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Abstract 

The increasing complexity of a modern power grid highlights 
the need for advanced system identification techniques for 
eflective control ofpower systems. This paper provides a new 
method for nonlinear identification of turbogenerators in a 3- 
machine 6-bus power system using online trained feedfonvard 
neural networks. Each turbogenerator in the power system is 
equipped with a neuroidentij?er, which is able to identifj, its 
particular turbogenerator and the rest of the network to 
which it is connected from moment to moment, based on only 
local measurements. Each neuroidentifier can then be used 
in the design of a nonlinear neurocontroller for each 
turbogenerator in such a multimachine power system. 
Experimental results for the neuroidentifiers are presented to 
prove the validity of the concept. 

1 Introduction 

Power systems are increasingly called upon to transmit more 
power due to economic considerations and therefore the need 
for advanced system identification techniques for effective 
control of multimachine power system. Synchronous 
turbogenerators supply most of the electrical energy produced 
by mankind and are largely responsible for maintaining the 
stability and security of the electrical network. The effective 
control of these machines is, therefore, important. However, 
turbogenerators are highly non-linear, time varying, fast 
acting, Multiple Input Multiple Output (MIMO) machines 
with a wide range of operating conditions and dynamic 
characteristics that depend on the entire power system to 
which each of these is connected [1,2]. Conventional 
automatic voltage regulators and turbine governors are 
designed to optimally control each of these turbogenerators 

around one operating point; at other operating points each 
turbogeneratork performance is degraded. Adaptive 
controllers for turbogenerators can be designed using linear 
models and traditional techniques of identification, analysis, 
and synthesis to achieve the desired performance. Often 
restrictive assumptions are made [3] about the likely 
disturbances. However, due to the nonlinear time varying 
nature of a turbogenerator, it cannot be accurately modeled as 
a linear device. 

Moreover, when different turbogenerators with conventional 
controllers are connected, low frequency oscillations may 
result. Power System Stabilizers (PSSs) are used to damp 
such oscillations, but the particular position and transfer 
function of a PSS is not a simple decision and is usually also 
based on some linearized system model. 

In recent years, renewed interest has been shown in the area 
of power systems control using nonlinear control theory, 
particularly to improve system transient stability [4]. Instead 
of using an approximate linear model, as in the design of the 
conventional power system stabilizer, nonlinear models are 
used and nonlinear feedback linearization techniques are 
employed on the power system models, thereby alleviating 
the operating point dependent nature of the linear designs. 
Using nonlinear controllers, power system transient stability 
can be improved significantly. However, nonlinear 
controllers have a more complicated structure and are difficult 
to implement relative to linear controllers. In addition, 
feedback linearization methods require exact system 
parameters to cancel the inherent system nonlinearities, and 
this contributes further to the complexity of stability analysis. 
The design of decentralized linear controllers to enhance the 
stability of interconnected nonlinear power systems within the 
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whole operating region is still a challenging task [5]. 
However, the use of Neural Networks (NNs) offers a 
possibility to overcome this problem. 

Td,,"= 33 ms 
Tq{'= 0.25 s 
XA = 2.09 DU 

Neural networks are able to identify/ model such time varying 
single turbogenerator systems [6] and, with continually online 
training these models can track the dynamics of the 
turbogenerator system thus yielding adaptive identification. 
Online NN controllers have been successfully implemented 
on single turbogenerators using neuroidentifiers [7]. Neuro- 
identification of turbogenerators in a multimachine power 
system has been successfully investigated in simulation on a 
five-machine system [8]. 

X i ' =  0.164 pu H = 5.68 
X, = 1.98 pu F = O  
X," = 0.213 DU D = 2 

This paper extends previous work [8], to now include the 
identification of the exciter and turbine dynamics as well, and 
present results for the real-time implementation of 
neuroidentifiers for turbogenerators in a 3-machine 6-bus 
power system in the micro-machines laboratory at the 
University of Natal, Durban, South Africa. 

