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Abstract - This paper proposes a artificial neural network 
(ANN) based method for the problem of measuring the actual 
harmonic current injected into a power system network by 
three phase nonlinear loads without disconnecting any loads 
from the network. The ANN directly estimates or identifies the 
nonlinear admittance (or impedance) of the load by using the 
measured values of voltage and current waveforms. The output 
of this ANN is a waveform of the current that the load would 
have injected into the network if the load had been supplied 
from a sinusoidal voltage source and is therefore a direct 
measure of load harmonics.  

I. INTRODUCTION  
The increased use of nonlinear devices in industry has 

resulted in direct increase of harmonic distortion in the 
industrial power system in recent years. All loads serviced 
by the utility are designed to operate at 60 Hz. However 
nonlinear loads demand nonsinusoidal current and these 
currents have detrimental effect on the power system. As an 
example, Fig. 1 shows a typical power distribution network 
structure.   
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Fig. 1:  Simple power system network 

When the nonlinear load is supplied from a sinusoidal 
voltage source, its injected harmonic current li  is referred to 
as contributions from the load, or load harmonics. Any 
harmonic currents cause harmonic volt drops in the supply 
network.  

Any other loads, even linear loads, connected to the 
point of common coupling (PCC), will have harmonic 
currents injected into them by the distorted PCC voltage. 
Such currents are referred to as contributions from the 
power system, or supply harmonics. If several loads are 
connected to a PCC, it is not possible to accurately 
determine the amount of harmonic current injected by each 
load, in order to tell which load(s) is injecting the 
excessively high harmonic currents. Simply measuring the 
harmonic currents at each individual load is not sufficiently 
accurate since these harmonic currents may be caused by 
not only the non-linear load, but also by a nonsinusoidal 
PCC voltage. This is not a new issue and researchers have 
proposed various methods like DFT/FFT [1,2], stochastic 

method [3,4], harmonic impedance measurement [5], and in 
recent years artificial neural networks (ANN) [6-9] to 
measure the harmonic content in the load current, or to 
predict it, but most of them assume a radial feeder supplying 
a single load through a known feeder impedance, or 
multiple loads connected to a PCC which has a sinusoidal 
voltage and with zero impedance in the supply feeder. 

This paper proposes a novel method based on Artificial 
Neural Networks (ANN) to determine the true harmonic 
current of a nonlinear load in a three phase power system. 

II. LOAD MODELING USING NEURAL NETWORKS  
Artificial Neural Networks have provided an alternative 

modeling approach for power system applications. The 
multi-layer perceptron network (MLPN) is one of the most 
popular topologies in use today. This network consists of a 
set of input neurons, output neurons and one or more hidden 
layers of intermediate neurons. Data flows into the network 
through the input layer, passes through the hidden layers 
and finally flows out of the network through the output 
layer. The network thus has a simple interpretation as a 
form of input-output model, with network weights as free 
parameters. 

A one-line diagram of a three-phase supply network 
having a sinusoidal voltage source sv , network 
impedance sL , sR  and several loads (one of which is 
nonlinear) connected to a PCC is shown in Fig. 2.  
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Fig. 2:  Simple power system network 

The nonlinear load injects distorted line current abci  into 
the network. The Identification Neural Network (ANN1) is 
trained to identify the nonlinear characteristics of the load. 
The Estimation Neural Network (ANN2) predicts the true 
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harmonic current that would be injected by the load into the 
network, if it were possible to isolate the load and supply it 
from a pure sinusoidal source. ANN2 is an exact replica of 
the trained ANN1 structurally. The function of ANN2 can 
very well be carried out by ANN1; however that would 
disrupt the continual online training of ANN1 during the 
brief moments of estimating.  The structure of a MLPN is 
shown in Fig. 3. 
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Fig. 3:  Structure of a MLPN 

The supply configuration at the PCC for a load could be 
wye connected neural grounded, wye connected neural 
floating or delta connected. Furthermore, the system could 
be balanced or unbalanced. The determination of harmonics 
in a three phase is done on a per phase basis. Hence the 
inputs to the network are chosen according to the supply 
configuration.  

