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Abstract—A novel reinforcement-learning based output-
adaptive neural network (NN) controller, also referred as the 
adaptive-critic NN controller, is developed to track a desired 
trajectory for a class of complex feedback nonlinear discrete-
time systems in the presence of bounded and unknown distur-
bances. This nonlinear discrete-time system consists of a second 
order system in nonstrict form and an affine nonlinear dis-
crete-time system tightly coupled together. Two adaptive critic 
NN controllers are designed—primary one for the nonstrict 
system and the secondary one for the affine system. A 
Lyapunov function shows the uniformly ultimate boundedness 
(UUB) of the closed-loop tracking error, weight estimates and 
observer estimates. Separation principle and certainty equiva-
lence principles are relaxed, persistency of excitation condition 
is not required and linear in the unknown parameter assump-
tion is not needed. The performance of this controller is evalu-
ated on a spark ignition (SI) engine operating with high exhaust 
gas recirculation (EGR) levels where the objective is to reduce 
cyclic dispersion in heat release.  

I. INTRODUCTION 
daptive NN backstepping control of nonlinear discrete-
time systems in strict feedback form has been addressed 

in the literature [1-3]. The system is normally expressed as 
1( 1) ( ( )) ( ( )) ( )i i i i i ix k f x k g x k x k++ = +  (1) 

( 1) ( ( )) ( ( )) ( )n n n n nx k f x k g x k u k+ = +  (2) 

where ( ) ℜ∈kxi
  is the state, ( ) ℜ∈ku  is the control input, 

( ) ( ) ( )[ ] iT
ii kxkxkx ℜ∈= ,,1 L  and 1,..., ( 1)i n= − . For strict feedback 

nonlinear systems [1], the nonlinearities ( )( )kxf ii
 and ( )( )kxg ii

 
depend only upon states ( ) ( )kxkx i,,1 K , i.e., ( )kxi

. However, for 
non-strict feedback nonlinear system, ( )( )kxf ii

 and ( )( )kxg ii
 

depend on both ( )ix k  and ( )kxi 1+
, and there are no control de-

sign schemes currently available.  Available [1-3] methods 
results in a non-causal controller (current control input de-
pends on the future system states).  Finally, no optimization 
is carried out in these control designs. 

Available NN controller designs employ either supervised 
training or classical online training [1-3], where a short-term 
system performance measure is defined by using the track-
ing error. By contrast, the reinforcement-learning based 
adaptive critic NN approach [4] has emerged as a promising 
tool to develop optimal NN controllers due to its potential to 
find approximate solutions to dynamic programming, where 
a strategic utility function (a long-term system performance 
 

This work is supported in part by NSF grants ECCS#0327877 and 
ECCS#0621924. Peter Shih and Sarangapani Jagannathan are with the 
Department of Electrical and Computer Engineering at the University of 
Missouri-Rolla (contact author’s e-mail: sarangap@umr.edu).  

measure) can be optimized. In supervised learning, a teacher 
produces a signal to guide the learning process whereas rein-
forcement learning, the role of the teacher is more evaluative 
than instructional. The critic allows for near optimal control.  

There are many variants of adaptive critic NN controller 
architectures [4-7] using state feedback even though few 
results [6, 7] address the controller convergence. However, 
NN controller results are not available for the nonlinear dis-
crete-time systems in non-strict feedback form. Similarly, no 
known results are available using adaptive critic NN control-
based affine nonlinear discrete-time systems. In this paper, a 
novel adaptive critic NN-based output feedback controller is 
developed to control a complex nonlinear discrete-time sys-
tems consisting of non-strict feedback form and an affine 
systems tightly coupled together. 

For the case of nonlinear discrete-time system in nonstrict 
feedback form, adaptive NN backstepping is utilized for the 
controller design with two action NNs being used to gener-
ate the virtual and actual control inputs, respectively. The 
two action NN weights are tuned by the critic NN signal to 
minimize the strategic utility function and their outputs. The 
critic NN approximates certain strategic utility function 
which is a variant of standard Bellman equation. The NN 
observer estimates the system states and output, which are 
subsequently used in the controller design. The proposed 
controller is model–free since the dynamics of the nonlinear 
discrete-time systems are unknown and NN weights are 
tuned online. For the affine nonlinear discrete-time system, a 
separate critic NN and an action NN are utilized and states 
are assumed to be available for measurement. The critic NN 
approximates the Bellmann equation and tunes the action 
NN to generate near optimal signal. 

