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Introduction 
 
An electric power grid in general consists of components 
such as synchronous generators, transmission lines, 
transformers, loads, active/reactive compensators, 
switches and relays. The mathematical model of such a 
power network usually consists of thousands of states and 
multiple controllers with their own actuators and 
measurements. With the power industry in various stages 
of deregulation, the long distance power transfers 
between different regions –which can be hundreds of 
miles away from one another- are continuously 
increasing. Moreover, with the introduction of more 
industrial and residential loads, the system now operates 
closer to its security limits than before. Economical and 
sometimes environmental concerns often discourage the 
addition of new transmission facilities. This in turn might 
weaken the system against transient and/or dynamic 
disturbances. 
 
Typically, the controllable components in the power grid, 
such as the synchronous generators and the FACTS 
devices are controlled using local (internal) controllers. 
All these local control schemes focus on controlling each 
component from an internal point of view, i.e., providing 
appropriate signals for the device in order to control some 
local quantity such as voltage, speed deviations or line 
power flow. However, with a number of these controlled 
devices close to one another in a power network, the issue 
of interaction between them arises. Moreover, each one 
attempts to be a good local controller, but has no 
information on the overall control objective of the entire 
system.  
 
In addition to the above issues, modern power networks 
are affected by steadily increasing incidents of 
faults/disturbances that lead to inter-area rotor angle and 
power oscillations. As opposed to the local oscillation 
modes that are largely determined and influenced by the 
local area states, the inter-area modes are more difficult to 
study since they require a detailed study of the system as 
a whole and are influenced by the global states of larger 
areas of the power network [1].  

To summarize, the traditional approach of controlling a 
power system using local control agents (decentralized 
control) suffers from the following disadvantages: 
 
• Lack of information on the overall dynamics of the 

power system, 
• Inadvertent and unwanted interactions between 

different local controllers, 
• Sub-optimality of the local controllers over the wide 

range of operating conditions of the dynamically 
changing power network, 

• Inability of the local controllers to effectively 
respond to most of the global modes of the power 
system. 

 
Several researchers have proposed analytically based 
supervisory level control schemes in order to compensate 
for the above problems. Although these methods perform 
satisfactorily for small scale systems, their effectiveness 
degrades as the dimensions of the power system increase. 
Dependency of many of these schemes on a mathematical 
model of the power system that is valid over a wide range 
of system operating conditions, adds to their 
impracticality for real world applications. Therefore, in 
practice, most of the existing supervisory level schemes 
in power systems are nothing but human experts who 
observe the performance of the power system and take 
preventive or corrective actions when necessary. The 
knowledge base of these human experts is limited, not 
very detailed, not easily expandable and difficult to 
transfer or record. 
 
This paper focuses on the applications of intelligent 
techniques for improving the performances of the power 
system controllers. Intelligent control techniques lay the 
foundation of the next generation of nonlinear controllers 
and have the advantage of further improving the 
controller’s performance by incorporating heuristics and 
expert knowledge into its design. Most of these 
techniques are independent of any mathematical model of 
the power system, which proves to be a considerable 
advantage. They can also be trained over time that 
enables them to efficiently perform over a wide range of 



operating conditions of the power system. However, in 
spite of these major advantages, intelligent controllers 
have not yet been widely used in power system 
applications.  
 
The main reason lies in the fact that intelligent controllers 
often have a noticeably more complicated structure than 
that of a regular proportional-integral-derivative (PID) 
controller, and usually require a longer time to 
implement.  
 
More importantly, for the average engineer, the 
conventional PID is still easier to understand and to 
analyze, and more of a “white box” compared to the 
intelligent controllers. Therefore, there has so far been a 
tendency in practical power system applications to 
continue employing conventional linear and rarely 
nonlinear controllers. The current trend indicates that 
intelligent controllers need more time to prove their 
reliability, efficiency and superiority over the traditional 
approaches.  
 