2 Laboratory Power System Being Tested 

The micro-machine laboratory at the University of Natal has 
two micro-alternators, and each one represents the electrical 
and mechanical aspects of a typical 1000 MW altemator. All 
the per-unit parameters except the field winding resistance are 
the same as those normally expected for 1000 MW 
altemators. The machine parameters were determined by the 
standard IEEE methods and are given for micro-alternators #I 
and #2 in Tables 1 and 2 respectively [9]. Each micro- 
alternator is equipped with a Time Constant Regulator (TCR) 
which is used to insert negative resistance in series with the 
field winding circuit, in order to reduce the actual field 
winding resistance to the correct per-unit value [9]. 

Table 1: Micro-altemator #1 parameters 

I TAO'= 4.50 s I XA'= 0.205 DU I Rs =0.006 I 

Table 2: Micro-altemator #2 parameters 

T,,<'= 0.25 s I X, = 1.98 pu I F = O  
X d  = 2.09 PU I X," = 0.213 pu I p = 2  

A 3-machine 6-bus power system shown in Fig. 1 is set up by 
using two micro-alternators and the infinite bus (with fixed 
voltage and fixed frequency) as the third machine. The 
conventional controllers are excluded for the purposes of 
system identification carried out in this paper. The switch S1 
shown in Fig. 1 is closed to synchronize the two micro- 
alternators to each other after they separately synchronized to 
the infinite bus. The switch S2 is used to switch inlout 
transmission lines and the switch S3 is used to switch inlout a 
load. 

' E  

Figure 1: Multimachine power system 

3 Online Trained Neuroidentifier 

The neuroidentifier is developed using the series-parallel 
Nonlinear Auto Regressive Moving Average (NARMA) 

model [lo]. This model output y at time (k+l) depends on 
both past n values of output and past m values of input. The 
neuroidentifier output equation takes the form given byeq. 
(3). 

y(k) ,  y ( k  - I), . . ., y ( k  - n + I), 
u(k), u(k - I ) ,  . . ., u(k - m + I) Y h  + 1) = f [ 

where y(k) and U&) represent the output and input of the plant 
at time k respectively. This model has been chosen in 
preference to all other system identification models [ 101 
because online learning is desired to correctly identify the 
dynamics of the turbogenerator and therefore avoiding a 
feedback loop in the model, which allows static 
backpropagation to be used to adjust the NN weights. This 
reduces the computational overhead substantially for online 
learning. 
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The neuroidentifier in Fig. 2 has three layers consisting of an 
input layer with twelve inputs, a single hidden layer with 
sigmoidal activation functions consisting of fourteen neurons, 
and an output layer with two outputs. This paper considers 
neuroidentifier training which is carried out withdeviation of 
the actual signals as inputs and outputs of the neural network. 

I I 

i 

Figure 2: Neuroidentifier fed with delayed values of the 
inputs and outputs of the turbogenerator 

The neuroidentifier inputs are the deviation in the actual 
power APref to the turbine, the deviation in the actual field 
voltage A&,,d to the exciter, the deviation in the actual 
terminal voltage AV, and the deviation in the actual speed AW 
of the turbogenerator These four NN inputs are also delayed 
by the sample period of 10 ms and, together with eight 
previously delayed values, form twelve inputs altogether to 
the neuroidentifier. For this set of neuroidentifier inputs, the 
neuroidentifier outputs are the estimated terminal voltage 

deviation A t  and estimated speed deviation A of the 
generator. 

A sampling frequency of 100 Hz is chosen which is 
sufficiently fast for the neuroidentifier to reconstruct the 
speed and RMS terminal voltage signals from the sampled 
input signals. The number of neurons in the hidden layer of 
the neuroidentifier is determined empirically. The initial 
values of the neuroidentifier weights are set to small random 
values between -0.1 and +0.1, and the conventional 
backpropagation algorithm is used to update these weights. 
The differences between the respectivaactual outputs of the 
turbogenerator measured during the practical implementation 
phase and the estimated outputs from the neuroidentifier, 
form the error signals for the updating of weights in the 
neuroidentifier. A reasonable learning rate is determined by 
training the neuroidentifier and setting the learning rate 
parameter to achieve a compromise between the training time 
and the accuracy of the network. The flowchart for the 

neuroidentifier implementation in both simulation and 
practical implementation studies is given in Fig. 3. 