The proposed primary controller is applied to control the 
spark ignition (SI) engine dynamics. The controller allows 
the engine to operate in high EGR mode, where an inert gas 
displaces the stoichiometric ratio of fuel to air. The inert gas 
system, controlled by the secondary controller, maintains a 
set EGR level. Both controllers allow the engine to operate 
in higher EGR mode reducing heat release dispersion 
thereby improving engine emissions and fuel efficiency. 

II. NON-LINEAR NON-STRICT FEEDBACK SYSTEM 
Consider the nonlinear discrete-time system, given in the 

following form 
( ) ( )( ) ( )( ) ( ) ( )1 1 1 2 11 i ix k f x k g x k x k d k+ = + +  (3) 

( ) ( )( ) ( )( ) ( ) ( )2 2 2 21 i ix k f x k g x k u k d k+ = + +  (4) 
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( ) ( )( ) ( )( ) ( ) ( )3 4 4 31 i ix k f x k g x k v k d k+ = + +  (5) 

 ( ) ( )( )31 iy k f x k+ =  (6) 

where ( ) ( ) ( ) ( )1 2 3, ,
T

ix k x k x k x k= ⎡ ⎤⎣ ⎦
 are the states, ( )u k ∈ℜ  and 

( )v k ∈ℜ  are system inputs, and ( )1d k ∈ℜ , ( )2d k ∈ℜ  and 

( )3d k ∈ℜ  are unknown but bounded disturbances. Bounds on 

the disturbances are given by ( )1 1md k d< , ( )2 2md k d< , and 
( )3 3md k d<  where md1 , md2 , and 3md  are unknown positive 

scalars. The output is a nonlinear function of states. Finally, 
the output and third state, ( )3x k , are measurable whereas the 

first two states ( )1x k  and ( )2x k  are not. For the system (3) 

and (4), not only the system actual output should converge 
to its target value but also the states should converge to their 
respective desired values.  

The controller development is presented separately for the 
systems as the objectives are separate even though they are 
tightly coupled. The first part uses equations (3), (4), and (6) 
to develop the primary controller. The second part uses 
equation (5) to develop the secondary controller. Note that 
equations (3) through (6) are arbitrary unknown functions. 

III. PRIMARY CONTROLLER – OBSERVER DESIGN 
To overcome the immeasurable states ( )1x k  and ( )2x k , an 

observer is used. It utilize the current heat release out-
put, ( )y k , to estimate the future output ( )ˆ 1y k + and states 

( )1̂ 1x k +  and ( )2ˆ 1x k + . 

A. Observer Design 
Consider equations (3) and (4). We expand the individual 

nonlinear functions using Taylor series. 
( ) ( )⋅Δ+=⋅ 1101 fff  (7) 

( ) ( )2 20 2f f f⋅ = + Δ ⋅  (8) 

( ) ( )⋅Δ+=⋅ 1101 ggg  (9) 

( ) ( )2 20 2g g g⋅ = + Δ ⋅  (10) 

where the first term in (7) through (10) are known nominal 
values and the second term are unknown higher order terms. 
We use a two-layer feed-forward NN with semi-recurrent 
architecture and novel weight tuning to construct the output 

( ) ( )( ) ( )( )1 1 1 11 T Ty k w v z k z kφ ε+ = + , (11) 

where ( ) ( ) ( ) ( ) ( ) ( ) 4
1 1 2 3, , , ,

T
z k x k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦

 is the network 

input, ( )1y k +  and ( )y k  are the future and current outputs, 
1

1
nw ℜ∈  and 12

1
nv ×ℜ∈  denote the ideal output and constant 

hidden layer weight matrices, respectively, ( )u k  is the con-

trol input, ( )( )1 1
Tv z kφ  represents the hidden layer activation 

function, 
1n  is the number of nodes in the hidden layer, and 

( )( )1z kε ∈ℜ  is the approximation error. For simplicity the 

two equations can be represented as 
( ) ( )( )1 1 1

Tk v z kφ φ=  (12) 

( ) ( )( )1 1k z kε ε=  (13) 

Rewrite (11) using (12) and (13) to obtain 

( ) ( ) ( )1 1 11 Ty k w k kφ ε+ = +  (14) 

The states ( )kx1
 and ( )kx2

 are not measurable, therefore, ( )kz1
 

is not available either. Using the estimated states and the 
output ( )kx1ˆ , ( )kx2ˆ , and ( )kŷ , respectively, instead of ( )kx1

