
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 2000 

A Schooling on Their Implications for Software Engineering A Schooling on Their Implications for Software Engineering 

[Trends] [Trends] 

Ann K. Miller 
Missouri University of Science and Technology 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
A. K. Miller, "A Schooling on Their Implications for Software Engineering [Trends]," IEEE Potentials, 
Institute of Electrical and Electronics Engineers (IEEE), Jan 2000. 
The definitive version is available at https://doi.org/10.1109/45.890083 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229176913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1949&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/45.890083
mailto:scholarsmine@mst.edu


DECEMBER 2000/JANUARY 2001 0278-6648/00/$10.00 © 2000 IEEE 11

S
ome say the most accurate weather
forecast, when averaged over an
entire year, is to predict that tomor-
row’s weather will be just like

today’s. So when writing on trends in
software engineering, it is tempting sim-
ply to extrapolate some of the popular,
current trends. And, in fact, we will
examine a few of these obvious indica-
tors. But, weather also can exhibit a radi-
cal change from one day to the next. So,
too, software engineering has had new
approaches that are more revolutionary
than evolutionary.

In particular, we will try to discern
trends in software engineering based on
trends in delivered software systems.
Read them, think about them, disagree
with them, create your own opinions,
but, consider the various possibilities—
because it is your future, too.

What follows are the opinions of
someone who is more a practitioner than
a theoretician and admittedly not much
of a forecaster. If you had asked me
when I first got out of graduate school
and started teaching at a university if I
would ever work in industry, I would
have said “no.” If you had asked me on
my 10th anniversary of working in
industry if I would leave to work in
senior government service, I would have
replied “definitely not.” And yet I did
just that. Now I have returned full circle
to academic life. These varied opportu-
nities provide the insights on which
these forecasts are made.

System trend 1:
more, bigger, better

This trend, obviously, is based on an
extrapolation of many years of histori-
cal data. Application programs as well
as operating systems have been and
likely will continue to grow. This phe-
nomenon has been aided by the incredi-
ble growth in density and speed of inte-
grated circuits that Gordon Moore
accurately forecast in 1965. Thus, soft-
ware products, whether measured by
thousands of lines of code (KLOC) or
by bytes of program memory, have
exhibited a software version of Moore’s
Law. But what does this continued
growth in sheer size imply for changes
in software engineering? Several things.

Basically, there will be new and bet-
ter methodologies for developing large-
scale systems. Why is that? This is a
“tomorrow’s weather will be like
today’s weather” prediction. If we look
at the history of large systems, they

grew initially in an ad hoc, rather chaot-
ic, fashion. Since some of the largest
early programs were for military appli-
cations, it became imperative that there
be some rigor in the development
process. Winston Royce was the first to
use the term “waterfall model” in 1970.
His paper became the basis for the U.S.
Department of Defense (DoD) standard
2167A for the development of software
systems. The classical waterfall model
of systems analysis, software require-
ments specification, analysis, prelimi-
nary design, detailed code and unit test,
integration and test, and software quali-
ty test with on-going maintenance
(Fig. 1) was an important first step in
establishing rigor and repeatability in
large-scale system development.
However, the waterfall model quickly
became impractical to use; this was due
to various reasons, most notably chang-
ing requirements, new requirements and
increased customer expectations.

As a result, methodologies such as
the incremental model (Fig. 2), the evo-
lutionary model (Fig. 3) and the back-

bone model (Fig. 4) have been adopted.
These are all variations of the waterfall
model. But they improve the way
changes and growth of requirements
can be managed.

So what new improvements will
occur? Improvements will occur in
automated tracing of requirements and
in life-cycle support of changes, includ-
ing better configuration management
tools for multiple releases of a product
in various stages of development. This
may not sound like a big deal if you
have only written short software pro-
grams required for courses and labs.
However, Lehman and Belady studied
the history of successive releases of a
large operating system and found that
the total number of modules increased
linearly with the release number. More
significantly, the total number of mod-
ules affected by changes increased
exponentially with the release number.

One reason systems are getting larg-
er is that they include whole programs
inside the newer systems. In many
cases, the smaller components are com-

©
A

rt
 T

od
ay

/P
ho

to
 D

is
c 

 P
ho

to
 C

om
po

si
te

: D
eb

bi
e 

C
an

til
lo

/J
im

 H
an

ka
rd



12 IEEE POTENTIALS

mercial-off-the-shelf (COTS) products
such as a database system or a computa-
tional package. The advantage to this
approach is that the overall larger sys-
tem can be developed more quickly.
This, in turn, lets the company bring the
product to market sooner.