The authors believe that the first step for incorporating 
intelligent techniques into power system applications 
need not necessarily be a comparison with a simple PID 
(which can be designed with little effort). Rather, the first 
step should be to apply these intelligent techniques to 
higher level (supervisory) control of the components in a 
large scale power network. This is the area where the 
traditional control theory often fails to function 
satisfactorily. This way, an intelligent controller can be 
applied to auto-tune the conventional local PID 
controllers, provide auxiliary inputs for them or optimally 
adjust their set-points.  
 
Essentially, such an approach is similar to the nervous 
system in the human body where the higher level system 
(the brain) sends signals to control the set-points of 
simple nerve cells in the muscles, which are very similar 
to PID systems [2]. The brain acts as the central nervous 
system by performing the main decision making. The 
peripheral nervous system is constituted of local systems 
(muscles) that follow the command they receive from the 
brain. 
 
In this paper, an intelligent control scheme based on the 
Adaptive Critic Designs (ACDs) theory is proposed for 
the supervisory level control of a benchmark 12-bus 
multimachine power system [17] with a FACTS device. 
The authors wish to emphasize the practicality of such a 
control scheme for large scale power systems and open 
the door for introducing more intelligent, model free, 
human expert independent approaches for controlling 
power systems. Such schemes could strengthen the 
existing power system infrastructure and reduce the 

probability of large scale catastrophic failures leading to 
major blackouts.  
 
Supervisory Level Control in Power Systems 
 
Figure 1 illustrates different types of control schemes that 
can be applied to a power system with n controllable 
components, such as generators and FACTS devices. 
 

Fig. 1. Control schemes in power grid: (a). decentralized control 
structure, (b). centralized control structure, (c). multi-agent control 
structure, (d). hierarchical control structure. 
 
The ideal solution to mitigate the problems associated 
with decentralized controllers would be a centralized 
control structure, in which a single supervisory level 
controller sends out all the required control signals to the 
various controllable components throughout the network. 
Clearly, the price of failure of the main controller for such 
a scheme is very high; therefore, it cannot be an 
appropriate solution for the power grid. Moreover, the 
longer processing time and the data transmission latency 
can increase the response time of the controller using 
global measurements. This might be a problem for some 
components with fast changing dynamics. The excessive 
computation time and unavailability of robust and 
redundant communication channels make this method 
unfeasible with today’s technology [3]. In addition, 
implementing such a controller is very difficult or even 
impractical as the dimensions of the power system to be 
controlled increase. 
 
Centralized control schemes have already been 
successfully applied to the existing automatic generation 
control (AGC) and load frequency control systems for 
setting the active power set-points of the synchronous 



generators [3]. However, this has been possible mainly 
due to the slower nature of this problem. 
 
Another alternative solution, different from both 
centralized and decentralized control schemes, would be a 
multi-agent control structure in which all the semi-
autonomous agents distributed in the network 
communicate and collaborate with one another to achieve 
a certain task [4]. Such a scheme requires communication 
and coordination not among all the agents but among 
those closely related agents with common interests [5]. 
Although the agents communicate with one another, each 
agent performs primarily based on its own interest; 
therefore care should be taken that no agent’s actions 
should violate its own limits. 
 
While multi-agent controllers are efficient for controlling 
complicated nonlinear systems, they become difficult to 
implement as the dimensions of the system increase. The 
efficiency of the multi-agent systems can be improved by 
incorporating the concept of hierarchical systems into the 
controller. The objective here is to define a set of sub-
problems that can be considered independent at a certain 
level (subsystem level). Through the manipulation of the 
interplaying effect at a higher level (coordinator), the 
global solution is obtained [6]. The concept of multilevel 
control can be implemented by decomposing the 
hierarchical controller into a set of controllers at different 
levels. 
 
Both multilevel and centralized controllers fall under the 
category of supervisory level control. In power system 
studies, the term “supervisory control” can cover a wide 
range of control structures. First and foremost, there is the 
question of how many components are being controlled 
by the controller. At its simplest case, this can be reduced 
to a component or device equipped with an external 
controller that provides some peripheral control 
objectives in addition to the main objective of the local 
(internal) controller of the device. Examples of this type 
of supervisory control are different shunt and series 
FACTS devices that are being controlled by an external 
supplementary controller (supervisor) in order to provide 
damping for low frequency power oscillations, transients 
and suchlike [7].  
 
