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ATTENUATION IN EXTENDED STRUCTURES
COATED WITH THIN MAGNETO-DIELECTRIC
ABSORBER LAYER

M. Y. Koledintseva1, *, A. G. Razmadze1, A. Y. Gafarov1,
V. V. Khilkevich1, J. L. Drewniak1, and T. Tsutaoka2

1Missouri University of Science & Technology, Electrical and Computer
Engineering Department, 115 EECH, Rolla, Missouri 65409, USA
2Hiroshima University, Higashi-Hiroshima 739-8524, Japan

Abstract—Thin absorbing layers containing magnetic alloy or ferrite
inclusions can be effectively used for attenuating common-mode
currents on extended structures, such as power cords, cables, or edge-
coupled microstrip lines. An analytical model to evaluate attenuation
on the coaxial line with the central conductor coated with a magneto-
dielectric layer is proposed and validated by the experiments and
numerical modeling. The analytical model is validated using available
magneto-dielectric samples of different thicknesses. This model can
serve for comparing and predicting the absorptive properties of
different samples of magneto-dielectric materials, whose compositions
may be unknown, but dielectric and magnetic properties can be
determined by independent measurements over the specified frequency
ranges. From modeling the absorption in a coaxial line with a wrapped
central conductor, it could be concluded whether it is reasonable to
use this particular material in such applications as a shield on an
Ethernet or other cable, for reducing potential common-mode currents
and unwanted radiation in the frequency range of interest.

1. INTRODUCTION

Composite thin sheet materials containing magnetic inclusions can be
effectively used for electromagnetic noise-suppressing purposes and
for solving numerous electromagnetic compatibility and immunity
problems [1–4]. For example, thin absorbing magneto-dielectric layers
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suppress common-mode currents on extended structures, such as power
cords, cables, or edge-coupled microstrip lines. They can also be used
as patches on the conducting surfaces, e.g., on the walls of cavities
and shielding enclosures. These composite materials may contain
either randomly oriented and distributed, or aligned ferrite [5–9],
ferromagnetic [10, 11], or artificial magnetic inclusions. The latter may
be made of micro/nanowires, e.g., metasolenoids [12].

Electromagnetic absorbing effectiveness of materials is typically
characterized and tested in terms of the shielding effectiveness (S.E.),
which shows the attenuation of electric and/or magnetic fields by an
absorbing layer of particular thickness [13, 14]. Another characteristic
is the reflection loss (R.L.), which is calculated if the material is backed-
up by a metal screen [1, 2]. However, characterization in terms of S.E.
and R.L., strictly speaking, is applicable only to far fields and radar
absorbing materials (RAM) [15]. For the purposes of electromagnetic
compatibility/electromagnetic immunity (EMC/EMI), in which near
fields are also of importance, evaluation of absorbing materials using
frequency dependences of S.E. and/or R.L. is not sufficient [16].
Engineers encountering EMC/EMI problems in their designs may need
information on what attenuation for electric and magnetic fields, or
electromagnetic power is produced due to the certain amount of an
absorbing material — per-unit-length (in cable applications), per-unit-
area, or even per-unit-volume (in cavity/enclosure patch applications).
They need to know how much absorbing material to take to achieve
sufficient mitigation of noise, i.e., unwanted radiation or coupling.

When designing or choosing an appropriate absorbing material
from a number of available candidates, a simple experiment-based
technique to evaluate absorbing properties of the materials under test is
desirable. This may be an evaluation of the per-unit-length attenuation
of propagating waves in a transmission line or waveguide structure,
whose cross-section is completely or partially filled with the material
under test. If a thin sheet noise-suppressing material coats an extended
metallic structure, e.g., a long metallic wire or a cable, the reduction
of the radiation efficiency of this structure due to the suppression of
the common-mode currents can be evaluated and correlated with the
absorption properties of this material per geometrical unit.

