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Abstract— A novel reinforcement-learning based output-
adaptive neural network (NN) controller, also referred as the 
adaptive-critic NN controller, is developed to track a desired 
trajectory for a class of complex nonlinear discrete-time sys-
tems in the presence of bounded and unknown disturbances. 
The controller includes an observer for estimating states and 
the outputs, critic, and two action NNs for generating virtual, 
and actual control inputs. The critic approximates certain stra-
tegic utility function and the action NNs are used to minimize 
both the strategic utility function and their outputs. All NN 
weights adapt online towards minimization of a performance 
index, utilizing gradient-descent based rule. A Lyapunov func-
tion proves the uniformly ultimate boundedness (UUB) of the 
closed-loop tracking error, weight, and observer estimation. 
Separation principle and certainty equivalence principles are 
relaxed; persistency of excitation condition and linear in the 
unknown parameter assumption is not needed. The perform-
ance of this adaptive critic NN controller is evaluated through 
simulation with the Daw engine model in lean mode. The objec-
tive is to reduce the cyclic dispersion in heat release by using 
the controller. 

I. INTRODUCTION 
daptive NN backstepping control of nonlinear discrete-
time systems in strict feedback form has been ad-

dressed in the literature [1-3]. Available methods [1-3] result 
in a non-causal controller and optimization is not carried 
out. The controller designs employ either supervised train-
ing, where the user specifies a desired output, or classical 
online training [1-3], where a short-term system perform-
ance measure is defined by using the tracking error. By con-
trast, the reinforcement-learning based adaptive critic NN 
approach [4] has emerged as a promising tool to develop 
optimal NN controllers due to its potential to find approxi-
mate solutions to dynamic programming, where a strategic 
utility function (a long-term system performance measure) 
can be optimized. There are many variants of adaptive critic 
NN controller architectures [4-7] using state feedback even 
though few results [6, 7] address the controller convergence. 

In this paper, a novel adaptive critic NN-based output 
feedback controller is developed to control a class of nonlin-
ear non-strict feedback discrete-time system. Adaptive NN 
backstepping is utilized for the controller design with two 
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action NNs being used to generate the virtual and actual 
control inputs, respectively. The two action NN weights are 
tuned by the critic NN signal to minimize the strategic util-
ity function and their outputs. The critic NN approximates 
certain strategic utility function which is a variant of Bell-
man equation. The NN observer estimates the states and 
output, which are used in the controller design. The pro-
posed controller is model–free since the NN weights are 
tuned online to approximate the unknown system dynamics.  

The main contributions of this paper can be summarized 
as follows: 1) the adaptive NN back-stepping scheme is ex-
tended to non-strict feedback nonlinear systems. The non-
causal problem is overcome by employing the universal NN 
approximation property; 2) optimization of a long-term per-
formance index is undertaken in contrast with traditional 
adaptive NN back stepping schemes [1, 2]; 3) demonstration 
of the UUB of the system is shown in the presence of ap-
proximation errors and bounded unknown disturbances 
unlike existing adaptive critic works [7]. Stability proof is 
inferred by relaxing separation principle via novel weight 
updating rules and by selecting the Lyapunov function con-
sisting of the system estimation errors, tracking and the NN 
weight estimation errors. A single critic NN is utilized to 
tune two action NNs; 4) a well-defined controller is pre-
sented by overcoming the problem of certain nonlinear func-
tion estimate becoming zero since a single NN is used to 
approximate both the nonlinear functions ( )( )kxf ii  and 

( )( )i ig x k  compared to [8]; 5) the NN weights are tuned online 
instead of offline [5]; and finally 6) the assumption 
that ( ) ( )( )kxkxg 211 ,  is bounded away from zero and its sign is 
known a priori is relaxed in contrast with [2].  

The proposed controller is evaluated to control the spark 
ignition (SI) engine dynamics, a practical non-strict feed-
back nonlinear system, to reduce cyclic dispersion during 
lean operation using the Daw model [9]. 