As the number of components/devices to be controlled by 
the supervisor increases, the term supervisory level 
controller is often replaced by Wide Area Controller 
(WAC). Generally, a WAC covers a large geographical 
area including many components. A hypothetical WAC is 
illustrated in Fig. 2 to emphasize that a WAC normally 
controls several components in the power system and it 
may include various supervisors/external controllers. 
 

Different WAC schemes can be categorized based on 
their design philosophy and the nature of their generated 
control signals. A WAC may be designed to operate in 
the normal (preventive) control mode. In this case, it 
takes actions that try to adjust the operating conditions of 
the power system. The generated control signals can be 
either continuous or discrete (step-wise) and the nature of 
the controller response time is considerably slower than 
the local controllers. Examples of this type of control are 
setting the transformer tap changers, switching shunt 
capacitors and reactors on/off, changing the power 
reference of the synchronous generators and using the 
generator Var reserve. Emergency (corrective) mode 
WAC, on the other hand, takes actions in such a way that 
it saves the power system from a catastrophic situation 
such as rotor instability or voltage collapse. In most cases, 
the control signals are continuous and the WAC provides 
a faster time response compared to the normal control 
mode. Examples can be the sending of auxiliary control 
signals to the FACTS devices or boosting the exciter on a 
synchronous generator. 
 
 

Fig. 2. Schematic diagram of the hierarchical 3-level control scheme 
for a power system. 
 
 
In general, a power system can have three levels of 
control as illustrated in Fig. 2 [3]. The primary level 
comprises the local controllers that are designed to 
provide control signals for individual components. The 
loop of these local controllers’ reference commands are 
closed at the secondary level by means of a supervisory 
level controller, also referred to here as the supervisor, 
which determines their set-points. The second level may 
consist of a single supervisor or multiple supervising 
controllers that span the power network into subsystems. 
The third and highest level of control comprises a 
performance measurer (PM), also referred to as system 
optimizer (SO), that uses global information throughout 
the network and tries to optimize certain characteristics of 
the power system by sending appropriate signals to the 
supervisor(s). The existence of the PM is not necessary 
for all the hierarchical control schemes; however, when 



present, it can modify the actions, update the parameters 
and/or overrule the decisions taken by the secondary level 
supervisor. 
It is normally assumed that the secondary level controller 
coordinates the actions of the various agents throughout 
the network by using the supervisory control and data 
acquisition (SCADA) system, phasor measurement units 
(PMU) or other wide area dynamic information systems.   
 
Why Intelligent Control? 
 
Many researchers have focused on applying traditional 
analytically based linear or nonlinear methods for 
designing multi-level controllers in power systems. Much 
of the work in the past has focused on designing Power 
System Stabilizers (PSS) with global measurements [4], 
[8]-[10], or designing external supplementary controllers 
for various FACTS devices in order to improve the 
transient/dynamic stability of the power system [5], [8], 
[9], [11].  
 
However, the complexity of a large power network often 
makes it difficult for an analytically based control 
technique to perform a supervisory level control of the 
system. Analytical methods often fail to provide optimal 
control solutions for a real life multi-agent system. 
Moreover, the operating condition of the power system is 
continuously subject to change as loads and transmission 
lines are switched on and off. All these can affect the 
effectiveness of the linear supervisory level designs and 
degrade their performance. Nonlinear robust/adaptive 
schemes are efficient alternatives; however, they have 
more sophisticated structures and are more difficult to 
implement. One major drawback of most traditional 
nonlinear approaches is the fact that they rely on a 
mathematical model of the power system, which in most 
cases is difficult to obtain. Even if the mathematical 
model of the system were to be fully or partially 
available, it is often based on a linearized approximation 
of the actual nonlinear power system model. 
 
Computational intelligence techniques on the other hand, 
have the capability of dealing with such a nonlinear, non-
stationary system in the presence of noise and 
uncertainties. Neural networks and fuzzy logic based 
controllers can be effectively designed with no need for 
any mathematical model of the plant to be controlled. 
Application of heuristics and reinforcement based 
learning enables these techniques to deal with situations 
where deriving detailed analytical information about the 
dynamics of the plant would otherwise be tedious or even 
impossible to achieve. Some of the advantages of 
intelligent wide area controllers over traditional schemes 
are briefly listed below: 
 

• These intelligent schemes are mostly independent of 
a mathematical model of the power system.  