An approach to evaluate and compare absorptive properties of
different materials is considered in this paper. It is proposed to wrap
the central conductor of an air-filled coaxial line with a thin layer of
the test material and measure S-parameters on the line, retrieving
the attenuation due to the material. The coaxial airline with the
removable central conductor can be used — the same as is used for
measuring permittivity and permeability of materials by the Nicolson-
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Ross-Weir (NRW) technique [17–19]. In the latter, a washer-shaped
test sample completely fills the cross-section of the coaxial line [20]. In
the case of a very thin sheet material under test, the method described
in [21] can be used. There are some other techniques to measure
permittivity and permeability of thin sheet magnetic materials, but
their description is beyond the scope of this paper. The good review
of different measurement techniques is given in [22].

The physical mechanism of the wave attenuation in the air-filled
line is an appearance of surface impedance on the metal surface that
contributes to the loss along the line. In the other words, the presence
of a thin magneto-dielectric layer upon a conductor surface contributes
to the degradation of its effective conductivity. This is analogous to
the power loss due to rough conductor interfaces [23–26].

An analytical solution of the problem of finding complex
propagation constant and corresponding complex surface impedance
associated with TMz mode propagating along a coaxial line with
a coated central conductor is presented herein. The frequency
characteristics of permittivity and permeability of a thin magneto-
dielectric layer coating the central conductor are supposed to be
known. They can be measured using one of the known techniques,
e.g., the NRW method. The proposed analytical model is based on
matching boundary conditions for the vector electric and magnetic
potentials in a layered structure [27], and rigorous solution of the
resulting transcendental equation for wave numbers within the lossy
magneto-dielectric layer coating the metal [28, 29]. The attenuation of
quasi-TEM-mode in the air-filled coaxial line with the coated central
conductor is analyzed based on the concept of surface displacement,
introduced in [23]. The effective RLGC parameters of the structure,
different from those in a lossless or low-loss air-filled coaxial line [30],
are then extracted. The S-parameters for a section of the coaxial
line with the coated central conductor then can be calculated using
the transition from the RLGC parameters to the ABCD matrix
parameters [31]. Using this model, a few examples of absorbing
materials are tested, and frequency dependences of attenuation are
shown. This analytical approach allows for comparing absorptive
properties of different thin sheet magneto-dielectric materials. It
also allows for simple comparing absorption level when using the
same material, but of different thickness or length on the conductor.
The analytical results for the transmission coefficient (S21) are also
compared with numerical simulations using the finite-element method
(FEM) in CST Microwave Studio.
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2. ANALYTICAL MODEL

Surface currents on a conducting surface are always induced by
magnetic fields present in the vicinity of the metallic surface. In
turn, the surface currents produce magnetic fields, which may be
undesirable, especially if there are sharp edges, wedges, or slots.
Fringing magnetic fields may contribute to unwanted coupling and
radiation [32]. To suppress these surface currents, coating metal
surfaces with materials possessing the sufficient magnetic loss in the
frequency range of interest may be a solution.

An approach presented herein is based on the concepts of the
surface impedance and surface displacement [23]. If there is a perfect
electric conductor (PEC) and no absorbing coating, no skin effect
will occur, tangential components of electric and normal component
of magnetic field vectors will be zero, finite surface currents will flow
on the PEC, and surface impedance zero will be zero. If the metallic
surface is a non-perfect electric conductor (NPEC), the electromagnetic
field will penetrate inside the conductor due to the skin-effect. Then
the longitudinal electric field component will be non-zero. This will
lead to the appearance of the surface impedance associated with the
skin-depth. If metal surface is periodically rough or coated with a
lossless dielectric layer, the surface impedance will be pure inductive.
The surface impedance is complex in the general case of a lossy
magneto-dielectric material. The additional to skin-depth surface
impedance can be found by solving the rigorous boundary problem for
surface, leaky, and bulk waves. This is a Sommerfeld-type problem,
and the spectrum of modes is found from the solution of the complex-
value transcendental equation [28].

Then this surface impedance is related to the total loss for the
main propagating wave, for example, TEM mode on a coaxial line,
or the quasi-TEM in a microstrip line. This problem formulation is
illustrated by Figure 1.