, ( )kx2
, 

and ( )ky , the proposed observer is given as 
( ) ( ) ( )( ) ( )

( ) ( ) ( )
1 1 1 1

1 1 1

ˆ ˆ ˆ1

ˆˆ

T T

T

y k w k v z k l y k

w k k l y k

φ

φ

+ = +

= +

%

%

 (15) 

where ( ) ( ) ( ) ( ) ( ) ( ) 5
1 1 2 3ˆ ˆ ˆˆ , , , ,

T
z k x k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦

 is the input 

vector using estimated states, ( )ˆ 1y k +  and ( )ŷ k  are the esti-

mated future and current output, ( )1ŵ k  is the actual weight 

matrix, ( )u k  is the estimate control input, ( )1̂ kφ  is the hidden 

layer activation function, 
1l R∈  is the observer gain, and 

( )y k%  is the heat release estimation error defined as 

( ) ( ) ( )ˆy k y k y k= −%  (16) 

It is demonstrated in [9] that, if the hidden layer weights, 
1v , is chosen initially at random and kept constant and the 

number of hidden layer nodes is sufficiently large, the ap-
proximation error ( )( )1z kε  can be made arbitrarily small so 

that the bound ( )( )1 1mz kε ε≤  holds for all ( )1z k S∈  since the 
activation function forms a basis to the nonlinear function 
that the NN approximates. Now we choose, at our conven-
ience, the observer structure as a function of output estima-
tion errors and known quantities as 

( ) ( ) ( )1 10 2 2ˆ ˆ1x k f x k l y k+ = − + %  (17) 

( )2 20 20 3ˆ 1 ( ) ( )x k f g u k l y k+ = + + %  (18) 

where 
2l R∈ and 

3l R∈  are design constants. 

B. Observer Error Dynamics 
Define the state estimation and output errors as 
( ) ( ) ( )ˆ1 1 1 , {1, 2}i i ix k x k x k i+ = + − + ∈%  (19) 

( ) ( ) ( )ˆ1 1 1y k y k y k+ = + − +%  (20) 

Combining (3) through (11) and, (17) through (20), to ob-
tain the estimation and output error dynamics as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 2 2 1 1 2 1ˆ1x k f x k l y k f g x k d k+ = − + − ⋅ − ⋅ −% %  (21) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 20 3 2 2 21x k f g u k l y k f g u k d k+ = + + − ⋅ − ⋅ −% %  (22) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
ˆˆ1 T Ty k w k k l y k w k kφ φ ε+ = + − −% %  (23) 

Choose the weight tuning of the observer as 
( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 4

ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k l y kα φ φ+ = − + %  (24) 

where
1 Rα ∈ , and 

4l R∈  are design constants. It was demon-
strated that in the next section that by using the above 
weight tuning, separation principle is relaxed and the closed-
loop signals will be bounded. Next we present the following 
theorem where it is demonstrated that the state estimation 
and output estimation errors along with observer NN weight 
estimation errors are bounded. The following mild assump-
tions are required. 
Assumption 1: The unknown smooth functions, ( )2f ⋅  and 

( )2g ⋅ , and control ( )u k , are upper bounded within the com-

pact set S  as ( )2max 2f f k> , ( )2max 2g g k> , and ( )maxu u k> . 
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Next we design the adaptive critic NN controller for the 
primary system where it will be demonstrated that the 
closed-loop system including the NN observer signals will 
be bounded then the control inputs will be bounded. 

IV. PRIMARY CONTROLLER – CRITIC DESIGN 
The purpose of the critic NN is to approximate the long-

term performance index (or strategic utility function) of the 
nonlinear system through online weight adaptation.  The 
critic signal estimates the future performance and tunes the 
two action NNs. The tuning will ultimately minimize the 
strategic utility function itself and action NN outputs or con-
trol inputs so that closed-loop stability is inferred. 

