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Abstract- Multilevel converters made of cascaded cells 
(MCCC) offer a high number of voltage levels with a given 
switch count. Many variants of the MCCC topology have 
been introduced over years. Mostly, only integer dc voltage 
ratios between the cascaded converter cells have been 
applied to its PWM modulation. This is mainly due to the 
non-uniform distribution of voltage vectors with the non-
integer dc ratios. It poses difficulty to the conventional SVM 
modulators relying on locating the equilateral "triangle" 
made of three nearest vectors enclosing the reference vector. 
In this paper, an original modulation method is introduced 
to operate with any dc voltage ratio between cascaded 
converter cells, integer or non-integer; and even with a 
dynamically varying ratio; while the normal PWM output 
fast-average is not disrupted. The space vector analysis and 
the detailed simulations verify the modulation method. 

The new concept of MCCC PWM with non-integer dc 
voltage ratio offers great flexibility in its practical 
operation, particularly in MCCC with single dc source 
where the auxiliary inverter cell dc-link capacitor voltage 
can be regulated at arbitrary value online. Its wide range of 
practical applications is briefly discussed in this paper. 
  
  

I. INTRODUCTION 
 

In summary, there are three major types of topologies 
for multilevel converter with cascaded converter cells 
(MCCC). Figs. 1 (a), (b) and (c) show the cascaded H-
bridges, cascaded multilevel converters through split 
neutral load and the multilevel converter in series with H-
bridge cells, respectively. Given the same dc voltage ratio 

between the cascaded cells, all three topologies can 
provide the equivalent voltage levels with same IGBT 
switch count. 

Recent developments in MCCC control methods 
witnessed two major trends. First is the hybrid operation 
between converter cells [1, 4, 5 and 8], where the main 
and auxiliary inverter cells operate at fundamental and 
PWM frequencies respectively. The other progress is in 
single dc source operation [4, 5 and 8], with only 
capacitor sources in auxiliary inverter. This greatly 
simplifies the converter dc front end complexity. 
Therefore, the topologies (b) and (c) are particularly 
preferable since only one isolated dc source is needed in 
the main converter cell (suppose diode clamped topology 
is used), while the topology (a) requires three of them.  

The MCCC output performance (directly related to the 
number of voltage levels or layers of the voltage vectors 
in the hexagon patterns) depends on the dc-link voltage 
ratio between the main and auxiliary converter cells. The 
Fig. 2 shows the examples when two three-level 
converters are cascaded. As the voltage ratio increases, 
fewer voltage vectors overlap and there're more voltage 
vector positions available for the modulator, until the 4:1 
ratio results in discontinuous vector pattern on the edge 
of the plot. So the voltage ratio 3:1 is called "maximal 
distension" [6, 7], and its total voltage levels (layers of 
hexagon rings in plot) are the product of the level 
numbers of all cascaded converter cells. In this example, 
the maximal distension offers 9-level performance.  
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c) the diode-clamped / H-bridge (DCH) topology
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Figure 1. The three major MCCC topologies.
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All integer dc ratios at or below maximal distension 
result in evenly distributed voltage vectors constituting 
the meshes of equilateral triangles. The 4:1 ratio is called 
“over-distension” [7], and for the m-index lower than the 
discontinuous region, it offers higher output resolution 
than “maximal distension”. At the voltage ratio beyond 
“over-distension”, like 5:1, the vector pattern becomes 
isolated “islands”, hence an invalid option for modulator. 

The non-integer voltage ratios between the MCCC 
cells can be used in the fundamental frequency switching 
(block switching) with Selective Harmonics Elimination 
(SHE) to achieve extra orders of harmonics elimination 
[9 and 10]. However, the non-integer ratio creates non-
uniformly distributed vectors as in Fig. 2. The PWM 
modulator locating the enclosing equilateral triangle for 
the reference vector seems to be impossible. That is most 
likely the reason why there’s no previous report on the 
PWM with non-integer voltage ratio in MCCC.  

The “hierarchical modulation” introduced in the next 
section solves the problem. It can always locate the 
equilateral triangles out of the unordered vector patterns. 
Moreover, this method works even with the online 
changing of the voltage ratio, i.e. dynamic changing 
vector patterns. The normal MCCC output will not be 
disrupted during the transient.  

 
 
 

II. PROPOSED MODULATION METHOD 
 

Various multilevel converter modulation schemes have 
been introduced over years. The book [13] provides a 
comprehensive review for recent developments in 
modulation techniques. Particularly in [11, 12], the new 
coordinate system for SVM is introduced and then the 
equivalence between the SVM and the carrier based 
modulation (natural sampling) is proven. The 
conventional carrier based multilevel modulation uses 
multi-layer carrier comparison with the reference signal 
in each phase. The resulting switching states are then 
decomposed into the switching states for each converter 
cell using lookup table. In SVM perspective, this method 
automatically locates the enclosing triangle and the 
vectors on its vertex; it can also generate the optimal 
switching sequence and duty ratios when the proper 
common mode reference signal is applied [12]. As stated 
previously, this conventional practice will not handle the 
non-uniform vector patterns when non-integer dc voltage 
ratio is applied to MCCC. 

