
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2004

Unmanned Vehicle Navigation Using Swarm Intelligence Unmanned Vehicle Navigation Using Swarm Intelligence

Sheetal Doctor

Ganesh K. Venayagamoorthy
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
S. Doctor and G. K. Venayagamoorthy, "Unmanned Vehicle Navigation Using Swarm Intelligence,"
Proceedings of International Conference on Intelligent Sensing and Information Processing, 2004,
Institute of Electrical and Electronics Engineers (IEEE), Jan 2004.
The definitive version is available at https://doi.org/10.1109/ICISIP.2004.1287661

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229177393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1316&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICISIP.2004.1287661
mailto:scholarsmine@mst.edu

Unmanned Vehicle Navigation Using Swarm Intelligence

Sheetal Doctor
Department of Electrical and Computer Engineering

University of Missouri - Rolla, MO 65409, USA
skdkvd@umr. edu

Abstract
Unmanned vehicles are used to explore physical areas
where humans are unable to go due to diferent
constraints. There have been various algorithms that
have been used to perform this task. This paper explores
swarm intelligence for searching a given problem space
for a particular target($. The work in this paper has two
parts. In the first part, a set of randomized unmanned
vehicles are deployed to locate a single target. In the
second part, the randomized unmanned vehicles are
deployed to locate various targets and are then converged
at one of targets of a particular interest. Each of the
targets carries transmits some information which draws
the attention of the randomized unmanned vehicles to the
target of interest. The Particle Swarm Optimization (PSO)
has been applied for solving this problem. Results have
shown that the PSO algorithm converges the unmanned
vehicles to the target of particular interart success&lly
and quickly.

Keywords
Unmanned Vehicles, Navigation, Optimization, Swarm
Intelligence.

INTRODUCTION

Autonomous unmanned vehicles have generated much
interest in recent years due to their ability to perform
relatively difficult tasks in hazardous or remote
environments. Different stochastic iterative search
methods have been investigated for optimization of
continuous non-linear functions. Various algorithms like
evolutionary computations [7], genetic algorithms,
adaptive cultural models etc. have been used to perform
this task.

Swarm intelligence [5] links artificial intelligence to the
concept of fish schooling or swarming theory. It is based
on the social behavior of flocks of birdslschools of fish
and the success of the group is because of the
communication established between them. Particle Swarm
Optimization (PSO) reported by James Kennedy and
Russell Eberhart [6], in 1995 is based on this simple
concept and the paradigms can be easily implemented. It
is relatively a new concept and is used for target tracing
by autonomous communicating bodies. Other applications
using PSO include calibration of instruments [lo],
generator maintenance scheduling [11, etc.

This paper presents the application of PSO technique for
searching targets in a given problem space using a number
of unmanned vehicles referred to as particles in the rest of
the paper. The work in this paper has two parts. In the first
part, a set of randomized unmanned vehicles are deployed

Ganesh K. Venayagamoorthy
Department of Electrical and Computer Engineering

University of Missouri - Rolla, MO 65409, USA
gkumar@ieee.org

to locate a single target. In the second part, the
randomized unmanned vehicles are deployed to locate
various targets and are then converged at one of targets of
a particular interest. Each of the targets carries transmits
some information which draws the attention of the
randomized unmanned vehicles to the target of interest. A
study has been done on the effect of the number of
particles in the swarm and the number of iterations
required for converging them at the target(s). The effects
of changing some of the PSO parameters on the results
have been also studied.

PARTICLE SWARM OPTlMlZATlON

Particle swarm optimization is a new concept which
broadly falls under evolutionary computation techniques.
A problem space is initialized with a population of
random solutions in which it searches for the optimum
over a number of generations and reproduction is based on
prior generations. The concept of PSO is that each particle
randomly searches through the prbblem space by updating
itself with its own memory and the social information
gathered from other particles.

Within a defined problem space, the system has a
population of particles. Each particle is randomized with a
velocity and ‘flown’ in the problem space. The particles
have a memory and they keep track of the previous best
position (Pbesl) with respect to the target. Thus each ‘Pbesl’
is related to a particular particle. The best value of all
these ‘Pbenj’ is defined as the global best position ‘Gbesl’
with respect to the target. Therefore each pahicle has its
own ‘Pb-1’ and the whole swarm has one ‘Gberl’. The
velocities and positions of the particles are constantly
updated until they have all converged at the target. The
basic PSO velocity and position update equations are
given by (1) and (2).