A. The Strategic Utility Function 
The utility function ( ) ℜ∈kp  is given by 

( ) ( )( )0,

1,

if y k c
p k

otherwise

⎧ ≤⎪= ⎨
⎪⎩

%  (25) 

where ℜ∈c  is a user-defined threshold. The utility function 
( )kp  represents the current performance index. In other 

words, ( ) 0=kp  and ( ) 1=kp  refers to good and unsatisfactory 
tracking performance at the kth time step, respectively. The 
long-term strategic utility function ( )Q k ∈ℜ , is defined as  

( ) ( ) ( ) ( )1 11 2 ..N N kQ k p k p k p Nβ β β− += + + + + + +L ,  (26) 

where β ∈ℜ  and 0 1β< <  is the discount factor and N is the 
horizon. The term ( )Q k  is viewed here as the long system 
performance measure for the controller since it is the sum of 
all future system performance indices.  Equation (26) can 
also be expressed as ( )

( )
( ) ( ){ }1min 1 N

u k
Q k Q k p kα α += − − , which is simi-

lar to the standard Bellman equation. 
B. Design of the Critic NN 
We utilize the universal approximation property of NN to 

define the critic NN output, and rewrite ( )Q̂ k  as   

( ) ( ) ( )( ) ( ) ( )2 2 2 2 2
ˆ ˆˆ ˆˆT T TQ k w k v z k w k kφ φ= =  (27) 

where ( ) ℜ∈kQ̂  is the critic signal, ( ) 2
2ˆ nw k ∈ℜ  is the tunable 

weight, 23
2

nv ×∈ℜ  represent the constant input weight matrix 
selected initially at random, ( ) 2

2̂
nkφ ∈ℜ  is the activation func-

tion vector in the hidden layer, 
2n  is the number of the nodes 

in the hidden layer, and ( ) 3
2 1 2 3ˆ ˆˆ [ ( ), ( ), ( )]Tz k x k x k x k R= ∈  is the 

input vector. 
C. Critic Weight Update Law 
We define the prediction error as 
( ) ( ) ( ) ( )( )ˆ ˆ 1 N

ce k Q k Q k p kβ β= − − −  (28) 

where the subscript “c” stands for the “critic.” We use a 
quadratic objective function to minimize  

( ) ( )kekE cc
2

2
1

=  (29) 

The weight update rule for the critic NN is based upon gra-
dient adaptation, which is given by the general formula 

( ) ( ) ( )
( )2 2 2

2

ˆ ˆ1
ˆ

cE k
w k w k

w k
α

⎡ ⎤∂
+ = + −⎢ ⎥

∂⎢ ⎥⎣ ⎦

 (30) 

( ) ( ) ( ) ( ) ( ) ( )( )1
2 2 2 2̂

ˆ ˆˆ ˆ1 1
TNw k w k k Q k p k Q kα φ β β++ = − + − −  (31) 

where
2α ∈ℜ  is the NN adaptation gain. 

V. PRIMARY CONTROLLER – VIRTUAL CONTROL INPUT NN 
In this section, the design of the virtual control input is 

discussed.  Before we proceed, the following mild assump-
tion is needed. 
Assumption 2: The unknown smooth function ( )⋅2g  is 
bounded away from zero for all ( )kx1

 and ( )kx2
 within the 

compact set S . In other words, ( )2min 2 2max0 ,g g g< < ⋅ < , 

( ) ( )1 2&x k x k S∀ ∈  where +ℜ∈min2g  and +ℜ∈max2g . Without the 

loss generality, we will assume ( )⋅2g  is positive in this paper. 

A. System Simplification 
First, we simplify by rewriting the state equations with the 

following 
( ) ( )( ) ( )( ) ( ) ( )1 1 2 2i if x k g x k x k x kΦ ⋅ = + +  (32) 

The system (3) and (4) can be rewritten as 
( ) ( ) ( ) ( )1 2 11x k x k d k+ = Φ ⋅ − +  (33) 

( ) ( ) ( ) ( ) ( )2 2 2 21x k f g u k d k+ = ⋅ + ⋅ +  (34) 

B. Virtual Control Input Design 

Our goal is to stabilize the system output ( )ky  around a 
specified target point,

dy  by controlling the input.  The sec-
ondary objective is to make ( )kx1

 approach the desired trajec-
tory ( )kx d1

. At the same time, all signals in systems (3) and 
(4) must be UUB; all weights must be bounded; and a per-
formance index must be minimized. Define the tracking er-
ror as 

( ) ( ) ( )1 1 1de k x k x k= −  (35) 

where ( )kx d1
 is the desired trajectory. Using (33), (35) can be 

expressed as the following  
( ) ( ) ( )

( ) ( ) ( )( ) ( )
1 1 1

2 1 1

1 1 1

1
d

d

e k x k x k

x k d k x k

+ = + − +

= Φ ⋅ − + − +

 (36) 

By viewing ( )2x k  as a virtual control input, a desired virtual 

control signal can be designed as 
( ) ( ) ( ) ( )2 1 5 1̂1d dx k x k l e k= Φ ⋅ − + +  (37) 

where
5l  is a gain constant. Since ( )Φ ⋅  is an unknown func-

tion, ( )2dx k  in (37) cannot be implemented in practice. We 

invoke the universal approximation property of NN to esti-
mate this unknown function.  