4 Practical Implementation Results 

Simulation studies of neuroidentification of turbogenerators 
described in this paper were carried out, prior to real time 
practical implementation in the laboratory, in a manner 
similar to that described in [SI. The simulation results are not 
shown to conserve space. 

The neuroidentifiers are implemented on the Innovative 
Integration M67 card based on the TMS3206701 digital 
signal processor, operating at 160 MHz, hosted on a Pentium 
111 433 MHz personnel computer. The M67 card is equipped 
with eight differential A/D interfaces. The NDs have 12-bit 
resolution and a minimum throughput rate of 200 kHz. 

Sample the terminal voltage y. the speed deviationAq the field voltage to the excite#, 
and the micro-turbine input power P. of the plant at 100 Hz 

1 
Calculate the terminal voltage deviatiodv,. the exciter input deviationAVfi,,,and the 

micro-turbine input Power deviatiodP-, from their reference values 

Delay the sampled inputs by one, two and three sample intervals and store . 

1 
Input the required signals to the Plant atA and, the delayed signals to the 

neuroidentifier atC and D (Fig. 2 )  
I 

Compare the outputs of the Plant a@ and the neuroidentifier atE (Fig. 2) 

Figure 3: Flowchart forthe neuroidentifierprogram 
implementation 

Two sets of results are presented. The first set uses so-called 
forced training, which shows how well the neuroidentifiers 
are able to track changes as long as training continues while 
the system is forcefully perturbed by Pseudorandom Binary 
Signals (PRBS), AVjield and APref The second set of results 
uses unforced training or so-called natural training, where 
AVBeId and APref are both zero, and shows how well the 
neuroidentifiers continues to track generator outputs which 
are changing due to changes on the power system network. 
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4.1 Forced Training 

A constant field voltage Vfi, and a turbine power signal Pref 
are applied to each of the generators at a particular steady 
state operating point. Then the neuroidentifiers are trained by 
adding pseudo-random binary signa1sdVjeld and APrer to h e l d  
and P,@ respectively. These random signals excite the full 
range of the dynamic response of the generators. The PBRS 
in Figs. 4 and 5 show+ 5% deviations in the steady state 
values of Vfie/d) and Prefl of generator GI at an operating point, 
Prefl=O.I p.u. and lagging power factor (pf) of 1. Similar 
training signals are applied simultaneously to the second 
generator, G2 (Prefi 4. I p.u. and lagging pf = 1 )  

A leaming gain of 0.3 is used for the backpropagation 
algorithm. The neuroidentifiers are only required to 
generalize one time step (1 0 ms) ahead, so no momentum 
term is used. The training errors are insignificant after only a 
few seconds of training. 

Figs. 6 and 7 show the speed deviation and terminal voltage 
deviation respectively of generator GI and neuroidentifier # I  
during the first few seconds of training. They show that the 
neuroidentifier #1 is able to track the outputs of generator G1 
within the first three seconds of training. The true outputs of 
the generators and the neuroidentifiers’estimated outputs are 
shown by solid and dashed lines respectively in all diagrams. 

Figs. 8 and 9 show the speed deviation and terminal voltage 
deviation, respectively, of generator G2 and neuroidentifier 
#2. Once again, neuroidentifier #2 is able to track the outputs 
of generator G2 within the first three seconds of its training. 
All these results therefore show that the errors between the 
neuroidentifiers’ outputs and generators’ outputs are 
insignificant only after a few seconds of online training. 
These initial errors came about because all the neural 
networks started with random initial values of their weights. 
If the system is subsequently switched off and back on again, 
the weights start with already trained values and the errors are 
insignificant right from the start. 

Figs. 6 to 9 prove that the neuroidentifiers have leamed the 
dynamics of the generators, and the network, to which they 
are connected, with sufficient accuracy, based only on local 
information. 