The total surface impedance is comprised of two terms,

Zs = Rs(1 + j) + Zs1, (1)

where the first term, Zs = Rs(1 + j), is associated with skin-effect,
and the second, Zs1, is the surface impedance due to the absorbing
layer-air boundary, where surface waves propagate. Surface resistance
Rs depends on the bulk conductivity σ of the metallic material,

Rs =
1

σδskin
=

√
ωµ0

2σ
∝ √

ω. (2)

As is shown in [28, 29], the surface impedance Zs1 is associated
with the propagating TMz mode along the infinite planar structure.
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d 

Figure 1. Surface impedance approach to characterize conductivity
degradation of the metallic surface coated with magneto-dielectric
absorbing layer.

This surface impedance can be calculated as

Zs1 =ZTMz =j

√
(ω/c)2 · µ̃rε̃r−κ2

0

ωε0ε̃r
tan

(
d ·

√
κ2

0−(ω/c)2 · µ̃rε̃r

)
, (3)

where κ0 is found as the lowest solution of the transcendental equation
for the propagation constant κ and corresponds to the TMz mode
similar to [26]
√

κ2 − (ω/c)2 =
j
√

κ2−(ω/c)2 · µ̃rε̃r

ε̃r
· tan

(
d ·

√
κ2−(ω/c)2 · µ̃rε̃r

)

⇒ κ = κ0. (4)
This equation is obtained from matching the corresponding vector
potentials at the boundaries metal-absorbing layer, and absorbing
layer-air [27]. The corresponding wave numbers for the TEM waves
are k1 = ω

√
µ̃rε̃r/c inside the absorbing layer with relative complex

permeability µ̃r and permittivity ε̃r, and k2 = ω/c in the air. Thickness
of the thin layer is d, as is seen from Figure 1. If κ2

0 ¿ k2
1, the TMz

wave, whose wave vector is directed normal to the surface plane, will
propagate [27, Section 4.9], and an approximate formula for absorber-
related surface impedance is nothing more than the input impedance of
a metal-backed magneto-dielectric layer for a normally incident plane
wave,

Zs1 = ZTMz ≈ j

√
µ̃r

ε̃r
·
√

µ0

ε0
· tan

(ω

c
· d ·

√
µ̃rε̃r

)
. (5)

As follows from (5), this impedance is complex in the general case of
a lossy absorbing coating,

Zs1 = Rs1 + jXs1. (6)
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Then the total surface impedance (1) can be used to determine the
parameter, which is called “surface displacement” [23]. The surface
displacement is calculated as

Ds =
Zs

jωµ0
⇒ Ds = D′

s − jD′′
s . (7)

Its imaginary part D′′ affects the total conductor loss on the
transmission line with the coated conductor,

αc = αc0 · 2D′′
s

δskin
, (8)

where αc0 is the initial conductor loss on the same line with the
uncoated conductor. The total loss in the coaxial line is calculated
as [30]

α =

√
1
2

(RpulGpul−ω2LpulCpul)+
1
2

√
(R2

pul+ω2L2
pul)(G

2
pul + ω2C2

pul).

(9)
where Rpul, Lpul, Gpul, and Cpul are the per-unit-length resistance,
inductance, conductance, and capacitance, respectively. For the air-
filled lines with comparatively low loss over the operating frequency
range,

Rpul ¿ ωLpul, Gpul ¿ ωCpul, (10)

and hence the propagation constant for the TEM mode along the line
is

β = β0

[
1 +

1
8ω2

(
Rpul

Lpul
− Gpul

Cpul

)2
]

, (11)

with β0 = ω/c, where c is the light velocity in vacuum, and total loss
on the line is

α =
Rpul

2ZW0
+ GpulZW0, (12)

ZW0 =
√

Lpul

Cpul
is the characteristic impedance of the perfect lossless

line. In the air-filled coaxial line with the uncoated central conductor,
loss comes from the conductors, and can be calculated as

αc0 =
Rpul

2ZW0
. (13)

The next step is to calculate the RLCG parameters in the coaxial
line with the coated central conductor. The total surface impedance
of the line with the coated central conductor can be represented as

Zs = Rs(1 + j) + Rs1 + jXs1 = (Rs + Rs1) + j(Rs + Xs1). (14)
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The equivalent per-unit-length resistance of the coaxial line with the
coated central conductor is

Rc
pul =

1
2π

(
Rs + Rs1

a
+

Rs

b

)
, (15)

where a and b are the corresponding internal and external radii of the
coaxial line conductors, as is seen in Figure 2.