( ) ( )( ) ( )( )3 3 3 3
T Tw v z k z kφ εΦ ⋅ = +  (38) 

where ( ) ( ) ( ) ( ) 3
3 1 2 3, ,

T
z k x k x k x k⎡ ⎤= ∈ℜ⎣ ⎦

 is the input vector, 

2
3

nTw ∈ℜ  and 33
3

nTv ×∈ℜ  are the ideal and constant input weight 
matrices, ( )( ) 3

3 3
nTv z kφ ∈ℜ  is the activation function vector in 

the hidden layer, 
3n  is the number of the nodes in the hidden 

layer, and ( )( )3z kε  is the functional estimation error.f 

Rewrite (37) using (38), the virtual control signal can be 
rewritten as 
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( ) ( )( ) ( )( ) ( ) ( )2 3 3 3 3 1 5 1̂1T T
d dx k w v z k z k x k l e kφ ε= + − + +  (39)        

Replacing actual with estimated states, (39) becomes 
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )
2 3 3 3 1 5 1

3 3 1 5 1

ˆ ˆ ˆˆ 1

ˆˆ ˆ1

T T
d d

T
d

x k w k v z k x k l e k

w k k x k l e k

φ

φ

= − + +

= − + +

 (40) 

where ( ) ( ) ( ) ( ) 3
3 1 2 3ˆ ˆˆ , ,

T
z k x k x k x k⎡ ⎤= ∈ℜ⎣ ⎦

 is the input vector using 

estimated states, and ( ) ( ) ( )1 1 1ˆ ˆ de k x k x k= − . Define 

( ) ( ) ( )2 2 2ˆ de k x k x k= −  (41) 

Equation (36) can be rewritten using (41) as  
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )
1 2 1 1

2 2 1 1

1 1

ˆ 1
d

d d

e k x k d k x k

x k e k x k d k

+ = Φ ⋅ − + − +

= Φ ⋅ − − − + +

 (42) 

Combine (40) , (42), then (38) 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 3 3 3 3 5 1 2 1ˆ1 Te k k w k k l e k e k d kζ φ ε+ = − − + − − +%   (43) 

where  
( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3

ˆ ˆ ˆˆT T Tk w k k w k k w kζ φ φ φ= = −%  (44) 

( ) ( )( ) ( )( )3 3 3 3 3ˆk v z k v z kφ φ φ= −%  (45) 

C. Virtual Control Weight Update 
Let us define 

( ) ( ) ( ) ( ) ( )( )1 3 3̂
ˆˆ T

a de k w k k Q k Q kφ= + −  (46) 

where ( )kQ̂  is defined in (27), and the a1 subscript represents 
the error for the first action NN, ( ) ℜ∈kea1

. The desired stra-
tegic utility function ( )kQd

 is “0” to indicate perfect tracking 
at all steps. Thus, (46) becomes 

( ) ( ) ( ) ( )1 3 3̂
ˆˆ T

ae k w k k Q kφ= +  (47) 

The objective function to be minimized by the first action 
NN is given by 

( ) ( )kekE aa
2
11 2

1
=  (48) 

The weight update rule for the action NN is also a gradient-
based adaptation, which is defined as 

( ) ( ) ( )
( )

1
3 3 3

3

ˆ ˆ1
ˆ
aE k

w k w k
w k

α
⎡ ⎤∂

+ = + −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (49) 

( ) ( ) ( ) ( ) ( ) ( )( )3 3 3 3 3 3
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k Q k w k kα φ φ+ = − +  (50) 

with
3α ∈ℜ  is the NN adaptation gain. 

