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Unmanned Vehicle Navigation Using Swarm Intelligence 

Sheetal Doctor 
Department of Electrical and Computer Engineering 

University of Missouri - Rolla, MO 65409, USA 
skdkvd@umr. edu 

Abstract 
Unmanned vehicles are used to explore physical areas 
where humans are unable to go due to diferent 
constraints. There have been various algorithms that 
have been used to perform this task. This paper explores 
swarm intelligence for searching a given problem space 
for a particular target($. The work in this paper has two 
parts. In the first part, a set of randomized unmanned 
vehicles are deployed to locate a single target. In the 
second part, the randomized unmanned vehicles are 
deployed to locate various targets and are then converged 
at one of targets of a particular interest. Each of the 
targets carries transmits some information which draws 
the attention of the randomized unmanned vehicles to the 
target of interest. The Particle Swarm Optimization (PSO) 
has been applied for solving this problem. Results have 
shown that the PSO algorithm converges the unmanned 
vehicles to the target of particular interart success&lly 
and quickly. 

Keywords 
Unmanned Vehicles, Navigation, Optimization, Swarm 
Intelligence. 

INTRODUCTION 

Autonomous unmanned vehicles have generated much 
interest in recent years due to their ability to perform 
relatively difficult tasks in hazardous or remote 
environments. Different stochastic iterative search 
methods have been investigated for optimization of 
continuous non-linear functions. Various algorithms like 
evolutionary computations [7], genetic algorithms, 
adaptive cultural models etc. have been used to perform 
this task. 

Swarm intelligence [5] links artificial intelligence to the 
concept of fish schooling or swarming theory. It is based 
on the social behavior of flocks of birdslschools of fish 
and the success of the group is because of the 
communication established between them. Particle Swarm 
Optimization (PSO) reported by James Kennedy and 
Russell Eberhart [6], in 1995 is based on this simple 
concept and the paradigms can be easily implemented. It 
is relatively a new concept and is used for target tracing 
by autonomous communicating bodies. Other applications 
using PSO include calibration of instruments [lo], 
generator maintenance scheduling [ 11, etc. 

This paper presents the application of PSO technique for 
searching targets in a given problem space using a number 
of unmanned vehicles referred to as particles in the rest of 
the paper. The work in this paper has two parts. In the first 
part, a set of randomized unmanned vehicles are deployed 
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to locate a single target. In the second part, the 
randomized unmanned vehicles are deployed to locate 
various targets and are then converged at one of targets of 
a particular interest. Each of the targets carries transmits 
some information which draws the attention of the 
randomized unmanned vehicles to the target of interest. A 
study has been done on the effect of the number of 
particles in the swarm and the number of iterations 
required for converging them at the target(s). The effects 
of changing some of the PSO parameters on the results 
have been also studied. 

PARTICLE SWARM OPTlMlZATlON 

Particle swarm optimization is a new concept which 
broadly falls under evolutionary computation techniques. 
A problem space is initialized with a population of 
random solutions in which it searches for the optimum 
over a number of generations and reproduction is based on 
prior generations. The concept of PSO is that each particle 
randomly searches through the prbblem space by updating 
itself with its own memory and the social information 
gathered from other particles. 

Within a defined problem space, the system has a 
population of particles. Each particle is randomized with a 
velocity and ‘flown’ in the problem space. The particles 
have a memory and they keep track of the previous best 
position (Pbesl) with respect to the target. Thus each ‘Pbesl’ 
is related to a particular particle. The best value of all 
these ‘Pbenj’ is defined as the global best position ‘Gbesl’ 
with respect to the target. Therefore each pahicle has its 
own ‘Pb-1’ and the whole swarm has one ‘Gberl’. The 
velocities and positions of the particles are constantly 
updated until they have all converged at the target. The 
basic PSO velocity and position update equations are 
given by (1) and (2). 