These are called the quality factors.

vn, = wi * void + CI * rand() * -Pod 3- c2 * rand() *
(Gbert -poiad (1)

pnew = pold vnew (2)

- New velocity calculated for each particle
- Velocity of the particle li-om the previous

- New position calculated for each particle
- Position of the particle from the previous

- Particle’ best position
- The best position a particle attained in the

iteration

iteration

0-7803-8243-9/041$17.00 0 2004 IEEE

1

249 IClSlP 2004

mailto:gkumar@ieee.org

whole populatiodswarm
Wi - Inertial weight constant
c, & c2 - Weights for the terms dependent on the

particles’ position (acceleration constants)

The population responds to the factors ‘Pbesl’ and ‘Gbesl’ in
order to find a better position. The particles are drawn
towards the position of their own previous best
performance and the best performance of a particle in the
group.
The procedure for the implementation of PSO involves
the following basic steps [5] , [6] .

Define the problem space with its boundaries.

Initialize an array of particles with random
positions and velocities. These random positions
are initially assigned to be the of the
particles. Also initialize the target(s) position(s).

Evaluate the desired fitness function of the
particles in step (ii). In this case, the Euclidean
distance from the target. Select the Gbesr from the
the P b a l of the particles.

Compute the particles’ new velocities and
positions using (I) and (2) respectively.

Check if the particles are within the problem
space. If the particles are not within the problem
space, then the velocity is set to the maximum
velocity @re-defined) and the particle’s new
position is set to its previous best position.

Calculate the new fitness function for all the
particles’ new positions. Determine the particles’
new Pb&. compare with the particles’ previous
Pbesl and update the value with the new one if
necessary.

Calculate the new global best position Gbesl

among all the particles’ new Pbesr. Compare with
the previous best and update the global best
before the next iteration.

The steps (iv) to (vii) are repeated until all the
particles have attained their desired fitness.

The differences between particles’ positions with respect
to the global best (Gbesl) and the respective particle’s best
(Pbes /) are weighted by the constants cl and c2 and a
random number between 0 and 1. The effect of variations
of these constants on the performance of the PSO
algorithm has also been presented in this paper.

TARGET SEARCH

This paper investigates two types of search problems. The
first type involving a single target location and the second
type involving two targets but only one target is of
interest. Figures 1 and 2 show the graphical representation
of the two cases studied. In Figure 2, the darker target is
the one to be located by the particles. The particles have
all been shown at random locations.

Figure 1. Randomized particles and a target in the
search space.

Figure 2. Randomized particles and two targets in the
two neighborhoods in the search space. The darker

target is the onle of interest in the search.

A MATLAB program was developed for implementing
the PSO algorithm. The: inertial weight wi was taken to be
0.8 and 0.6 given the dynamic range for wi to be 0.2 to
1.2. The acceleration constants cl and c2 are taken to be 2,
but the study has been carried out for different values of
these constants. The other parameters that need to be
defined are the domain within which the search is to be
carried out and the maximum allowable velocity for the
particles needs to be fixed.

For the simulation, the’search space was taken as 10 units
and the maximum velocity was limited to 2 units. The
initial position and velocity for the particles were
randomly generated. The successive new velocities and
positions were calculated using the equations given in (I)
and (2) respectively. Initially the particles’ best position
Pb-1 is the same as the initial random positions. The initial
global best Gbal is calculated from the initial Pbesr. This is
done by calculating the: Euclidean distance of the particles
with the target and then searching through this array for
the minimum value. The co-ordinates corresponding to
this minimum value is the global best. Within a loop the
algorithm calculates the new velocity depending on the
parameters passed to it from the previous iteration. The
new positions of the particles depend on the current
velocity of the particle. After updating the position for
every particle, the particles’ best position and the global
best position need to be recalculated.

The various parameters that can be manipulated for
different results are the number of particles, the problem
space, the weights and the number of iterations. By
increasing the problem space, the relative number of
iterations required to reach the target reduced.

In the second part of the simulation, two targets have been
chosen in the space. Each target has been assigned a

250 IClSlP 2004

SW *T n
%.> - - parameter I, which describes its intensity. The particles

deployed here need to be divided into the neighborhoods.
For simplicity, the particles have been randomized
separately within the local neighborhoods. The procedure
for the implementation of PSO involves the following
basic steps:

Define the problem space and its boundaries.
Also define the intensities of the targets.

”:
. T I

-.!e

(i)

(i i) Divide the space into local neighborhoods izi

depending on the number of the targets (in this
case 2). Y O

individual neighborhoods and their velocities.

.?3 “

s *: .5 n 40 $. fJ
”e.

(i i i) Randomize the particles’ position in the

Figure 3. Plot for the number of particles vls the
number of iterations with w; = 0.6. (i v) Perform steps (iii) to (viii) of the general PSO

described in the previous section above for both

(v) After the respective particles have converged at
their targets, the intensities of the targets are read
using sensors located on one or more particles
and the target of particular interest is identified.

Now all the particles need to converge at the
desired target and the steps (iii) to (viii) of the
general PSO case are repeated.