A. Identification Neural Network (ANN1) 
The proposed method measures the instantaneous values 

of the three voltages abcv (line or phase) at the PCC, as well 
as the three line currents abci at the thk moment in time. The 
neural network is designed to predict one step ahead line 
current âbci as a function of the present and delayed voltage 
vector values ( )abcv k , ( 1)abcv k − and ( 2)abcv k − . When the 

1thk + moment arrives (at the next sampling instant), the 
actual instantaneous values of  abci  are compared with the 

previously predicted values of âbci  , and the difference (or 
error e ) is used to train the ANN1 weights. Initially the 
weights have random values, but after several epochs, the 
training soon converges and the value of the error e  
diminishes to an acceptably small value. This process is 
called identifying the load admittance.  

B. Estimation Neural Network (ANN2) 
The estimation neural network ANN2 is supplied with a 

mathematically generated sine wave to estimate its output. 
The output of ANN2 called âbc distortedi − therefore represents 
the current that the nonlinear load would have drawn had it 
been supplied by a sinusoidal voltage source. Any distortion 
present in the âbc distortedi − can now truly be attributed to the    
nonlinearity of the load admittance. 

C. ANN Governing Equations 
With reference to Fig. 3, the process of passing the 

inputs through the neural network structure to its output is 
known as forward propagation.  Every input in the input 
column vector v  is fed via the corresponding weight in the 
input weight matrix W to every node in the hidden layer to 
determine the activation vector a . Each of the hidden 
neuron activations in a  is then passed through a sigmoid 
function to determine the hidden-layer decision vector d . 

a W v=           (1) 

( )

1 ,
1 ii ad

e −=
+

{ }1,2,....,i m∈    (2) 

where the input column vector nx R∈ , the hidden layer 
activation column vector ma R∈ , the input weight matrix 

m nW R ×∈ , n is the number of inputs to the ANN including 
the bias and m is the number of neurons in the hidden-layer.    

The decision vector d is then fed to the corresponding 
weight in the output weight matrix V. The ANN output is 
computed as;  

ˆ ( )Ty V d=          (3) 
For a single output system output weight matrix 

1 mV R ×∈ and ŷ is a scalar. 
The output error is calculated as  

ˆe y y= −           (4) 
The process of passing the output error to the input in 

order to estimate the individual contribution of each weight 
in the network to the final output error is known as error 
back-propagation. The weights are then modified so as to 
reduce the output error. The change in input weights 

W∆ and output weights V∆ are calculated as 
( ) ( 1) T

m g aW k W k e xγ γ∆ = ∆ − +    (5) 

( ) ( 1) T
m g yV k V k e dγ γ∆ = ∆ − +     (6) 

where [ ], 0,1m gγ γ ∈ are the momentum and learning gain 
constants, ae  is the activation error vector and  ae  is the 
output error vector. 

The last step in the training process is the actual 
updating of the weights: 

( ) ( 1) ( )W k W k W k= − + ∆     (7) 

( ) ( 1) ( )V k V k V k= − + ∆      (8)    

III. EXPERIMENTAL RESULTS  
The method of using online trained ANNs to identify 

the load admittance and utilizing the trained neural network 
to estimate the harmonic current of nonlinear loads is 
demonstrated with the help of following circuits. The 
scheme has to be applied individually to each phase. 

A. Variable Speed Drive 
The scheme has been applied on a variable speed drive, 

ABB make ACS 500 (VSD). The clean power source used 
is a California Instruments 5001 iX harmonic generator 
which is capable of outputting voltages with programmable 
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distortion levels and zero internal impedance. The 
experimental setup is shown in Fig. 4. 
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Fig. 4:  Experimental Setup for ACS 500 Drive 

With switch S in position 1, the VSD is supplied from 
the utility source. Now with switch S in position 2, the drive 
is supplied from the clean power source.  The measured 
phase A voltage and current waveforms with switch in 
position 1 is shown in Fig. 5. Figure 6 shows the measured 
phase A voltage and current waveforms with switch in 
position 2. The total harmonic distortion (THD) of the 
utility voltage is 4.5% and the THD of the CI 5001 iX 
voltage is 0.2%.  
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Fig. 5:  Measured voltage and current with S in postion 1 
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Fig. 6:  Measured voltage and current with S in postion 2 

The THD of current with S in position 1 is 74.27% and 
THD of the current with S in position 2 is 67.14%. The FFT 
spectrums are shown in Fig. 7 and Fig. 8 respectively.  

 

 
Fig. 7:  FFT Spectrum of current with S in postion 1 

 

 
Fig. 8:  FFT Spectrum of current with S in postion 2 

The data obtained with switch S in position 1 is used to 
train the neural network ANN1 until the training error 
converges to near zero, and the output of ANN1 correctly 
tracks the actual current 1i .  