After 5 s of training, the operating points are changed to 
different values ofPreJ and pfs at the machine terminals, by 
adjusting input power Pref and field voltage Vjield of the 
generators, and the training is continued. The results indicate 
(though not shown in the paper due to space constraints) 

despite the changes in the operating points, the 
neuroidentifiers are able to track the outputs of the generators 
immediately. 

The forced training of theneuroidentifiers with PRBS of the 
form of Figs. 4 and 5 is now terminated and from here the 
natural training, starting with weights obtained from the 
PRBS training. 

4.2 Natural Training 

Two different tests are carried out in order to evaluate the 
performances of the neuroidentifiers for changes in the power 
system network configuration, after the forced training has 
stopped but the natural training continues. The first test is a 
stepwise addition of a lagging power factor shunt load (P = 

0.84 p.u. and 0.85 lagging pf) halfway between buses 2 and 5 
by closing the switch S3 (Fig. I), for the generatorswith 
operating points: Prefl,2 = 0.3 p.u. and unity lagging pf. The 
speed deviation and the terminal voltage deviation of 
generator G2 are shown in Figs. 10 and 11 respectively. 
Similar good tracking results are seen with generator, GI.  

The second test is carried out to simulate the effects of a loss 
of one of the parallel transmission lines between buses 1 and 
4, by opening the switch S2 (Fig. I), for the generators with 
operating points: Eefl,l = 0.3 p.u. and unity lagging pf. The 
speed deviation and the terminal voltage deviation of 
generator G2 are shown in Figs. 12 and 13 respectively. 
Similar good tracking results are seen with generator, GI .  

All the above results of figures 10 to 13, show that the 
neuroidentifiers are able track the terminal voltage and speed 
deviations of their respective generators with changes in the 
network configuration, implying that the forced training 
carried in section 4.1 with the PRBS was sufficient to excite 
all the possible dynamics of the generators. 

5 Conclusions 

A multiple number of multi-layer feedforward neural 
networks have been successfully applied to identify multiple 
turbogenerators even when the power system network 
configuration and operating points changes. Experimental 
results indicate that the proposed scheme is potentially very 
promising for identifying highly nonlinear MIMO 
turbogenerators in the input-output representation form. 
Furthermore, it is important to emphasize thatno off-line 
training is necessaly. Such neural network models may first 
be used in a multi-machine power system plant simulator and 
eventually find a place in the control room, providing plant 
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operators and power system control engineers with enhanced 
understanding of the operation of the turbogenerators. 
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Figure 4: Forced PRBS training signalAVJeldl applied to the 
generator G 1 

Figure 5: Forced PRBS training signaldPreg applied to the 
generator G1 

3 

Time m =con& 

Figure 6: Speed deviation of the generator G 1 and the 
neuroidentifier for+ 5% deviations in and Prefl 

6O 2 4 6 8 IO I2 14 16 IS 
Time in seconds 

Figure 7: Terminal voltage deviation of the generator G1 and 
the neuroidentifier f o d  5% deviations in Geld, and Prefl 
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Figure 8: Speed deviation of the generator G2 and the 
neuroidentifier for+ 5% deviations in Vfield2 and Prep 
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Figure 11: Terminal voltage deviation of the generator G1 
and the neuroidentifier for a stepwise load addition with 

switch S1 now closed 

Time in seconds 

Figure 9: Terminal voltage deviation of the generator G2 and 
the neuroidentifier fork 5% deviations in Vjie,d2 and Prep 

Figure 12: Speed deviation of the generator G1 and the 
neuroidentifier for a line loss with switch S2 now opened 

Time in seconds 
-"O I 2  3 4 5 6 7 8 9 IO 

Time seconds 

Figure 10: Speed deviation of the generator G1 and the 
neuroidentifier for a stepwise load addition with switch S1 

Figure 13: Terminal voltage deviation of the generator G1 
and the neuroidentifier for a line loss with switch S2 now 

now closed opened 
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