VI. PRIMARY CONTROLLER – CONTROL INPUT DESIGN  
Choose the following desired control input  
( ) ( ) ( ) ( ) ( )( )2 2 6 2

2

1 ˆ 1d du k f k x k l e k
g k

= − + + +
, (51) 

Note that ( )kud
 is non-causal since it depends upon future 

value of ( )1ˆ2 +kx d
. We solve this problem by using a semi-

recurrent NN since it can be a one step predictor. The term 
( )1ˆ2 +kx d

 depends on state ( )kx , virtual control input ( )kx d2ˆ , 
desired trajectory ( )21 +kx d

 and system errors ( )ke1
 and ( )ke2

. 
By taking the independent variables as the input to a NN, 

( )1ˆ2 +kx d
 can be approximated. Alternatively, the value can 

be obtained by employing a filter [10]. The first layer of the 
second NN using the system errors, state estimates and past 
value )(ˆ2 kx d

as inputs generates ( )1ˆ2 +kx d
 which in turn is used 

by the second layer to generate a suitable control input. De-

fine the input as  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7

4 1 2 3 1 6 2 2 1ˆ, , , , , , 2
T

d dz k x k x k x k e k l e k x k x k⎡ ⎤= + ∈ℜ⎣ ⎦
, 

then ( )kud
 can be approximated as   

( ) ( )( ) ( )( ) ( ) ( )4 4 4 4 4 4 4
T T T

du k w v z k z k w k kφ ε φ ε= + = + ,  (52) 

where 4
4

nw ∈ℜ  and 47
4

nv ×∈ℜ denote the constant ideal output 
and hidden layer weight matrices, ( ) 4

4
nkφ ∈ℜ  is the activation 

function vector, 
4n  is the number of hidden layer nodes , and 

( )( )4z kε  is the estimation error. Again, we hold the input 

weights constant and adapt the output weights only. We also 
replace actual with estimated states 

( ) ( ) ( )( ) ( ) ( )4 4 4 4 4̂ˆ ˆ ˆˆT T Tu k w k v z k w k kφ φ= = ,          (53) 

where
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7

4 1 2 3 1 6 2 2 1ˆ ˆ ˆ ˆ ˆˆ , , , , , , 2
T

d dz k x k x k x k e k l e k x k x k⎡ ⎤= + ∈ℜ⎣ ⎦
 is 

the input vector. Rewriting (41) and substituting (51) 
through (53), to get 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2

6 2 2 4 2 4 2 4 4 2

ˆ1 1 1d

T

e k x k x k

l e k g k g k g w k d kε ζ φ

+ = + − +

= − ⋅ + ⋅ + ⋅ +%

 (54) 

where 
( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4

ˆ ˆ ˆˆT T Tk w k k w k k w kζ φ φ φ= = −% , (55) 

( ) ( ) ( )4 4 4
ˆk k kφ φ φ= −%  (56) 

Equations (43) and (54) represent the closed-loop error dy-
namics.  Next we derive the weight update law. Define 

( ) ( ) ( ) ( )2 4 4̂
ˆˆ T

ae k w k k Q kφ= + , (57) 

where ( ) ℜ∈kea2
 is the error where the subscript a2 stands for 

the second action NN. Following the similar design, choose 
a quadratic objective function to minimize 

( ) ( )2
2 2

1
2a aE k e k=  (58) 

Define a gradient-based adaptation where the general form 
is given by 

( ) ( ) ( )
( )

2
4 4 4

4

ˆ ˆ1
ˆ
aE k

w k w k
w k

α
⎡ ⎤∂

+ = + −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (59) 

( ) ( ) ( ) ( ) ( ) ( )( )4 4 4 4 4 4
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k Q kα φ φ+ = − + , (60) 

Before we proceed, the following assumptions are needed. 
Assumption 3 (Bounded Ideal Weights): Let 

1w ,
2w ,

3w and 

4w  be the unknown output layer target weights for the ob-
server, critic and two action NNs and assume that they are 
bounded above so that 

1 1 2 2 3 3,  ,m m mw w w w w w≤ ≤ ≤ , and 
4 4mw w≤  (61) 

where +∈ Rwom
, +∈ Rw m1

 and +∈ Rw m2
 represent the bounds on 

the unknown target weights where the Frobenius norm [10] 
is used. 

Theorem 1:  Consider the system given by (3) and (4), 
and the disturbance bounds 

md1
 and 

md2
be known constants. 

Let the observer, critic, virtual control, and control input NN 
weight tuning be given by (24), (31), (50), and (60), respec-
tively. Let the virtual control input and control input be 
given by (40), and (53), the estimation errors and tracking 
errors ( )ke1

 and ( )ke2
 and weight estimates ( ) ( )kwkw 21 ˆ,ˆ , ( )kw3ˆ , 
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and ( )4ŵ k  are UUB with the controller design parameters 

selected as 
( ) 2

0 1, {1,2,3,4}i i k iα φ< < ∈  (62) 

1 2 3 4 5 6
1 3 3 3 1 3; ; ; ; ;
2 3 3 3 35

l l l l l l< < < < < <  (63) 

20
2

β< <  (64) 

where 
1α , 

2α , 
3α  and 

4α  are NN adaptation gains, 
1l , 

2l , 
3l , 

4l , 
5l , and 

6l  are controller gains, β  is employed to define the 
strategic utility function.             