Figure 9 indicates how well the training of ANN1 has 
converged since its output 1̂i coincides with the actual 

1i waveform. 
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Fig. 9:  ANN1 Convergence Result 
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The convergence of the training can also be verified by 
looking at the absolute value of the tracking error eT  
defined as; 

1 1̂( )eT i i= −         (9) 
and the Mean Squared Error MSE is defined as 

2

1 1
1

1 ˆ( )
r

MSE i i
r

= −∑       (10) 

where r is the number of epochs. Figure 10 shows the 
MSE of the ANN1 current tracking. 
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Fig. 10:  MSE in Current 

The sampling rate for data acquisition is set at 128 
samples per cycle. Data acquisition is carried out by 
National Instruments data acquisition system. The voltage 
transducers used are LEM LV 25-P and the current 
transducers used are LEM LAH 25-NP. FFT of the acquired 
waveforms are computed using the powergui block of 
SIMULINK. 

Once ANN1 has learned the admittance of the phase A 
of the VSD, the weights of ANN1 are transferred to ANN2.  
The output of ANN2 is 1̂ disti − and is obtained by using a 
mathematically generated sine wave voltage with zero 
distortion as its input. Fig. 9 shows what Fig. 5 would have 
looked like if it were possible to isolate the VSD and supply 
it from a pure sine wave.  

 
Fig. 11:  Output of ANN2 

Fig. 12 shows the frequency spectrum of Fig. 11. The 
true current distortion of 1̂ disti − turns out to be 66.69% 
(instead of the 74.27% of Fig. 7). This result agrees well 

with the measured value of 67.14% of Fig. 8 where the 
VSD was supplied by a 0.2% distorted voltage. 

 

 
Fig. 12:  FFT Spectrum of the ANN2 Output 

B. RXPO Rectifier 
The scheme was also applied to an actual field setup for 

testing connectors at NEETRAC. The setup shown in Fig. 
13 comprises of utility feeding a RXPO series 30 DC 
rectifier. The rectifier output load varies between 0 and 
3000 A DC. 
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Fig. 13:  Experimental Setup for RXPO Series 30 Rectifier 

The actual phase A voltage (Line to Neutral) and current 
THD’s are shown in Table 1. 

 
TABLE I 

LOAD PROFILE OF RXPO SERIES 30 RECTIFER 
 

DC Load aV THD  aI THD  

3000A 3.71% 31.91% 

2500A 3.80% 38.54% 

2000A 3.39% 46.44% 

1500A 2.95% 57.48% 

1000A 2.57% 71.36% 

500A 1.94% 85.22% 

 
With 2000 A loading, the data acquired is used to train 

ANN1 until the training error converges to near zero, and 
the output of ANN1 correctly tracks the current ai .  

Figure 14 indicates how well the training of ANN1 has 
converged since its output âi  coincides with the actual 

ai waveform. Figure 15 shows the MSE of ANN1 current 
tracking. 
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Fig. 14: ANN1 Convergence Result   
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Fig. 15: MSE in Current 

The sampling rate for data acquisition is set at 128 
samples per cycle. Data acquisition is carried out by 
Reliable Power Meter software and FFT is computed using 
the powergui block of SIMULINK. 

Once ANN1 has learned the admittance of the DC 
rectifier circuit, the weights of ANN1 are transferred to 
ANN2.  The output of ANN2 is â disti − and is obtained by 
using a mathematically generated sine wave voltage with 
zero distortion as its input. Figure 16 shows what Fig. 14 
would have looked like if it were possible to isolate the DC 
rectifier circuit and supply it from a pure sine wave.  
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Fig. 16: Output of ANN2 

Figure 17 shows the frequency spectrum of Fig. 16. The 
true current THD of â disti − turns out to be 50.63% instead of 
the 46.44% of Fig. 14. 

  

Fig. 17: FFT Spectrum of the ANN2 Output  

This result agrees well with fact that current distortion of 
rectifier loads increase when the applied voltage is a pure 
sinusoid with low impedance, i.e. stiff power system.   