• Intelligent controllers can be trained offline using 
sufficient information on the dynamic performance 
of the system, or online while the system is under 
normal operation.  

• With the proper selection of inputs and outputs, the 
intelligent controller is able to respond to virtually 
any kind of application. 

 
Adaptive Critic Designs 
 
Adaptive Critic Designs (ACDs) theory can be applied to 
neural network and/or fuzzy logic based controllers in 
order to provide optimal control over the finite or infinite 
horizon time of the problem in the presence of noise and 
uncertainties [12]. The parameters of the controllers 
designed using the ACD theory are adjusted based on 
reinforcement learning, hence, making the controller 
largely insensitive to the size of the control problem. This 
proves to be specifically useful for power system 
applications where the process to be controlled is a 
nonlinear non-stationary multi-input multi-output process, 
whose operating conditions change continuously with 
time. 
 
ACD controllers are capable of optimizing some measure 
of utility or goal satisfaction, over multiple time periods 
into the future [13], [14]. In other words, they perform 
maximization or minimization of a predefined utility 
function over time. A utility function U(t) along with an 
appropriate choice of a discount factor should be defined 
for the ACD controller. At each time step t, the plant 
output (a vector of measured variables) X(t) are fed into 
the controller, which in turn generates a policy (control 
signal) A(t) in such a way that it optimizes the expected 
value function over the horizon time of the problem 
which is known as the cost-to-go function J given by 
Bellman’s equation of dynamic programming [15] as: 

∑
∞

=

+×=
0

)()(
k

k ktUtJ γ (1) 

where U(.) is the utility function and γ is a discount factor 
for finite horizon problems (0<γ<1). A discount factor of 
zero uses the present value of the utility function as the 
optimization objective (similar to the minimization of one 
step ahead error), while a discount factor of unity 
considers all the future values of the utility function 
equally important and is more suitable for the infinite 
horizon problems. 
  
Figure 3 shows the schematic diagram of a model free 
ACD controller, referred to as Action Dependent 
Adaptive Critic Designs (ADACD) controller [13]. It 
consists of: 



• An Action network, which can be a neural network or 
a fuzzy controller and functions as the controller, and 
is trained to send the optimum control signals to the 
plant, resulting in minimization or maximization of the 
cost-to-go function J over the time horizon of the 
problem, 

• A Critic network, which is a neural network trained to 
accomplish the task of dynamic programming by 
approximating the true cost-to-go function J with no 
prior knowledge of the system.  

 
For more information and step-by-step guide regarding 
designing a ACD controller, the reader is referred to [16]. 
 
 

Fig. 3. Schematic diagram of a ACD based controller. 
 
 
Multimachine Power System 
 
A 12-bus 3-generator FACTS benchmark power system 
(Fig. 4) [17] is considered in this paper together with a 
shunt connected Static Compensator (STATCOM). The 
STATCOM is connected to bus 4 to provide extra voltage 
support during the steady state for the load area (buses 4 
and 5).  
 
The power system is modeled in the PSCAD/EMTDC® 
environment, with the dynamics of the generators’ AVR, 
exciter and governor taken into account. The STATCOM 
is controlled using two PI controllers, and its main control 
objective is to maintain a desirable voltage profile at the 
point of common coupling (PCC). For more details 
regarding the STATCOM internal control structure the 
reader is referred to [18]. 
 
Intelligent Supervisory Level Control 
 
The objective of this paper is to present two intelligent 
supervisory level controllers for the multimachine power 
system in Fig. 4:  a neuro-fuzzy external controller for the 
STATCOM that provides additional dynamic damping; 
and an optimal wide area controller that 

controls/supervises the performances of the three 
generators and the STATCOM. 
 