The “hierarchical modulation” method is proposed to 
address this problem. The voltage vector plot of MCCC 
can be readily represented by the hierarchical 
organization of the switching states of the main and 
auxiliary inverter cells. Fig. 3(a) shows such an example 
with two cascaded 3-level converters at 3:1 dc voltage 
ratio. The heavy vector dots form a 3-level vector pattern 
representing all switching states of the main converter. 
Each vector is then cascaded with complete enumeration 
of the auxiliary converter switching states, which forms a 
sub-hexagon designated by dotted line. The sub-hexagon 
dimension is 1/3 of the main hexagon. As voltage ratio 
changes (integer or non-integer value), the size of the 
sub-hexagon and the vectors distribution changes 
accordingly. As illustrated in Fig. 3(b) and (c), beneath 
the seemingly convoluted vector patterns at non-integer 
ratio, there’re still cascaded sub-hexagons made of 
meshes of equilateral triangles.  

As in Fig. 3(c), any reference voltage vector vref can be 
decomposed into the combination of the nearby main cell 
vector vmain and the “relative reference vector” vrelative 
with the origin at vmain. The problem is then hierarchically 
reduced to synthesizing vrelative within the 3-level sub-
hexagon. Still in Fig. 3(c), suppose the vref and Vdc 
remains fixed; as the voltage ratio (or Vdc2) changes, it 
could fall into a different triangle with its size changed as 
well. To trace its enclosing triangle with changing size, 
all the vector computations must use their actual values 
(instead of m-index) and the resulting vrelative is then 
transformed into the a-b-c coordinate to obtain the 
reference signal vrelative-phase_x per-phase. The 
instantaneous auxiliary inverter dc voltage Vdc2 
measurement is updated every PWM cycle to compute 
the duty ratios for each phase leg according to the 
illustration in Fig. 3(d). Herein, the point 'p' is the a-phase 
reference value in certain PWM cycle. It is synthesized 
by 15% of state 1 and 85% of the state 0 in the auxiliary 
inverter a-phase (three level inverter with switching state 
0, 1 and 2 in each phase). 

Figure 2. Vector plot with different dc voltage ratio

Voltage ratio 2:1 Voltage ratio 3:1

Voltage ratio 5:1Voltage ratio 4:1

Voltage ratio 2.5:1 Voltage ratio 1.25:1
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In the space vector view, the above modulation process 
automatically locates the enclosing equilateral triangle 
with its size changing at the same ratio as the Vdc2. Then 
the duty ratio of each vector on its vertex is computed.  

The above description of generating the reference 
signal per-phase is a simplistic version of the real 
process. The 3-phase reference signal will be further 
adjusted with common mode reference to balance the 
voltages between the capacitors in the auxiliary cell as 
analyzed in [8]. In topologies in Fig. 1(a), (c), the balance 
is between the three phase capacitors, and in Fig. 1(b), 
the balance is between the upper/lower capacitors.  

The complete process of the hierarchical modulation 
also needs to determine which main inverter cell vector is 
to be applied at given reference vector position along its 
locus.  This process determines the main inverter vector 
traversal pattern, i.e. all the main inverter vectors to be 
used in a fundamental cycle and their time duration. This 
traversal pattern directly affects the power flow 
distribution between the main and auxiliary inverter cells 
as in [5]. For example, when MCCC operates at single dc 
source mode, the net power into the auxiliary cell is to be 
maintained at zero by properly adjusting the main 

inverter vector traversal pattern, so as to maintain its 
overall capacitor charges and Vdc2.   

 

III. THE NON-INTEGER VOLATGE RATIO OPERATION 
SPACE VECTOR ANALYSIS 

 

Fig. 4 provides an insightful look at the non-integer 
voltage ratio PWM output using the proposed modulation 
method. The ratio 1.25:1 is used in the example. Its 
complete vector plot is in Fig. 3(b). The Fig. 4(a), (b) and 
(c) are the zoom-in illustrations of the modulation when 
the main inverter uses switching states 200, 210 and 220, 
respectively. The red circle represents the locus of the 
reference vector. The larger grey dots represent all 
switching states of the main inverter. Only the sub-
hexagons affiliated with 200, 210 and 220 are shown here 
for clarity.  