IV. QUANTIFICATION OF RESULTS  
The above experiments have shown that there is a 

difference in the current distortion of a load depending on 
whether the loads are served by a clean supply or a distorted 
supply. Any load serviced by a utility is designed and 
optimized to operate at 60 Hz, however once they are 
connected to the power system network, they seldom do get 
a clean 60 Hz supply. For the purpose of quantification of 
this difference, a new parameter me , known as the resultant 
error in measurement, is introduced and is defined as; 

 

( )%s d
m

s

THD THD
e

THD
−

=                (11)                     

where dTHD  is THDi  from a distorted pccv ,and sTHD  is 

THDi  from a mathematical sine wave.  
Table II shows the computed value of me for the 

experiments presented in this paper. 
   

TABLE II 
SUMMARY OF RESULTS 

 

Load dTHD  sTHD  me  
ACS 500 74.27% 66.69% -11.37% 

RXPO Series 
30 46.44% 50.63% 8.28% 

 
me  can be positive or negative. A positive sign indicates 

that the current THD of the load is higher when supplied 
from a clean source. A negative sign indicates that the 
current THD of the load is lower when supplied from a 
clean source.  

V. NEURAL NETWORK PARAMETERS  
The above scheme can also be applied to the two other 

phases as well for the other loading conditions of the RXPO 
rectifier. The feasibility of using a single neural network for 
all the three phases is currently under investigation. Data 
acquisition is carried out by a National Instruments SCXI 
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system and LABVIEW software. The scheme for data 
acquisition is shown in Fig. 18 below. 

1i

pccv

 

Fig. 18: LABVIEW code for data acquisition   

The data is acquired for two seconds (120 cycles), every 
30 seconds with a sampling frequency of 8 kHz. The 
sampling frequency of 8 kHz ensures that harmonics up to 4 
kHz can be measured. Harmonics above that frequency 
range are normally removed by filters. 

The code can run as long as the load is running or it can 
be stopped after a certain time interval. LABVIEW stores 
data as text files. These text files are then converted to 
Microsoft excel files and imported to the MATLAB 
workspace.  

The acquired data is used to train the identification 
neural network. The acquired data contains all the dynamics 
present in the power system, and hence during training the 
neural network does not see any particular pattern and is 
able to incorporate whatever changes that took place in the 
load current during the measurement time span.  

ANN1 starts with random weights and as the acquired 
data is presented to the neural network, the weights 
converge towards the desired weights which represent the 
load admittance. For the experiments presented in this 
paper, initial convergence requires about five minutes of 
acquired data.  

Once the ANN1 training has converged and the weights 
transferred to ANN2, four cycles of mathematically 
generated sine wave are sufficient for the estimation phase 
of ANN2 to calculate an accurate THD number. 

Some of the other experimental details of the neural 
network implementation are given below: 

• Multilayer perceptron neural network with 
backpropagation training algorithm implemented in 
MATLAB. 

• FFT computation : powergui block of SIMULINK 
• Number of Neurons in the hidden layer: 20 
• Time delayed inputs : 2 
• Learning gain: 0.05. Momentum gain not used. 
• Sampling frequency for data acquisition: 8 kHz. 

Power quality instrumentations require 
approximately 128 samples/cycle.        

 
The accuracy of neural network computations can be 

further increased by increasing the sampling rate and 
number of neurons. However that puts additional 
computational demands on the processor and might make 
the actual hardware implementation more difficult. 

VI. CONCLUSIONS  
Standards like IEEE 519 [10-12] provide guidelines for 

controlling harmonic distortion levels that divide the 
responsibility between the utility and the customer. The 
utility has to maintain voltage distortion at the PCC below 

the specified limits and the customer has to limit the amount 
of harmonic current injection onto the utility system. 
However, disputes may arise between utilities and 
customers regarding who is responsible for the harmonic 
distortions due to the lack of a reliable single index which 
can precisely point out the source of the harmonic pollution. 
The method proposed in this paper aims at solving this 
problem with the aid of online trained neural networks.  

 
The paper demonstrated the ability of MLPN’s to learn 

the nonlinear characteristics of three phase loads and utilize 
the trained neural network for estimating the true harmonic 
distortion caused by that load. This novel method avoids 
disconnecting any loads from the power system. 
Experimental results confirm that an error in the 
measurement is made if the calculation of current THD is 
done by simply measuring the input current of the nonlinear 
load.  

On a practical system the neural network computations 
could be carried out on a DSP. A suitable analog to digital 
interface is required for acquiring the measured values of 
voltages and currents. Such a system could be installed 
permanently or be portable from one customer to another in 
order to simply monitor pollution levels at a particular PCC 
in the network. 
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