Figure 2. Geometry of the coaxial line with the coated central
conductor.

The per-unit-length inductance of the line with the coated central
conductor is

Lc
pul =

µ0

2π
ln

(
b

a

)
+

Rs + Xs1

2πω · a . (16)

Since the coating on the conductor is thin (d ¿ b), per-unit-length
capacitance and conductance in the line with the coated conductor
remain the same as in the initial air-filled line.

Cc
pul = Cpul ≈ 2πε0

ln
(

b
a

) and Gc
pul = Gpul ≈ 0. (17)

Then the per-unit-length parameters RLCG are used to calculate the
corresponding S-parameters. This is done by calculating the complex
propagation constant for the TEM mode in the line with the coated
central conductor

γ =
√(

Rc
pul + jωLc

pul

) (
Gc

pul + jωCc
pul

)
= α + jβ, (18)
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and the corresponding complex characteristic impedance of the line is

ZW =
√(

Rc
pul + jωLc

pul

)
/

(
Gc

pul + jωCc
pul

)
= |ZW | ejΦW . (19)

If the line is air-filled, then the loss comes from the coated conductor
only, α = αc,

αc = Re

(√(
Rc

pul + jωLc
pul

)
jωCc

pul

)
. (20)

Then the ABCD matrix parameters [31]
[

A B
C D

]
=

[
cosh(γL) ZW sinh(γL)

sinh(γL)/ZW cosh(γL)

]
(21)

should be calculated and related to the S-parameters for the line
section as [31]

[
S11 S12

S21 S22

]
=




A+B/ZW−CZW−D
A+B/ZW +CZW +D

2(AD−BC)
A+B/ZW +CZW +D

2
A+B/ZW +CZW +D

−A+B/ZW−CZW +D
A+B/ZW +CZW +D


 . (22)

In the well-calibrated coaxial structure, when port effects are
removed by the proper calibration procedure, the insertion loss (IL),
which is the same as the magnitude of the transmission coefficient
through the line

∣∣SdB
21

∣∣, but with the opposite sign, can be calculated
as ∣∣∣SdB

21

∣∣∣ = −IL = −8.686αc · L, (23)

where L is the line length, and αc is calculated for the line with
the coated central conductor as (20). This calculated transmission
coefficient will be compared with the experimental data and then with
full-wave numerical simulations.

3. EXPERIMENTAL STUDY AND COMPARISON WITH
THE ANALYTICAL MODEL

A few test flexible sheet absorbing materials were studied. Their
dielectric and magnetic properties over the frequency range of interest
were measured using the standard Agilent technique and software for
material parameters extraction [20]. The picture of the experimental
setup for measuring complex permittivity and permeability of the
sample in the shape of washers is shown in Figure 3. A washer under
test are placed inside the 7/3 mm coaxial airline between the inner
and outer conductors, and the washer’s plane is perpendicular to the
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coaxial line axis. Five samples of different commercially available,
e.g., NEC-Tokin, thin sheet magneto-dielectric composite materials
with an adhesive layer to place upon a metal surface have been
studied (see Table 1). Their compositions are unknown, but they
all contain magnetic platelets in a polymer base. Their measured
permittivity and permeability characteristics are shown in Figure 4
(Test Materials 1, 2, and 3) and Figure 5 (Test Materials 4 and 5).
The observed resonances on the curves for Test Materials 1, 2, and
4 are most likely due to the resonance associated with the standing
wave within the thickness of the test washers. This is seen from
the shifts of resonances to the lower frequencies as thickness, relative
permittivity, and relative permeability of the materials increase. In
the thinner samples (Test Materials 2 and 4, d = 0.1mm), not quite
smooth frequency responses of µ and ε can be observed, because the
samples may slightly bend when placing into the coaxial line. At
the same time, the material properties of samples are also frequency-
dispersive. Dielectric properties of the material should be fairly smooth

Table 1. Test materials under study.

