed.

These models enable cosimulation of hardware and software

using Mentor Graphics’ QuickHDL Pro and a mixture of

schematic and HDL models. Through simulation, students

verify the operation of their hardware design along with

software. Once the design is working properly in simulation,

the design is verified in hardware using an XS40 board from

Xess Corporation.

Students develop their software in C or assembly-level

language using Keil Software’s software development tools.

Before implementing their software with hardware, students

completely simulate their software using Keil’s software

simulation tools. These tools are good for discovering high-

level problems with the code, but not for simulating the

hardware-software interface. After simulation, their code is

converted to an Intel-format hex file for the 8051. They

develop custom digital hardware to be implemented in the

FPGA using Mentor Graphics’ Design Architect.

During co-simulation of hardware and software in the

QuickHDL Pro environment, students do not have access to

the internal signals of the 8051 VHDL model. While

simulating, they neither have access to the program nor can

they step through the program one instruction or one clock-

cycle at a time. It is very difficult for them to simulate to a

particular point in the program and analyze the intermediate

results. Detailed control of the simulation would require

more knowledge about VHDL than the students currently

possess.

To resolve these problems, a more familiar graphical user

interface (GUI) debugger was developed using the Tcl/Tk

scripting language. Although not intended to replace a more

traditional software debugger, the new interface is a much

more ‘software-centric’ way to control a combined

hardware/software simulation. The GUI debugger displays

the internal signals of the 8051 model and provides students

the facility to step through their 8051 program one

instruction cycle or one clock cycle at a time while

simultaneously simulating their hardware. Breakpoints can

be set in the user’s machine code to analyze intermediate

results. The GUI debugger also allows internal and external

memory of the 8051 model to be viewed easily.

2. Hardware-Software GUI Debugger

The GUI debugger is designed using Tcl/Tk extensions to

the ModelSim component of QuickHDL Pro. ModelSim, the

VHDL simulator, comes with a built-in Tcl/Tk interpreter.

The debugger uses the ModelSim ‘when’ command to

access all of the signals inside the 8051 model. Whenever a

signal changes value, the corresponding Tcl variable is

automatically updated. Using the ‘trace’ command of the Tcl

language, a procedure is automatically run every time a Tcl

variable changes.

The GUI debugger, as shown in Figure 1, comprises of a

main window and many sub windows that can be invoked

from the menu bar of the interface. The main interface

displays the contents of frequently referenced registers like

Proceedings of the 2003 IEEE International Conference on Microelectronic Systems Education (MSE’03)
0-7695-1973-3/03 $17.00 © 2003 IEEE

r0-r7, accumulator, program counter, data pointer, and stack

pointer. It also shows the current state of the 8051 machine

cycle, the currently executing instruction, and others. The

assembly-level program and associated machine code are

also listed on the main interface. The assembly-level

program is reconstructed from the hex file provided to the

VHDL 8051 model. Each instruction is preceded by its

address in memory.

Figure 1. GUI Debugger

The user can optionally bring up additional windows to

view information about timers, I/O ports, interrupts, the

serial port, or memory with the menu bar provided. The

8051 VHDL model has internal code, internal data and

external memory, which are easily accessible from the

memory menu button. The user can specify a range of

memory locations in hexadecimal format to view its

contents. The debugger also allows user to step through the

program one instruction or one clock cycle at a time with the

help of the buttons provided at the bottom of the interface.

The user can set breakpoints in the code to analyze

intermediate results. The ‘Stop’ button can be used to halt

the execution at any point. The ‘Restart’ button restarts the

simulation. The ‘Quit’ button can be used to exit the

ModelSim environment. Whenever a register changes its

value the box containing the register value is highlighted in

blue. The instruction to be executed next is also highlighted

in the code-list box.

3. Classroom usage of the GUI debugger

A laboratory exercise was modified to use the hardware-

software GUI debugger. In one of the laboratories students

write an assembly-level program to partition the 8051’s

external memory into data and code segments. The data

segment holds a message that is displayed on a seven-

segment display which is mapped to an external memory

location. The program is responsible for initializing the

message table created in the data segment, for retrieving

characters from the table, and then writing the characters to

the seven-segment display with a short delay between

consecutive characters.

Before the 8051 hardware debugging GUI, students

debugged the software portion of their hardware-software

design using Keil µVision 2. Their hardware and software

were debugged together in QSPro, but they had few tools to

control the simulation and observe what was happening in

the 8051. With the use of the new GUI debugger, students

were able to more easily control the simulation of the

software and hardware (the seven-segment display, external

memory) combination. They used the interface to view the

internal signals of the 8051 and particular locations in

memory (data and code segments). By simulating their

program instruction-by-instruction, or clock-by-clock, or by

setting breakpoints they had more control over the debug

process.

4. Survey Results

A survey was conducted to evaluate the GUI debugger

effectiveness in the laboratory. Preliminary results are

encouraging. The majority of the students found the GUI

debugger interface helpful in debugging their design. The

debugger interface also helped them to better understand

how the 8051 worked and how hardware and software

worked together. Students felt time spent debugging their

design was considerably reduced with the use of the

debugger interface as they did not need to rely solely on

signal traces to debug their design. The instructors teaching

this lab noticed a significant improvement in students’

performance and understanding of the lab compared to

previous semesters.

5. Acknowledgement

This work was supported in part by the National Science

Foundation’s Course, Curriculum and Laboratory

Improvement program under grant no. DUE-9952540.

6. References

[1]. D. G. Beetner, H. J. Pottinger, and K. Mitchel, “Laboratories

Teaching Concepts in Microcontrollers and Hardware-Software

Co-Design,” 30th ASEE/IEEE Frontiers in Education Conference,

pp. SIC/1-5, 2000.

[2]. H. J. Pottinger and D. G. Beetner, "Hardware-Software Co-

Verification in an Undergraduate Laboratory," Proceedings 1999

IEEE Computer Society International Conference on

Microelectronic Systems Education, pp. 41-42, 1999.

Proceedings of the 2003 IEEE International Conference on Microelectronic Systems Education (MSE’03)
0-7695-1973-3/03 $17.00 © 2003 IEEE

	A Software Debugger Interface for an 8051 Hardware Model
	Recommended Citation

	A software debugger interface for an 8051 hardware model Conference on Microelectronic Systems Education