These are called the quality factors. 

vn, = wi * void + CI * rand() * -Pod 3- c2 * rand() * 
(Gbert -poiad (1) 

pnew = pold  vnew (2) 

- New velocity calculated for each particle 
- Velocity of the particle li-om the previous 

- New position calculated for each particle 
- Position of the particle from the previous 

- Particle’ best position 
- The best position a particle attained in the 

iteration 

iteration 
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whole populatiodswarm 
Wi - Inertial weight constant 
c, & c2 - Weights for the terms dependent on the 

particles’ position (acceleration constants) 

The population responds to the factors ‘Pbesl’ and ‘Gbesl’  in 
order to find a better position. The particles are drawn 
towards the position of their own previous best 
performance and the best performance of a particle in the 
group. 
The procedure for the implementation of PSO involves 
the following basic steps [ 5 ] ,  [ 6 ] .  

Define the problem space with its boundaries. 

Initialize an array of particles with random 
positions and velocities. These random positions 
are initially assigned to be the of the 
particles. Also initialize the target(s) position(s). 

Evaluate the desired fitness function of the 
particles in step (ii). In this case, the Euclidean 
distance from the target. Select the Gbesr from the 
the P b a l  of the particles. 

Compute the particles’ new velocities and 
positions using (I) and (2) respectively. 

Check if the particles are within the problem 
space. If the particles are not within the problem 
space, then the velocity is set to the maximum 
velocity @re-defined) and the particle’s new 
position is set to its previous best position. 

Calculate the new fitness function for all the 
particles’ new positions. Determine the particles’ 
new Pb&. compare with the particles’ previous 
Pbesl and update the value with the new one if 
necessary. 

Calculate the new global best position Gbesl 

among all the particles’ new Pbesr. Compare with 
the previous best and update the global best 
before the next iteration. 

The steps (iv) to (vii) are repeated until all the 
particles have attained their desired fitness. 

The differences between particles’ positions with respect 
to the global best (Gbesl) and the respective particle’s best 
(Pbes / )  are weighted by the constants cl and c2 and a 
random number between 0 and 1. The effect of variations 
of these constants on the performance of the PSO 
algorithm has also been presented in this paper. 

TARGET SEARCH 

This paper investigates two types of search problems. The 
first type involving a single target location and the second 
type involving two targets but only one target is of 
interest. Figures 1 and 2 show the graphical representation 
of the two cases studied. In Figure 2, the darker target is 
the one to be located by the particles. The particles have 
all been shown at random locations. 

Figure 1. Randomized particles and a target in the 
search space. 

Figure 2. Randomized particles and two targets in the 
two neighborhoods in the search space. The darker 

target is the onle of interest in the search. 

A MATLAB program was developed for implementing 
the PSO algorithm. The: inertial weight wi was taken to be 
0.8 and 0.6 given the dynamic range for wi to be 0.2 to 
1.2. The acceleration constants cl and c2 are taken to be 2, 
but the study has been carried out for different values of 
these constants. The other parameters that need to be 
defined are the domain within which the search is to be 
carried out and the maximum allowable velocity for the 
particles needs to be fixed. 

For the simulation, the’search space was taken as 10 units 
and the maximum velocity was limited to 2 units. The 
initial position and velocity for the particles were 
randomly generated. The successive new velocities and 
positions were calculated using the equations given in (I) 
and (2) respectively. Initially the particles’ best position 
Pb-1 is the same as the initial random positions. The initial 
global best Gbal is calculated from the initial Pbesr. This is 
done by calculating the: Euclidean distance of the particles 
with the target and then searching through this array for 
the minimum value. The co-ordinates corresponding to 
this minimum value is the global best. Within a loop the 
algorithm calculates the new velocity depending on the 
parameters passed to it from the previous iteration. The 
new positions of the particles depend on the current 
velocity of the particle. After updating the position for 
every particle, the particles’ best position and the global 
best position need to be recalculated. 

The various parameters that can be manipulated for 
different results are the number of particles, the problem 
space, the weights and the number of iterations. By 
increasing the problem space, the relative number of 
iterations required to reach the target reduced. 