Test

Material 1

Test

Material 2

Test

Material 3

Test

Material 4

Test

Material 5

Sample

Name
CA-19 EFR-01 EFR-03 FK2-01 FK2-05

Thickness,

mm
0.15 0.1 0.3 0.1 0.5

7/3 mm coaxial airline   
(Agilent)

Figure 3. Experimental setup and samples (washers) for measuring
dielectric and magnetic properties of absorbing materials.
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Figure 4. Frequency characteristics of permittivity and permeability
of Test Materials 1, 2 & 3.

in the frequency range of measurements, while magnetic properties may
exhibit the domain-wall or spin resonances (µ′ < 0 in some regions).

The measured frequency characteristics of the material samples
were used in the analytical modeling as described in Section 2.

The results of the analytical modeling (magnitude of the insertion
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Figure 5. Frequency characteristics of permittivity and permeability
of Test Materials 4 and 5.

loss) were compared with the measurement results, which were
obtained by measuring the attenuation along the 7/3-mm coaxial
airline (Agilent) of the length L = 10 cm. The central conductor of the
airline wrapped by a strip of the absorbing material. Figure 6 shows
two test airlines (Agilent and Maury Microwaves), a central conductor
of one of them, and a strip of the absorbing flexible magneto-dielectric
material that will wrap the central conductor.

The analytically modeled and measured amplitudes
∣∣SdB

21

∣∣ for
three different test samples are shown in Figures 7–11. It is seen
that the modeled results agree well with the measured results, at
least outside the regions, where resonances associated with thickness
of samples take place. The agreement is good for the samples of
thickness d = 0.15 (Test Material 1) and 0.3mm (Test Material 3). The
thinner samples with d = 0.1mm (Test Materials 2 and 4) show more
discrepancy at the higher frequencies. There are a few reasons for this.
First, the accuracy of measuring dielectric and magnetic properties of
thinner samples may suffer because they could be slightly bent when
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Figure 6. 7/3-mm airlines, a central conductor, and a strip of a
flexible magneto-dielectric material under study.
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Figure 7. Measured and mod-
eled loss in the line coated with
Test Material 1 (d = 0.15mm).
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Figure 8. Measured and mod-
eled loss in the line coated with
Test Material 2 (d = 0.1mm).
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Test Material 3 (d = 0.3mm).
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Figure 11. Measured and
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Figure 12. Comparison of the
modeled attenuation on the line
with different test materials.

placing inside the airline. Thicker samples, like Test Material 5 with
d = 0.5mm, shows large discrepancy over the whole frequency range.
However, the thicker samples (Test Material 5) are more difficult to
wrap around the conductor, and this may also cause the increased
discrepancy. Also, when dealing with thicker samples, per-unit-length
capacitance and conductance might be affected by the sample material.
This may lead to the limitation in applicability of the concept of the
surface impedance. From physics point of view, this is related to
an excitation of higher-order surface and leaky modes in a layered
structure, but in the presented model these modes are neglected.
Thus the analytical model has been validated for the frequency range
of 30MHz to (8 . . . 12)GHz (comparatively low frequency range) and
samples of test materials with the available thickness of 0.1, 0.15, and
0.3mm (comparatively thin samples).