STATCOM Neuro-fuzzy External Controller 
 
Figure 5 shows the schematic diagram of the proposed 
STATCOM neuro-fuzzy external controller. The 
objective here is to use the STATCOM to provide 
damping for both generators 3 and 4 during dynamic and 
transient disturbances. In order to achieve this, the 
external controller receives the speed deviations of 
generators 3 and 4, and in turn generates a control signal 
∆Vref that is applied to the line voltage reference of the 
STATCOM.  
 
The structure of the proposed neuro-fuzzy controller is 
illustrated in Fig. 6. The plant in Fig. 6 consists of the 
multimachine power system and the STATCOM internal 
controller. The input to the plant is the modulation index 
ma generated by the PIV controller (which is used to 
control the line voltage) and its output X(t) is the vector of 
the speed deviations of generators 3 and 4. The proposed 
external controller consists of two main components: the 
neuro-fuzzy controller, and a Critic neural network which 
is trained to approximate the cost-to-go function J and 
provides the appropriate training signals for updating the 
parameters of the neuro-fuzzy controller. 
 
 

Fig. 4. Schematic diagram of the 12-bus FACTS benchmark power 
system with a STATCOM. 
 
Neuro-Fuzzy Controller: A first order Takagi-Sugeno 
fuzzy model is used for implementing the controller, 
which is a special case of the Mamdani model [19]. The 
input to the fuzzy controller is the vector of the selected 
states of the power system as in (2): 

TtttX )](),([)( 43 ωω ΔΔ= . (2) 
 
The neuro-fuzzy controller in return generates a control 
signal ∆Vref, which is added to the line voltage reference 



of the local PIV controller (Fig. 5). The details of the 
fuzzy inference engine, the input/output membership 
functions and the rule base are provided in the authors’ 
previous work in [20]. 

Fig. 5. Schematic diagram of the STATCOM external controller. 
 

Fig. 6. Schematic diagram of the STATCOM ACD based neuro-fuzzy 
external controller. 
 
Critic Neural Network: An ACD based approach is 
applied in order to provide appropriate training signals for 
the parameters of the neuro-fuzzy controller. A Critic 
network is trained in order to learn the cost-to-go function 
associated with the power system. The utility function for 
the Critic network is comprised of two terms 
(decomposed utility function): 

)()()( 21 tUtUtU eee += , (3) 
where: 

|)2()1()(|)( 3331 −Δ+−Δ+Δ= ttttU e ωωω , (4) 
|)2()1()(|)( 4442 −Δ+−Δ+Δ= ttttU e ωωω . (5) 

 
The two terms are necessary because the rotors of 
generators 3 and 4 have different swings and therefore, 
the STATCOM should try to improve the performance of 
both generators at the same time. The cost-to-go function 
estimated by the Critic network is: 
      

∑
∞

=

+=
0

)(.)(
i

ei itUtJ γ , (6) 

Two sub-Critic networks are therefore used, where each 
one learns one part of the cost-to-go function. Utility 
function decomposition speeds up the process of Critic 
network learning, since each sub-Critic is estimating a 
simpler function [16]. Figure 7 shows the schematic 
diagram of the Critic network. It consists of two separate 
multilayer perceptron (MLP) neural networks [21], with 
10 neurons in the hidden layer of each one and the same 
input from the Action network, i.e., the neuro-fuzzy 
controller. The hyperbolic tangent is used as the 
activation function of the hidden neurons. For details on 
the step by step training procedure of the Critic network 
and the neuron-fuzzy controller, the reader is referred to 
[20].  

Fig. 7. Schematic diagram of the STATCOM Critic network. 
 
Intelligent Wide Area Controller (WAC) 
 
Figure 8 shows the schematic diagram of the WAC. The 
objective of the WAC in this study is to provide auxiliary 
control signals for the three generators and the 
STATCOM in Fig. 4 in order to improve the dynamic 
stability of the power system. The auxiliary control 
signals are in the form of additional reference signals that 
are added to the steady state set-points.  
 
The controller consists of a Critic and an Action neural 
network. The Critic is trained to estimate the cost-to-go 
function J(t) in the Bellman’s equation [15]. Once its 
weights have converged, the Critic network is used to 
train a second network, an Action neural network that 
provides the auxiliary reference signals A(t) for the three 
generators’ AVRs and the STATCOM voltage reference 
(Fig. 8).  
 