II. NON-LINEAR NON-STRICT FEEDBACK SYSTEM 
Consider the nonlinear discrete-time system 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )kdkxkxkxgkxkxfkx 122112111 ,,1 ++=+ , (1) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )kdkukxkxgkxkxfkx 22122122 ,,1 ++=+ ,  (2) 

 ( ) ( )3 1 2( 1) ( , )y k f x k x k+ =  (3) 

where ( ) ; 1, 2ix k i∈ℜ =  are the states, ( )u k ∈ℜ  is the system 
input, and ( ) , {1, 2}id k i∈ℜ  are unknown but bounded distur-
bances. Bounds on these disturbances are given by 

( ) , {1,2}i imd k d i<  where , {1,2}imd i  are unknown positive sca-
lars. The output is a nonlinear function of states in contrast 
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with available literature [10, 11] where the output linear.  
Finally, the output is measurable whereas the states are not 
except when the states converge to their respective desired 
values the actual output converges to its desired value. 

III. OBSERVER DESIGN 
To overcome immeasurable states, an observer is used.  It 

utilize the current heat release output, ( )y k , to estimate the 
future output ( )ˆ 1y k +  and states ( )1̂ 1x k +  and ( )2ˆ 1x k + . 

A. Observer Design 
Consider equations (1) and (2). We expand the individual 

nonlinear functions using Taylor series expansion into two 
terms: linear and higher order terms. 

( ) ( )⋅Δ+=⋅ 1101 fff  (4) 

( ) ( )2 20 2f f f⋅ = + Δ ⋅  (5) 

( ) ( )⋅Δ+=⋅ 1101 ggg  (6) 

( ) ( )2 20 2g g g⋅ = + Δ ⋅  (7) 

where the first term in (4) through (7) are known nominal 
values and the second term are unknown higher order terms. 
We use a two-layer feed-forward NN with novel weight 
tuning to construct a NN with semi-recurrent architecture. 

( ) ( )( ) ( )( )1 1 1 11 T Ty k w v z k z kφ ε+ = + , (8) 

where ( ) ( ) ( ) ( ) ( ) 4
1 1 2, , ,

T
z k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦  is the network in-

put, ( )1y k +  and ( )y k  are the future and current output, 
1

1
nw ℜ∈  and 12

1
nv ×ℜ∈  denote the ideal output and constant 

hidden layer weights respectively, ( )u k  is the control input, 
( )( )1 1

Tv z kφ  represents the hidden layer activation function, 1n  
is the number of nodes in the hidden layer, and ( )( )1z kε ∈ℜ  
is the approximation error. For simplicity we define the fol-
lowing two equations 

( ) ( )( )1 1 1
Tk v z kφ φ=  (9) 

( ) ( )( )1 1k z kε ε=  (10) 

Rewrite (8) using (9) and (10) 
( ) ( ) ( )1 1 11 Ty k w k kφ ε+ = +  (11) 

The states ( )kx1  and ( )kx2  are not measurable, therefore, 
( )kz1  is not available either. Using the estimated states and 

output ( )kx1ˆ , ( )kx2ˆ , and ( )kŷ  instead of ( )kx1 , ( )kx2 , and ( )ky , the 
proposed observer is given as 

( ) ( ) ( )( ) ( )
( ) ( ) ( )

1 1 1 1

1 1 1

ˆ ˆ ˆ1

ˆˆ

T T

T

y k w k v z k l y k

w k k l y k

φ

φ

+ = +

= +

 (12) 

where ( ) ( ) ( ) ( ) ( ) 4
1 1 2ˆ ˆ ˆ ˆˆ , , ,

T
z k x k x k y k u k R⎡ ⎤= ∈⎣ ⎦  is the input using 

estimated states, ( )ˆ 1y k +  and ( )ŷ k  are the estimated future 
and current output, ( )1ŵ k  is the actual weight matrix, ( )û k  is 
the estimate control input, ( )1̂ kφ  is the hidden layer activa-
tion function, 1l R∈  is the observer gain, and ( )y k  is the heat 
release estimation error where 