VII. SECONDARY CONTROLLER – CRITIC DESIGN 
For maintaining dilution to a desired level, the third equa-

tion will be employed with EGR(k) as the control input and 
inert gas as an additional state.  To simplify the controller 
development and since the residual gas fraction is upper 
bounded, this third equation can be simplified as 

( ) ( )( ) ( )( ) ( ) ( )3 4 4 31x k f x k g x k v k d k+ = + +  (65) 

where
1 2 3( ) [ ( ), ( ), ( )]Tx k x k x k x k= . Define 

1 2 3( ) [ ( ), ( ), ( )]Tx k x k x k x k=  (66) 

A. Design of the Critic 

Let the long-term cost function be defined as 

( ) ( )
0

i

i t
J k r k iγ

∞

=

= +∑  (67) 

where 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )T T

d dr k x k x k Q x k x k v k Rv k= − − +  (68) 

where R and Q are positive definite matrices andγ  is the 
discount factor within the range of 0 1γ≤ ≤ . Invoke the uni-
versal approximation property of NN to estimate (67) as 

( ) ( )( ) ( )( )T T
c c c c cJ k w v z k z kφ ε= +  (69) 

where ( )( )cz kε  is the estimation error.  Replace the states 

with estimated states. 
( ) ( ) ( )( ) ( ) ( )ˆ ˆ ˆˆT T T

c c c c c cJ k w k v z k w k kφ φ= =  (70) 

where ˆ cn
cw ∈ℜ  and 2 cn

cv ×∈ℜ  denote the ideal output and con-
stant hidden layer weights, ( ) cn

c kφ ∈ℜ  is the activation func-

tion vector, 
cn  is the number of hidden layer nodes. Again, 

we hold the input weights constant and adapt the output 
weights. ( ) ( ) ( ) ( ) 3

1 2 3ˆ ˆˆ , ,
T

cz k x k x k x k⎡ ⎤= ∈ℜ⎣ ⎦
 is the input. 

B. Critic Weight Update Law 
Define the prediction error as 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ[ 1 ]

1 1 1
c

c c c c

e k J k J k r k

k J k k J k r k k k

γ

γζ γ ζ ε ε

= − − −

= + − − − − + − + −

(71) 

where 
( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆT T T

c c c c c c ck w k k w k k w kζ φ φ φ= = −%  (72) 

Use a quadratic minimizing function and gradient-based 
adaptation method, the weight update is given by 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )

ˆ ˆ1
ˆ

ˆ ˆˆ 1

c
c c c

c

c c c

E k
w k w k

w k

w k k J k r k J k

α

α γφ γ

⎡ ⎤∂
+ = + −⎢ ⎥

∂⎢ ⎥⎣ ⎦

= − + − −

 (73) 

VIII. SECONDARY CONTROLLER – CONTROL INPUT DESIGN 

A. Design of the Control input 
The tracking error is defined as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

4 3 3

4 4 4 31 1
d

d

e k x k x k

e k f g v k d k x k

= −

+ = ⋅ + ⋅ + − +
 (74) 

where
3 ( )dx k is the target bounded trajectory.  Define the de-

sired control signal as 
( ) ( ) ( ) ( ) ( )( )1

4 4 3 7 41d dv k g f x k l e k−= ⋅ − ⋅ + + +  (75) 

Using the universal approximation property of NN and the 
approximate states 

( ) ( ) ( )( ) ( ) ( )ˆˆ ˆ ˆˆT T T
d a a a a a av k w k v z k w k kφ φ= =  (76) 

where ˆ an
aw ∈ℜ  and 2 an

av ×∈ℜ  denote the ideal output and con-
stant hidden layer weight matrices, ( ) an

a kφ ∈ℜ  is the activa-

tion function vector, 
an  is the number of hidden layer nodes 

and ( ) ( ) ( ) ( ) 3
1 2 3ˆ ˆˆ , ,

T
az k x k x k x k⎡ ⎤= ∈ℜ⎣ ⎦

 is the input vector. 