A disadvantage to this approach is
that rarely is the COTS component a per-
fect match for what is needed. That is, it
may not perform all the needed func-
tions. Just as seriously, it may perform
more functions than what is needed. This
is a potential problem. The incorporated
component may cause the entire system
to behave unexpectedly due to an “extra”
function being invoked. Thus, we will
see better black-box testing techniques to
verify that the functions that should be
performed are performed correctly and,
equally important, extraneous functions
cannot be performed.

A second type of incorporated soft-
ware is a “legacy system.” This is a pro-
gram that has been fielded for years but
may have been written in a different
language than a newer system; or it may
have been developed in a non-object-
oriented approach but will be part of an
upgraded object-oriented system. We
will have improved wrapper techniques
for encapsulating such legacy code into
updated systems.

Not only will the program size be
large, but the amount of data manipulat-
ed by the programs will continue to
grow. Thus, there need to be improved
techniques for managing large datasets,
including visualization techniques.
Common mechanisms are the use of
graphics, color and animation. Much
work has been done using three-dimen-
sional graphics and animation.
However, there remains a dire need for
better visualization techniques for mas-
sive datasets. And while visual tech-
niques will predominate, there may be
excellent applications where other sens-
es such as sound or touch can provide
additional assistance to the user in either

a virtual reality setting or in a multime-
dia environment.

Lastly, a forecast that is a bit more of
a stretch. We will see the emergence of
true visual programming languages. Not
just a graphical user interface (GUI),
but a high level language that lets the
developer point and click to various
components (not just small routines)
from multiple libraries/multiple sources
and to specify the type of connection
between these components. The final

integration of these components will
actually be completed by the language’s
compiler/assembler.

System trend 2: faster, faster
As computers become embedded in

more and more systems, the need for
real-time and hard real-time processing
increases. By real-time, we mean that
the system must acquire data and/or
process it within specified time inter-
vals. Real-time systems range from pro-
grammable logic controllers that man-
age valves in a manufacturing plant to
microprocessors that manage fuel-injec-
tion engines to banks of microproces-
sors that provide avionics flight control
for aircraft.

These systems are difficult to con-
struct because of timing. We’ve all seen
our word processor or our web browser
exhibit markedly different times to exe-
cute a function depending on size of a
file or number of users on the network
or a myriad of other factors. In a real-
time system, certain functions must fin-
ish within a specified time limit.
Otherwise, data will be lost or a switch
will not close in time or some critical
operation will not be performed.

To better design these systems, we
will see advanced simulators emerge
that can better describe and characterize
the run-time operation of the system
under development. These will include
microprocessor models linked with sim-
ulators that also provide an extensive
suite of test tools for timing and for
fault detection. Fault detection tools will
be included. For while speed is essential

for embedded systems, there is another
factor for real-time systems that is
increasingly important: safety.

System trend 3: safer
Embedded computers control more

and more systems, whether launching a
satellite, managing oil flow in pipelines
or controlling flight of aircraft. Thus,
there is a growing need to assure the
proper functioning of these systems.
This is due to the significant cost of the

system and/or the cost of
the resource being man-
aged and/or to the fact
that human life depends
on that system.

For such life-critical
and safety-critical sys-
tems, there will be an
increased emphasis on
validation and verifica-

tion (V&V). Validation
ensures that the system features can be
traced back to the stated requirements.
(So there should not be flight simulators
embedded in future spreadsheet pro-
grams.) Verification ensures that each
function works correctly.

The classic phrases for these two
activities are: (i) are we building the
correct product and (ii) are we building
the product correctly? There are stan-
dards by various organizations such as
IEEE and the International Standards
Organization (ISO) that are necessary
but no longer sufficient. A trend for the
future is not only V&V but a further
step to certification.

For example, the Radio Technical
Commission for Aeronautics standard
DO-178B, entitled “Software
Considerations in Airborne Systems and
Equipment Certification,” is a standard
developed by the commercial air trans-
port industry for software used in com-
mercial aircraft. Essentially, all devel-
opers of aircraft systems adhere to this
standard. The standard defines various
criticality levels for software and pre-
scribes different techniques for each
level. I envision this type of standard
spreading to other application areas,
first perhaps to medical applications but
eventually to a much wider arena. With
these standards, there will need to be a
precise and testable means to determine
if the standard has been fulfilled or not.

As more and more software systems
are safety-critical and life-critical appli-
cations, there will need to be a mecha-
nism to guarantee system performance.
The National Research Council spon-

Fig. 1

Fig. 2



DECEMBER 2000/JANUARY 2001 13

sored a committee of information tech-
nology experts who published their
findings in the 1998 report: “Trust in
Cyberspace.” Among their comments:

“The absence of standard metrics
and a recognized organization to con-
duct assessments of trustworthiness is
an important contributing factor to the
problem of imperfect information.