( ) ( ) ( )ˆy k y k y k= −  (13) 

It is demonstrated in [12] that, if the hidden layer weights, 
1v , is chosen initially at random and kept constant and the 

number of hidden layer nodes is sufficiently large, the ap-

proximation error ( )( )1z kε  can be made arbitrarily small so 
that the bound ( )( )1 1mz kε ε≤  holds for all ( )1z k S∈  since the 
activation function forms a basis. Now we choose, at our 
convenience, the observer structure as a function of output 
estimation errors and known quantities as 

( ) ( ) ( )1 10 2 2ˆ ˆ1x k f x k l y k+ = − +  (14) 

( )2 20 20 3ˆ 1 ( ) ( )x k f g u k l y k+ = + +  (15) 

where 2l R∈ and 3l R∈  are design constants. 

B. Observer Error Dynamics 
Let us define the state estimation and output errors as 
( ) ( ) ( )ˆ1 1 1 , {1,2}i i ix k x k x k i+ = + − + ∈  (16) 

( ) ( ) ( )ˆ1 1 1y k y k y k+ = + − +  (17) 

Combining (1) through (8) and, (14) through (17), we ob-
tain the estimation error dynamics as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 2 2 1 1 2 1ˆ1x k f x k l y k f g x k d k+ = − + − ⋅ − ⋅ −  (18) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 20 20 3 2 2 21x k f g u k l y k f g u k d k+ = + + − ⋅ − ⋅ −  (19) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
ˆˆ1 T Ty k w k k l y k w k kφ φ ε+ = + − −  (20) 

where 
( ) ( )( ) ( )( )1 1 1 1 1ˆk v z k v z kφ φ φ= −  (21) 

( ) ( )1 1 1ˆw k w k w= −  (22) 

( ) ( ) ( )1 1 1̂
Tk w k kζ φ=  (23) 

Choose the weight tuning of the observer as 
( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 4

ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k l y kα φ φ+ = − +  (24) 

where 1 Rα ∈ , and 4l R∈  are design constants. It will be shown 
that by using the above weight tuning, separation principle is 
relaxed and the closed-loop signals will be bounded. Next 
we design the adaptive critic controller. 

IV. CRITIC DESIGN 
The purpose of the critic NN is to approximate the long-

term performance index (strategic utility function) of the 
nonlinear system through online weight adaptation. The 
critic signal estimates the future performance and tunes the 
two action NNs. The tuning will ultimately minimize the 
strategic utility function itself and estimation errors so that 
closed-loop stability is inferred. 

A. The Strategic Utility Function 
The utility function ( ) ℜ∈kp  is given by 

( ) ( )( )0,

1,

if y k c
p k

otherwise

⎧ ≤⎪= ⎨
⎪⎩

 (25) 

where ℜ∈c  is a user-defined threshold. The utility function 
( )kp  represents the current performance index. The 

term ( ) 0=kp  and ( ) 1=kp  refers to good and poor tracking 
performance at the kth time step respectively. The long-term 
strategic utility function ( )Q k ∈ℜ , is defined as  

( ) ( ) ( ) ( )1 11 2 ..N N kQ k p k p k p Nβ β β− += + + + + + + ,  (26) 

where β ∈ℜ  and 0 1β< <  is the discount factor and N is the 
horizon index. 

B. Design of the Critic NN 
We utilize the universal approximation property of NN to 
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define the critic NN output, ( )Q̂ k  as   
( ) ( ) ( )( ) ( ) ( )2 2 2 2 2

ˆ ˆˆ ˆˆT T TQ k w k v z k w k kφ φ= =  (27) 

where ( ) ℜ∈kQ̂  is the critic signal, ( ) 2
2ˆ nw k ∈ℜ  is the tun-

able weight, 22
2

nv ×∈ℜ  represent the constant input weight 
matrix, ( ) 2

2̂
nkφ ∈ℜ  is the activation function vector in the 

hidden layer, 2n  is the number of the nodes in the hidden 
layer, and ( ) 2

2 1 2ˆ ˆˆ [ ( ), ( )]Tz k x k x k R= ∈  is the input. 