Utility Function: The vector of the states of the power 
system is considered to be comprised of the speed 



deviations of the three generators (Gen 2, Gen 3 and Gen 
4 in Fig. 4) in (1): 
 

TttttX )](),(),([)( 432 ωωω ΔΔΔ= . (7) 
 
Similar to the previous section, a utility function 
decomposition approach is adopted that helps speed up 
the training process of the Critic network. Three separate 
utility function components U2, U3 and U4 are defined for 
the WAC: 

)()()()( 432 tUtUtUtU w ++= , (8) 
where each function Uj corresponds to the speed 
deviations of one of the synchronous generators, i.e., ∆ωj: 

|)2()1()(|)( −Δ+−Δ+Δ= ttttU jjjj ωωω . (9) 
 
Critic Network: Three sub-Critic networks are used in this 
paper, one for each of the three utility functions U2, U3 
and U4 respectively, where each one learns one part of the 
cost-to-go function.  For more information, the reader is 
referred to the authors’ previous work in [22]. 
 

Fig. 8. Schematic diagram of the WAC. 

 
Action Network: A Functional Link (FLN) neural network 
is used as the Action network. This neural network 
structure avoids unwanted interactions between the 
various control signals generated by the WAC. A detailed 
discussion appears in [22]. 
 
Simulation Results 

 
STATCOM Neuro-fuzzy External Controller 
 
In this section, the STATCOM is considered to be 
equipped with an external controller as shown in Fig. 5 
that improves its damping capabilities during 
disturbances. The performance of the STATCOM 
external controller is evaluated with the neuro-fuzzy 
controller (Fig. 6) and a typical linear controller (Fig. 9). 
The parameters of the linear external controller are 
derived by trial and error, at a specific operating 
condition [20]. Dynamic damping provided by the 
STATCOM for the generator rotor speeds, as well as the 
control effort provided, are considered as the main basis 
of comparison between these hierarchical controllers. 

Fig. 9. Schematic diagram of the STATCOM linear external controller. 

 
Case Study 1: Short Circuit midway along the 
Transmission Line 7-8: A 100 ms three phase short circuit 
is now applied to the transmission line connecting buses 7 
and 8. This section of the power system is relatively weak 
and sensitive to disturbances. Figure 10 illustrates the 
effectiveness of the neuro-fuzzy external controller in 
restoring the system back to the steady state condition. 
Figure 11 emphasizes the fact that the STATCOM, 
externally controlled by the neuro-fuzzy controller, 
injects less initial reactive power into the network when 
responding to the fault. This leads to having solid state 
switches with smaller current ratings which are less 
expensive. Simulation results indicate that the 
STATCOM controlled by the neuro-fuzzy controller 
reduces the peak reactive power injection by almost 14 
MVar, from 376 MVar to 362 MVar. Based on a typical 
conservative price of 50$/kVar, this reduction results in 
approximate savings of $700,000.  
 
Case Study 2: Short Circuit along the Transmission Line 
3-4: In the next test, a 100 ms three phase short circuit is 
applied to the middle of one of the parallel transmission 
lines connecting the STATCOM to generator 3. Figures 
12 and 13 show the effectiveness of the proposed neuro-
fuzzy controller in damping out the rotor speed 
oscillations and indicate that the proposed neuro-fuzzy 
controller manages to improve the dynamic damping of 



both generators, even though the rotors of the two 
machines have different, and at times, opposing 
excursions. 
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Fig. 10. Rotor speed deviations of generator 4 (Fig. 4) during case study 
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Fig. 11. Reactive power injected by the STATCOM during case study 1. 
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Fig. 12. Rotor speed deviations of generator 3 during case study 2. 
 

Intelligent Wide Area Controller 
 

Several tests are now carried out in order to evaluate the 
effectiveness of the proposed WAC in Fig. 8. The 
performance of the power system equipped with the 
WAC is compared with an uncompensated system, as 
well as the system with locally tuned PSSs for each 
generator. These PSSs are fine tuned at a single operating 
condition in order to provide positive damping over a 
range of system frequencies. The parameters and the 
structure of the power system stabilizers appear in [22].  
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Fig. 13. Rotor speed deviations of generator 4 (Fig. 4) during case study 
2. 
 