The logic employed in this part is basically the same as
the single target case, only executed twice. First the
targets are isolated within a neighborhood. Therefore
within this domain, it essentially becomes a single target
case with half the number of particles. Similarly the same
case exists for the other target. After the particles
converge at each of the targets, the intensity of each target
is read using sensors that will be mounted on the particles
in a practical situation. The desired target is decided on
the target having the greater sensor outcomehtensity.
The particles at the other targets need to move towards the
desired target.

RESULTS

The MATLAB code was executed by varying various
parameters. These include the inertial weight, cl and c2,
the number of particles and the number of iterations.

The graphs presented below show the results when the
code was executed for two different values of the inertial
weight. The program was also executed a number of
times with different number of particles.

The graph in Figure 3 shows that initially increasing the
number of particles in the swarm reduces the number of
iterations required to reach the target. But, after increasing
the number of particles beyond a certain value, the
number of iterations required started increasing. This

(v i)

Figure 4. Plot for the number of particles vls the
number of iterations with wi = 0.8.

From the results it can also be seen that by reducing the
value of wi, the number of iterations required to achieve
the goal reduces by a large number.

It can also be seen that the two graphs look different.
When the value of wi is 0.8 the number of iterations
required to reach the goal does not follow the same path
as that for wi = 0.6.

Table 1 below compares the number of iterations obtained
by changing the value of the weight wi in (1). Also
increasing the value of wi, it was seen that the number of
iterations required increased. But when w, was taken
greater than 1, the particles reached the extreme ends of
the problem space and the velocities saturated at the
maximum velocity defined. This happens because for a
higher wi, the velocity is higher. Therefore, the distance
covered by the particle between iterations is greater. This
results in the particle overshooting the target location and
hence would need more number of iterations to get pulled
back towards the target.

follows the law of diminishing returns. The same-is true
for the case where wi = 0.8. But it can be seen that the
lowest point in the graph for wi = 0.8 is around 35 to 30
particles in a swarm while for wi = 0.6 is 20 to 25.

Also it was Seen that by increasing the number of
iterations for a fixed number ofparticles, sometimes
of the particles got randomly saturated. The particles
reached the maximum velocity and the extreme edges of
the space.

25 1 IClSlP 2004

Table 1. Number of iterations

35

40

Number of
Iterations

0.6 220
0.8 2200
0.6 240
0.8 2000

1 0.6 I300
10 I 0.8 I2100 1

2000
225
2000

I 0.6 I220
30 I 0.8 I 1900

I 0.6 I 260

The system can be made adaptive by varying the weights
according to the positions of the particles. A higher value
of wi means that the dependence of the new velocity on
the previous velocity is greater. Therefore, to make the
program adaptive the value of wi can be defined greater
than one initially. As the particles start approaching the
target the velocity needs to decrease. The two terms that
depend on the difference of the particles position with the
‘Pb-1’ and ‘Gbest’ positions will become smaller.
Theyefore, defining a new wi which is smaller than one,
starts reducing the velocity which implies less exploration
and more exploitation.

Table 2. Effect of c l and c2 on the number of
iterations with swarm size= 10 and wi=0.6

of iterations

0.5 saturates
0.5 0.5 175

The acceleration constants cI and c2 also have an effect on
the velocity of the particles. Constant CI corresponds to
the ‘Pbat’ of the particle and c2 corresponds to the ‘Gb-l’
term of the velocity equation. The simulation was tested
for different values of CI and c2 other than 2. Table 1
shows the results with values c, and c2 taken to be 2.
Table 2 shows the effect on the number of iterations for
different values of cf and c2. When these values were
taken greater than 2 the particles saturated. But it was
observed that by reducing these values faster convergence
was achieved for the same number of particles and value
of wj. This result shows the importance of the ‘Pbest’ and
‘Gb,i terms on the speed of the system. Also another
interesting observation was that when the values taken
were cI =OS and c2 =2, the convergence was faster for a

given wi and number oj’particles. Since c2 corresponds to
the ‘Gbesf’ term, it can be seen that the ‘Gbest’ term plays a
greater role in the convergence of the particles.

The results of the two target case are very similar to the
single target case. Here there are two loops in the
program. Therefore the total number of iterations is the
sum total of the iterations required to identify the target
and the number of iterations required for converging at the
desired target.

Table 3. Effect of cl and c2 on the number of
iterations with swarm size= 10

I c., I c1 I # o~iterations I # ofiterations I

115
145

The values of the number of iterations vary slightly over
the number of times the program is run. This depends on
where in the space the particles get initialized. Since the
initialization is random, this number varies. Therefore the
values above are approximates. The number of iterations
required to achieve this task is relatively less than the
single target case. This is because once the target interest
has been identified; a few particles are already at that
particular location hence only the others need to be
moved. This can be done by either simply supplying the
new location information or forcing the particles to move
there or by implementing particle swarm algorithm again.
The results shown ablove are obtained by employing
particle swarm again. The number of iterations will
decrease further if instead of the PSO algorithm the
particles are moved directly to the new location.