As soon as the analytical model is validated, it is possible to
use it for predicting and comparing absorption efficiency of different
materials and for different thicknesses, assuming that they are wrapped
around the central conductor of the coaxial line. Figure 12 shows
the comparison of attenuation on the line with five different test
materials, the same as considered above. Figure 13 shows the predicted
attenuation on the coaxial line if its central conductor were coated
with the material with the same electromagnetic parameters as Test
Material 3 (EFR-03), but with varying thickness of the layer in the
range d = 0.1 . . . 0.35mm. It is seen from Figure 14 that the absorption
on the line is almost linear with thickness. However, at higher
frequencies, e.g., at the chosen for calculation frequency of 8 GHz,
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Figure 15. Predicted atten-
uation on the lines of different
length L with Test Material 3.
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Figure 16. Predicted attenuation
as a function of the line length with
Test Material 3.

there is some deviation from linearity as thickness increases. However,
dielectric and magnetic properties may be measured less accurately on
a washer at higher frequencies. Moreover, as was shown above, for the
thickness of the layer d > 0.35mm, the analytical model may become
inaccurate.

Figure 15 show the attenuation on the lines of different length
with the same coating material (EFR-03). The dependences obtained
from the analytical model upon length are almost linear (Figure 16),
though the slope changes with frequency. This is an expected result,
since the line exhibits translational invariance.
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4. NUMERICAL SIMULATIONS

The analytical and experimental results are compared with the
corresponding results of numerical 3D full-wave simulations. For these
purpose, the CST Microwave Studio finite-element method (FEM)
solver is employed. Geometry of the model is presented in Figure 17.
In this model, the cable length L = 10 cm, inner conductor radius
a = 1.52 mm, and outer conductor radius b = 3.5mm. In the numerical
experiments, the central conductor is coated with different materials
of different thickness d according to the Table 1.

The numerical model setup has the following peculiarities. The
waveguide ports adjacent to the ends of the line are used on the both
sides of the coaxial cable for excitation and termination. Only one
mode is taken into account at the excitation waveguide port. To
provide the single TEM mode propagation along the structure in
the simulations, the waveguide ports are isolated from the coating
by reducing the coating length by dL =1.5mm on the both ends
of the coaxial line. Numerical experiments have proven that over
the frequency range of interest (up to 12 GHz) the skin effect in
the coaxial cable conductor is negligible compared to the loss in
the absorbing coating. For this reason, a PEC has been chosen for
modeling both conductors, which reduces the computational resources.
The PEC has also been used as a background material outside the
waveguiding structure to avoid field leakage from the waveguide ports
into the surrounding space. The adaptive tetrahedral mesh has been
employed for the FEM simulations. The model setup was tested for
convergence. Taking into account the symmetry of the problem, two
perpendicular perfect magnetic conductor (PMC) planes, where the

 

Figure 17. Numerical model
setup.
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sured, and numerical results for
Test Material 1.
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sured, and numerical results for
Test Material 2.
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Figure 20. Analytical, mea-
sured, and numerical results for
Test Material 3.

tangential component of the magnetic field is zero, were applied at the
waveguide ports, as is shown in Figure 17. This allowed for considering
just 1/4 of the problem, and thus decreasing the number of mesh cells
by the factor of four.

The results of numerical simulations of the magnitude of S21

are presented along with the analytical and measurement results for
Test Materials 1, 2, and 3, in Figures 18–20, respectively. It is seen
that for all three samples, the agreement between the analytical and
numerical models is excellent. The experimental results are the direct
measurements of S21 on the line with the coated central conductor. In
both analytical and numerical models the same input data for µ̃ and
ε̃ measured on the washers were used, even if these data are not quite
accurate. This explains some discrepancy between the experimental
and calculated results, especially at higher frequencies.

5. CONCLUSION

The analytical model to evaluate attenuation on the line with the
central conductor coated with a magneto-dielectric layer is presented in
this paper. It is validated by the experiments and numerical modeling
in the frequency range of interest and for a number of the flexible
absorbing sheet materials that could be wrapped around the central
conductor of the testing coaxial line. It is shown that this model can
be used for comparing absorptive effectiveness of different materials,
as well as of different thicknesses and lengths of the same material.
Another useful outcome of the proposed analytical model is that by
solving an inverse problem, it is possible to retrieve permeability
properties of an absorbing material. The inverse problem means that
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the permeability as a function of frequency is reconstructed from the
measured S-parameters. This procedure needs additional efforts in
achieving accurate extraction of complex µ as a function of frequency,
and this is a topic for a separate paper.
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