“A consumer may not be able to
assess accurately whether a particular
drug is safe but can be reasonably confi-
dent that drugs obtained from approved
sources have the endorsement of the US
Food and Drug Administration (FDA)
which confers important safety informa-
tion. Computer system trustworthiness
has nothing comparable to the FDA.

The problem is both the absence of
standard metrics and a generally accept-
ed organization that could conduct such
assessments. There is no Consumer
Reports for [software and information]
Trustworthiness.’’

The absence of a certifying organiza-
tion such as Software Consumer Reports
or an Underwriter’s Laboratory is a key
problem. But, so, too, is the lack of
sound metrics for quantifying the trust-
worthiness of information systems.

The frequency and sophistication of
intrusions and attacks on commercial
systems as well as government and mili-
tary systems have led many agencies to
be concerned about trustworthiness.
This includes more than the traditional
notion of security. Information and sys-
tem survivability in the face of intru-
sions and attacks is recognized as a diffi-
cult but critical goal. So, while there
may eventually be a national software
certification office, a first step on the
way to certification will be more empha-
sis on trustworthiness and survivability.

System trend 4: survivable
We have all seen the increase in intru-

sions to networks and viruses spread via
e-mail. Not only will computer networks
need better intrusion detection mecha-
nisms, so too will application software.
Web-based software will continue to
increase. It will provide enormous
advantages from increased distance
learning capabilities to more secure elec-

tronic commerce applications.
However, there also will be increased

concern about the fail-safe modes of
operation in systems. Buffer overruns
and other typical flaws will need to be
examined before systems are fielded.
Thus, we will see improved testing tools
utilizing fault injection and other tech-
niques. We will see more use of cryp-
tography and better authentication tech-
niques, including digital signatures. We
will also see a greater investment by pri-
vate industry in trustworthy computing.

System trend 5: smarter, syn-
chronizing, collaborating

By this trend, I am not referring to
the traditional notions

of artificial intelli-
gence but to a col-
lection of interact-
ing software mod-
ules. A lot of
progress has been

made in robotics; this
trend will continue and we will begin to
see “teams” of robots working together
to perform a task. To do this effectively,
they will need to collaborate and share
information just as a human team
would. Thus, they need to be able to
update each other.

However, when problems occur,
they will need to synchronize and
return to some agreed-upon state from
which to continue forward together.
This provides all sorts of new areas of
research in computational intelligence
and robotics.

Discussing robots is a natural lead-in
to the last trend—and that is people.
Because people will continue to be cen-
tral in software specification, develop-
ment, and test. And so the last predic-
tion will be:

People trend 1: certification
re-visited. Certification at the
software or system level is only a
first step. We will see certifica-
tion of software engineering pro-
grams and eventually certifica-
tion of software engineers. A
recent issue of IEEE Software
discussed these topics in great
detail. These included accredita-
tion for university software engi-
neering programs to the certifica-
tion of individual software engi-
neers similar to the Professional
Engineer certification that the
State of Texas has begun.

Summary
So there are a few thoughts. I will

close with a quote from one of my
favorite philosophers, Walt Disney. He
said “Change is inevitable; growth is
optional.” We will see some continuations
and some change—here’s to growth!

Read more about it
• DeMarco, Tom and Ann Miller,

“Managing Large Software Projects,”
IEEE SOFTWARE, July 1996.

• Royce, W. W., “Managing the
Development of Large Software
Systems: Concepts and Techniques,”
originally published in Proceedings of
WESCON, August 1970; also available in
Proceedings of ICSE 9, IEEE/ACM, ’87.

• Boehm, Barry, “Anchoring the
Software Process,” IEEE Software, July ’96.

• Miller, Ann, “Design and Test of
Large-Scale Systems,” Joint Proceedings
of the International Conference on
Software Management and International
Conference on Applications of Software
Measurement, March 2000.

• Lehman, M. M. and L. A. Belady,
Program Evolution, Academic Press, ’85.

• National Research Council, Trust in
Cyberspace, National Academy Press, ’99.

• Professional Software Engineering:
Fact or Fiction, IEEE SOFTWARE,
November/December 1999.

About the author
Ann Miller is the Cynthia Tang

Missouri Distinguished Professor of
Computer Engineering at the University of
Missouri-Rolla. Prior to this, she was the
Deputy Assistant Secretary of the Navy
for Command, Control, Communications,
Computing, Intelligence, Electronic
Warfare, and Space. She has also held
senior engineering positions in industry.

Fig. 3

Fig. 4


	A Schooling on Their Implications for Software Engineering [Trends]
	Recommended Citation

	A schooling on their implications for software engineering [trends]