Case Study 3: Three Phase Short Circuit at Bus 5: In the 
first of these tests, a three phase short circuit occurs at bus 
5. The fault is cleared after 100 ms and therefore, it does 
not permanently change the power system topology. 
Figure 14 illustrates some typical results and shows that 
the WAC is only slightly more effective than the local 
PSS in damping out the speed oscillations. 
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Fig. 14. Rotor speed deviations of generator 2 during case study 3. 
 
Case Study 4: Short Circuit at the Middle of the 
Transmission Line 3-4: In the next test, a 100 ms three 
phase short circuit is applied at the middle of one of the 



parallel transmission lines connecting buses 3 and 4. The 
line is disconnected after the fault is cleared.  Figure 15 
compares the performances of the WAC and the local 
PSSs with an uncompensated system and shows that the 
WAC is more effective than the case of the power system 
compensated with local PSSs. 
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Fig. 15. Rotor speed deviations of generator 4 during case study 4. 
 
Case Study 5: Transmission Line 4-6 Disconnected: The 
next test investigates the effect of a major change to the 
topology of the power system by switching off a 
transmission line which connects buses 4 and 6. This 
changes the operating condition of the power system and 
therefore reduces the efficiency of the locally tuned 
stabilizers that are normally tuned to provide effective 
damping in a certain frequency range. Figures 16-17 
contain some typical results. Figure 17 shows that for 
generator 4 the local PSS is still performing effectively; 
however, the WAC is considerably more effective for 
rotor speed deviations in generator 3 (Fig.16). This can be 
due to the fact that the dynamics of generator 3 are 
affected more by the topology change in the power 
system. 
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Fig. 16. Rotor speed deviations of generator 3 during case study 5. 
 

 
Summary 

 
The traditional approach of controlling a power system 
using local control agents suffers from several 
disadvantages namely, the lack of information on the 
overall dynamics of the power system, inadvertent and 
unwanted interactions between different local controllers, 
sub-optimality of the local controllers over the wide range 
of operating conditions of the power network and the 
inability of the local controllers to respond to most of the 
global modes of the power system. 
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Fig. 17. Rotor speed deviations of generator 4 during case study 5. 
 
These problems can be solved by using a supervisory 
level control scheme that has information on the overall 
performance of the power system and its local controllers. 
Such controllers can provide continuous or discrete 
auxiliary control signals to the controllable devices such 
as synchronous generators and/or converter based FACTS 
devices. 
 
However, the traditional control methods often fail to 
provide a very effective solution due to the complexities 
and the nonlinearities of the multi-input multi-output non-
stationary power system. Moreover, these techniques are 
mostly dependent on a mathematical model of the system 
to be controlled, which for a multimachine power system 
in most cases is not feasible to obtain. 
 
The aim of this paper is to introduce the concept of 
intelligent supervisory level control for a multimachine 
power system. Adaptive critic designs are used that can 
provide optimal control over a wide range of operating 
conditions. The fact that this scheme is independent of a 
mathematical model of the power system makes it an 
appropriate option for a nonlinear system such as the 
power network. In addition, the ACD based controller is 
trained based on reinforcement learning. Therefore, it is 
highly insensitive to the size of the power system under 
study. All the required information for training such 
controllers can be obtained using input/output data 
sampling during the performance of the power system. 



These intelligent supervisory level controllers can be 
designed on a semi-local (external control) or a global 
basis. 
Two intelligent controllers have been introduced in this 
paper for external control of a STATCOM, and for wide 
area control of a multimachine power system. The 
methods introduced in this paper are applicable to any 
power system and/or any controllable component.  
 
Even though intelligent controllers such as the ones 
proposed in this paper can be equally effective for 
internal control of generators and/or FACTS devices, the 
authors believe that implementing such supervisory level 
control schemes can be the first step towards the 
introduction and acceptance of these schemes by the 
power utilities and design engineers. With more 
intelligent controllers, many of the large scale failures in 
the power grid can be avoided.  
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