CONCLUSION AND FUTURE WORK

It has been shown that PSO can be successfully
implemented for a single target with a known location.
The paper has also shown results for a two target case.
The same algorithm can be extended to multiple targets
with known locations and then further to multiple targets
with unknown locations. The parameter that describes the
target can be for example, the intensity of a light source,
the radiation of a source: etc. This parameter is important
because it helps in idmtifying the target of particular
interest. The results obtained have shown that PSO has
potential for application in unmanned vehicles to be used
in hazardous and dangerous environments.

Future work involves extending this work to the multiple
target case with known and unknown locations, where the
problem space needs to be divided into various
neighborhoods. The particles will be divided into groups
and each group is made to explore their space to find a
target. This part has also been shown by taking a two
target case and can be extended fiuther to a number of
targets. It is important to find a way to divide the particles

252 IClSlP 2004

into the separate groups especially in the multiple target [l I] Ding Yuigying; He Yan; Jiang Jingping., “Multi-
case. There are different methods that could be employed robot cooperation method based on the ant
to define the groups and the neighborhoods. The groups algorithm ”, IEEE Swarm Intelligence Symposium,
for the neighborhoods can be defined by successively April 24-26,2003, Page(s): 14-18.
assigning to each target a particle which is closest to it.
When one particle from a group has reached its target, all
other particles in that group become immobile. The
particles read the targets’ parameter and then because of
the communication between all the particles the desired
target location is identified and then all the particles
converge at the particular target. The procedure for this is
the same as in the case of the single target or two targets.

REFERENCES
[l] Chin Aik Koay; Srinivisan, D., “Particle swarm

optimization-based approach for generator
maintenance scheduling”, Proceedings of the 2003
IEEE Swarm Intelligence Symposium, April 24-26,
2003, Page(s): 167 -173.

[2] El-Gallad, A.; El-Hawary, M.; Sallam, A.; Kalas, A.,
‘%Enhancing the particle swarm optimizer via proper
parameters selection”, IEEE CCECE 2002 Canadian
Conference on Electrical and Computer Engineering,
Volume 2, 12-15 May 2002, Page(s): 792 -797.

[3] Gudise, V.G.; Venayagamoorthy, G.K., “Comparison
of particle swarm optimization and backpropagation
as training algorithms for neural networks”,
Proceedings of the 2003 IEEE Swarm Intelligence
Symposium,. SIS ‘03, April 24-26, 2003, Page(s): 110

[4] Xiaohui Hu; Eberhart, R.C.; Yuhui Shi., “Particle
swarm with extended memory for multiobjective
optimization”, Swarm Intelligence Symposium, 2003.
SIS ‘03, Proceedings of the 2003 IEEE Swarm
Intelligence Symposium,. SIS ‘03, April 24-26, 2003,
Page(s): 193 -197

[5] Kennedy, J.; Eberhart, R., “Particle Swarm
Optimization”, Proceedings IEEE International
Cotlference on Neural Networks, Volume: 4, 27
Nor.- 1 Dec. 1995, Vol. 4, Page(s): 1942 -1948.

[6] JLmes Kennedy and Russell Eberhart., Swarm
I tclligence with Yuhui Shi, Morgan Kauffinan
p d)lishers, San Francisco, CA. ISBN 1-55860-595-9

[7] h ‘ halewicz, Z.; Michalewicz, M., “Evolutionary
C , -1putation Techniques and their applications”,

+ .’E International Conference on Intelligent
. : .ocessing System, ICIPS, Volume: 1, 28-3 1 Oct.
1?97 Page(s): 14 -25.

[8] Mostaghim, S.; Teich, J., “Strategies for finding good
local guides in multi-objective particle swarm
optimization (MOPSO)”, IEEE Swarm Intelligence
Symposium, April 24-26,2003, Page(s): 26 -33.

[9] Peer, E.S.; van den Bergh, F.; Digelbrecht, A.P.,
“Using neighbourhoods with the guaranteed
convergence pso”, IEEE Swarm Intelligence
Symposium, April 24-26,2003, Page(s): 235 -242.

[IO] Peng Yu; Peng Xiyuan; Meng Shengwei., “Virtual
instrument parameter calibration with particle swarm
optimization”, IEEE Swarm Intelligence Symposium,
April 24-26,2003, Page(s): 42 -45

-117.

253 IClSlP 2004

	Unmanned Vehicle Navigation Using Swarm Intelligence
	Recommended Citation

	Unmanned vehicle navigation using swarm intelligence