In the second part of the simulation, two targets have been 
chosen in the space. Each target has been assigned a 
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%.> - - parameter I, which describes its intensity. The particles 

deployed here need to be divided into the neighborhoods. 
For simplicity, the particles have been randomized 
separately within the local neighborhoods. The procedure 
for the implementation of PSO involves the following 
basic steps: 

Define the problem space and its boundaries. 
Also define the intensities of the targets. 

”: 
. T I  

-.!e 

( i )  

( i i )  Divide the space into local neighborhoods izi 

depending on the number of the targets (in this 
case 2). Y O  

individual neighborhoods and their velocities. 

.?3 “ 

s *: .5 n 40 $. fJ 
”e. 

( i i i )  Randomize the particles’ position in the 

Figure 3. Plot for the number of particles vls the 
number of iterations with w; = 0.6. ( i v )  Perform steps (iii) to (viii) of the general PSO 

described in the previous section above for both 

( v  ) After the respective particles have converged at 
their targets, the intensities of the targets are read 
using sensors located on one or more particles 
and the target of particular interest is identified. 

Now all the particles need to converge at the 
desired target and the steps (iii) to (viii) of the 
general PSO case are repeated. 

The logic employed in this part is basically the same as 
the single target case, only executed twice. First the 
targets are isolated within a neighborhood. Therefore 
within this domain, it essentially becomes a single target 
case with half the number of particles. Similarly the same 
case exists for the other target. After the particles 
converge at each of the targets, the intensity of each target 
is read using sensors that will be mounted on the particles 
in a practical situation. The desired target is decided on 
the target having the greater sensor outcomehtensity. 
The particles at the other targets need to move towards the 
desired target. 

RESULTS 

The MATLAB code was executed by varying various 
parameters. These include the inertial weight, cl and c2, 
the number of particles and the number of iterations. 

The graphs presented below show the results when the 
code was executed for two different values of the inertial 
weight. The program was also executed a number of 
times with different number of particles. 

The graph in Figure 3 shows that initially increasing the 
number of particles in the swarm reduces the number of 
iterations required to reach the target. But, after increasing 
the number of particles beyond a certain value, the 
number of iterations required started increasing. This 

(v i  ) 

Figure 4. Plot for the number of particles vls the 
number of iterations with wi = 0.8. 

From the results it can also be seen that by reducing the 
value of wi, the number of iterations required to achieve 
the goal reduces by a large number. 

It can also be seen that the two graphs look different. 
When the value of wi is 0.8 the number of iterations 
required to reach the goal does not follow the same path 
as that for wi = 0.6. 

Table 1 below compares the number of iterations obtained 
by changing the value of the weight wi in (1). Also 
increasing the value of wi, it was seen that the number of 
iterations required increased. But when w, was taken 
greater than 1, the particles reached the extreme ends of 
the problem space and the velocities saturated at the 
maximum velocity defined. This happens because for a 
higher wi, the velocity is higher. Therefore, the distance 
covered by the particle between iterations is greater. This 
results in the particle overshooting the target location and 
hence would need more number of iterations to get pulled 
back towards the target. 

follows the law of diminishing returns. The same-is true 
for the case where wi = 0.8. But it can be seen that the 
lowest point in the graph for wi = 0.8 is around 35 to 30 
particles in a swarm while for wi = 0.6 is 20 to 25. 

Also it was Seen that by increasing the number of 
iterations for a fixed number ofparticles, sometimes 
of the particles got randomly saturated. The particles 
reached the maximum velocity and the extreme edges of 
the space. 
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Table 1. Number of iterations 

35 

40 

Number of 
Iterations 

0.6 220 
0.8 2200 
0.6 240 
0.8 2000 

1 0.6 I300 
10 I 0.8 I2100 1 

2000 
225 
2000 

I 0.6 I220  
30 I 0.8 I 1900 

I 0.6 I 260 

The system can be made adaptive by varying the weights 
according to the positions of the particles. A higher value 
of wi means that the dependence of the new velocity on 
the previous velocity is greater. Therefore, to make the 
program adaptive the value of wi can be defined greater 
than one initially. As the particles start approaching the 
target the velocity needs to decrease. The two terms that 
depend on the difference of the particles position with the 
‘Pb-1’ and ‘Gbest’ positions will become smaller. 
Theyefore, defining a new wi which is smaller than one, 
starts reducing the velocity which implies less exploration 
and more exploitation. 