The line to line output voltage vab is usually shown as 
the indicator of the multilevel output performance. The 
resulting vab with the non-integer ratio has interesting 
pattern as shown in Fig. 4(d). In space vector view, vab is 
the ab-axis projections of all the voltage vectors used 
along the modulation path. The labels ('a' through 'g') 
along the ab-axis as shown in Fig. 4 (a), (b) and (c) 
represent such projections and also correspond to the 
labels in Fig. 4(d). The highlighted triangles are the ones 
used to synthesize the reference vector. From Fig. 4(a) to 
(c), there’re totally 11 such triangles used. When triangle 
1 (belonging to the sub-hexagon 200) is used, the vab 
switches between level 'a' and 'b'; then it switches 
between 'b' and 'c', when triangle 2, 3, 4 are used. At 
certain point when the reference is going across the 
triangle 4, the main inverter switches to 210 and the 
triangle 5 in the new sub-hexagon will be used to 
synthesize the reference vector. The projections of 
triangle 5 and subsequent triangle 6 onto the axis-ab are 
between 'd' and 'e', then the triangle 7 is between 'e' and 
'f'. These are corresponding to the ['d', 'e'], ['e', f'] 
segments in vab time domain waveform.   

At certain point when the reference is in triangle 7, the 
main vector jumps to 220, and the triangle 8 is then used. 
Hence the vab will switch from segment ['e', 'f'] to ['g', 'h'] 
during this transition. The triangle 9, 10 and 11 are then 
used subsequently. The same space vector analysis is 
applicable for the whole fundamental circle of the 
reference vector. 

The multilevel PWM output of MCCC with non-
integer ratio does not have clear cut number of levels in 
its line to line voltage as in the case when the integer 
voltage ratio is used. vab waveform of non-integer ratio 
appears to have more levels. However, the THD is not 
lowered by more observable levels. The dominant PWM 
frequency harmonics magnitudes are approximately 
proportional to the size of the equilateral triangle.    

 

IV. OPERATIONS WITH DIFFERENT M-INDEX OR 
DYNAMICALLY CHANGING VOLTAGE RATIO 

 

The shape of the vab evolves with the main inverter 
vectors traversal pattern. In MCCC single DC source 
operation, the m-index directly affects the traversal 
pattern [5] and hence the vab output shape. A simulation 

(a) voltage ratio 3:1 (b) voltage ratio 1.25:1

(c)changing dc voltage ratio with 
      the fixed voltage reference
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Figure 3. Hierarchical modulation illustration
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is given in Fig. 5 where the m-index is lower than the 
previous case and the main inverter vectors follow the 
star-shaped pattern as in Fig. 5(a). The resulting voltage 
waveforms as shown in Fig. 5(b) are different than the 
previous case. As the main inverter vector jumps from 
201 to 110, the triangles labeled 1(in red) and 2(in blue), 
which belongs to the sub-hexagons originating from the 
vector 201 and 110, are used. Their projections onto the 
ab-axis are highlighted in vab. Despite the evolving shape 

of the MCCC output voltage envelope, its fast average is 
always correctly synthesized with the proposed 
modulation method, as verified by the sinusoidal phase 
voltage vffas after the PWM filter. 

The Fig. 6 shows the effectiveness of the proposed 
modulation method during the voltage ratio dynamic 
change. Herein, the voltage ratio is dynamically changed 
from 2:1 to 3:1 by commanding net power out of the 
auxiliary inverter which has only capacitor source. The 
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m-index (sinusoidal reference magnitude) is kept constant 
during the process. Initially, vab has 5-levels with the ratio 
2:1. As Vdc2 decreases to 1/3 of the main inverter Vdc, the 
levels in vab increases to seven. It is instructive to observe 
the gradual transition of the vab waveform. The first trace 
in Fig. 6 shows the Vdc2, which is decreased from 210V 
to 140V (Vdc is 420V). The phase voltage fast average 
(trace 2 in Fig. 6) after PWM filter remains sinusoidal 
and not disrupted during dynamic voltage ratio transition.  

 

V. CONCLUSION 
 

In this paper, a new concept of the non-integer dc 
voltage ratio operation in MCCC PWM operation was 
introduced.  The modulation method proposed offers the 
unique feature which enables the online change of the 
auxiliary inverter capacitor (dc-link) voltage without 
disrupting the MCCC output voltage. Obviously, this 
offers the wide range of practical application possibilities.  

First, the new concept can be applied to the large 
hybrid electric vehicle or electric vehicle propulsion [14], 
where MCCC is used in the electric power train; the 
ultra-capacitor banks are directly installed across the 
auxiliary converter cell dc-link, and its state of charge can 
be regulated online at any value. This offers a unique way 
to manage the vehicle regenerative braking energy 
without using a dc-dc converter to interface the ultra-
capacitor. Many technical details to implement and 
integrate this general concept with the vehicle motor 
drive are addressed in the literature [14]. 

Similarly, the concept can be easily adapted to other 
large motor drive systems with frequent braking and 
accelerations. Hereby, the regenerative braking energy 
can be stored for subsequent motor acceleration, which 
avoids a complicated inverter regenerative front-end 
design or braking resistor energy loss. 

Furthermore, for any type of application using one of 
the topologies of the multilevel converter with cascaded 
cells, the proposed new concept will provide an efficient 
and simplified energy storage methodology to directly 
place the energy storage devices across the dc-link since 
the wide dc-link voltage variation will be transparent to 
the voltage output. 
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