Again, we hold the input weights constant and adapt the 
output weights only. Rewrite (74) as 

( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

4 7 4 3

7 4

1 d

a a

e k l e k g v k v k d k

l e k g k d kζ

+ = + ⋅ − +

= + ⋅ +

 (77) 

where  
( ) ( ) ( ) ( )a a ad k g k d kε= − ⋅ +  (78) 

( ) ( ) ( )ˆT
a a ak w k kζ φ= %  (79) 

B. Control Input Weight Update Law 

Define the control input cost function 
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1

4 4

1

4 4

a a d

a

e k g k g J k J k

g k g J k

ζ

ζ

−

−

= ⋅ + ⋅ −

= ⋅ + ⋅

 (80) 

where ( )dJ k  is the desired long-term cost function and is 

equal to zero. Define a quadratic error to minimize and util-
ize a gradient decent minimization strategy 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )( )
ˆ

4 7 4

ˆ ˆ1

ˆ 1

a

a

E k
a a a w k

T
a a a a

w k w k

w k k e k l e k d k J k

α

α γφ

∂
∂

⎡ ⎤+ = + −⎣ ⎦

= − + − − +

 (81) 

The proposed controller structure is shown in Figure 1. 

 
Figure 1 Combined primary and secondary controller structure. 

Theorem 2:  Consider the system given by (5), and the 
disturbance bound 

3md  be known constants. Let the observer 
and control input NN weight tuning be given by (73) and 
(81), respectively. Let the control input given by (76), the 
tracking error ( )4e k  and weight estimates ( )ˆaw k  and ( )ˆ cw k  

are UUB, with the controller design parameters selected as:  
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( ) 2
0 1, { , }i i k i cα φ α< < ∈  (82) 

7
1
2

l <  (83) 

where 
aα  and 

cα  are NN adaptation gains, and 
7l  is the con-

troller gain.                    

IX. RESULTS AND ANALYSIS 
Spark ignition (SI) engine dynamics can be expressed ac-

cording to the Daw model as a class of nonlinear systems in 
nonstrict feedback form [11].  At high EGR levels, the en-
gine can be expressed as complex discrete-time system [12]. 

The controller is simulated in conjunction with the Daw 
model. The learning rates for the observer, critic, virtual 
control input, and control input networks are 0.01, 0.01, 
0.01, and 0.01, respectively. The gains l1, l2, l3, l4, l5, and l6 
are selected as 0.05, 0.05, 0.04, 0.05, 0.2 and 0.1.  The sys-
tem constants CEmax, φl, and φu are chosen as 1, 0.54, and 
0.58.  The critic constants β  and N are 0.4 and 4 for all 
EGR levels. All NNs use 20 hidden neurons with hyperbolic 
tangent sigmoid activation functions in the hidden layer. The 
computation power used is minimal because the input 
weight matrices are constant; only the output layer matrices 
are turned using gradient descent method. 

Figure 2 shows two heat release return maps, one con-
trolled and the other uncontrolled, for the set point at 13% 
EGR. Each subfigure shows the next time step versus the 
current time step heat release. Note the clustering of the 
points around the target heat release of 850J denoted by a 
square. There are no complete misfires, but the heat release 
variation can be clearly seen. Figure 3 shows the time series 
of the heat release and control input. The controller con-
verges fast and to a stable operation point after several cy-
cles. The spikes in control output indicate a decline in heat 
release such as misfire, translating into additional fuel con-
trol to counteract. The heat release dispersion during control 
is improved compared to the uncontrolled case as shown in 
Table 1 using the coefficient of variation (COV) metric 
(negative sign shows a drop). The performance outper-
formed the slight increase in the mean fuel input. 
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Figure 2 Uncontrolled and controlled heat release return map at 13% EGR. 
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Figure 3 Heat release vs iteration number. Controller turns on at k=5000. 

Table 1 Coefficient of variation (COV) and fuel data 
      Covariance (COV) %COV %Fuel 
EGR Uncontrolled Controlled Change Change 

0.00 0.0058 0.0057 -0.75 0.00
0.13 0.0548 0.0384 -29.94 0.40
0.15 0.1387 0.0773 -44.30 0.71
0.19 0.3421 0.2383 -30.34 0.42

X. CONCLUSIONS 
The controller presented successfully controlled a SI en-

gine to reduce cyclic dispersion under high EGR condition. 
The system is modeled a complex feedback nonlinear dis-
crete-time system. It converged upon a near optimal solution 
through the use of a long-term strategic utility function even 
though the exact dynamics are not known beforehand. Simu-
lation shows the stability of the controller under a variety of 
set points. The output is stable, as predicted by the 
Lyapunov proof. 
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