Table 2. Effect of c l  and c2 on the number of 
iterations with swarm size= 10 and wi=0.6 

# of iterations 

0.5 saturates 
0.5 0.5 175 

The acceleration constants cI and c2 also have an effect on 
the velocity of the particles. Constant CI corresponds to 
the ‘Pbat’ of the particle and c2 corresponds to the ‘Gb-l’ 
term of the velocity equation. The simulation was tested 
for different values of CI and c2 other than 2. Table 1 
shows the results with values c,  and c2 taken to be 2. 
Table 2 shows the effect on the number of iterations for 
different values of cf and c2. When these values were 
taken greater than 2 the particles saturated. But it was 
observed that by reducing these values faster convergence 
was achieved for the same number of particles and value 
of wj. This result shows the importance of the ‘Pbest’ and 
‘Gb,i terms on the speed of the system. Also another 
interesting observation was that when the values taken 
were cI =OS and c2 =2, the convergence was faster for a 

given wi and number oj’particles. Since c2 corresponds to 
the ‘Gbesf’ term, it can be seen that the ‘Gbest’ term plays a 
greater role in the convergence of the particles. 

The results of the two target case are very similar to the 
single target case. Here there are two loops in the 
program. Therefore the total number of iterations is the 
sum total of the iterations required to identify the target 
and the number of iterations required for converging at the 
desired target. 

Table 3. Effect of cl and c2 on the number of 
iterations with swarm size= 10 

I c., I c1 I # o~iterations I # ofiterations I 

115 
145 

The values of the number of iterations vary slightly over 
the number of times the program is run. This depends on 
where in the space the particles get initialized. Since the 
initialization is random, this number varies. Therefore the 
values above are approximates. The number of iterations 
required to achieve this task is relatively less than the 
single target case. This is because once the target interest 
has been identified; a few particles are already at that 
particular location hence only the others need to be 
moved. This can be done by either simply supplying the 
new location information or forcing the particles to move 
there or by implementing particle swarm algorithm again. 
The results shown ablove are obtained by employing 
particle swarm again. The number of iterations will 
decrease further if instead of the PSO algorithm the 
particles are moved directly to the new location. 

CONCLUSION AND FUTURE WORK 

It has been shown that PSO can be successfully 
implemented for a single target with a known location. 
The paper has also shown results for a two target case. 
The same algorithm can be extended to multiple targets 
with known locations and then further to multiple targets 
with unknown locations. The parameter that describes the 
target can be for example, the intensity of a light source, 
the radiation of a source: etc. This parameter is important 
because it helps in idmtifying the target of particular 
interest. The results obtained have shown that PSO has 
potential for application in unmanned vehicles to be used 
in hazardous and dangerous environments. 

Future work involves extending this work to the multiple 
target case with known and unknown locations, where the 
problem space needs to be divided into various 
neighborhoods. The particles will be divided into groups 
and each group is made to explore their space to find a 
target. This part has also been shown by taking a two 
target case and can be extended fiuther to a number of 
targets. It is important to find a way to divide the particles 
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into the separate groups especially in the multiple target [ l  I] Ding Yuigying; He Yan; Jiang Jingping., “Multi- 
case. There are different methods that could be employed robot cooperation method based on the ant 
to define the groups and the neighborhoods. The groups algorithm ”, IEEE Swarm Intelligence Symposium, 
for the neighborhoods can be defined by successively April 24-26,2003, Page(s): 14-18. 
assigning to each target a particle which is closest to it. 
When one particle from a group has reached its target, all 
other particles in that group become immobile. The 
particles read the targets’ parameter and then because of 
the communication between all the particles the desired 
target location is identified and then all the particles 
converge at the particular target. The procedure for this is 
the same as in the case of the single target or two targets. 
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