C. Critic Weight Update Law 
We define the prediction error as 
( ) ( ) ( ) ( )( )ˆ ˆ 1 N

ce k Q k Q k p kβ β= − − −  (28) 

where the subscript “c” stands for the “critic.” We use a 
quadratic objective function to minimize, defined as 

( ) ( )kekE cc
2

2
1

=  (29) 

The weight update rule for the critic NN is based upon 
gradient adaptation, which is given by 

( ) ( ) ( )2 2 2ˆ ˆ ˆ1w k w k w k+ = + Δ  (30) 

( ) ( )
( )2 2

2

ˆ
ˆ

cE k
w k

w k
α

⎡ ⎤∂
Δ = −⎢ ⎥

∂⎢ ⎥⎣ ⎦

 (31) 

( ) ( ) ( ) ( ) ( ) ( )( )1
2 2 2 2̂

ˆ ˆˆ ˆ1 1
TNw k w k k Q k p k Q kα φ β β++ = − + − −  (32) 

where 2α ∈ℜ  is the NN adaptation gain. 

V. DESIGN OF THE VIRTUAL CONTROL INPUT  
Next the following mild assumption is needed. 
Assumption 1: The unknown function ( )⋅2g  is smooth and 

assumed bounded away from zero for all ( )kx1  and ( )kx2  
within the compact set S . 

A. System Simplification 
First, we simplify by rewriting the state equations with the 

following 
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 2 1 1 2 2 2, ,f x k x k g x k x k x k x kΦ ⋅ = + +  (33) 

The system (1) and (2) can be rewritten as 
( ) ( ) ( ) ( )1 2 11x k x k d k+ = Φ ⋅ − +  (34) 

( ) ( ) ( ) ( ) ( )2 2 2 21x k f g u k d k+ = ⋅ + ⋅ +  (35) 

B. Virtual Control Input Design 
Our goal is to stabilize the system output ( )ky  around a 

specified target point, dy  by controlling the input.  Because 
the output is only dependent on the states ( )kx1  and ( )2x k , as 
they approach the desired trajectory ( )kx d1  and ( )2dx k , the 
target output is reached. At the same time, all signals in sys-
tems (1) and (2) must be UUB; all weights must be bounded; 
and a performance index must be minimized. 

Define the tracking error as 
( ) ( ) ( )1 1 1de k x k x k= −  (36) 

where ( )kx d1  is the desired trajectory. Using (34), (36) can 
be expressed as the following  

( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1

2 1 1

1 1 1

1
d

d

e k x k x k

x k x k d k

+ = + − +

= Φ ⋅ − − + +
 (37) 

By viewing ( )2x k  as a virtual control input, a desired vir-

tual control signal can be designed as 
( ) ( ) ( ) ( )2 1 5 11d dx k x k l e k= Φ ⋅ − + +  (38) 

where 5l  is a gain constant. Since ( )Φ ⋅  is an unknown func-
tion, ( )2dx k  in (38) cannot be implemented in practice. We 
invoke the universal approximation property of NN to esti-
mate this unknown function.  

( ) ( )( ) ( )( )3 3 3 3
T Tw v z k z kφ εΦ ⋅ = +  (39) 

where ( ) ( ) ( ) 2
3 1 2,

T
z k x k x k⎡ ⎤= ∈ ℜ⎣ ⎦  is the input vector, 2

3
nTw ∈ℜ  

and 32
3

nTv ×∈ℜ  are the ideal and constant input weight matrix, 
( )( ) 3

3 3
nTv z kφ ∈ℜ  is the activation function vector in the hidden 

layer, 3n  is the number of the nodes in the hidden layer, and 
( )( )3z kε  is the estimation error. 

Rewrite (38) using (39) 
( ) ( )( ) ( )( ) ( ) ( )2 3 3 3 3 1 5 11T T

d dx k w v z k z k x k l e kφ ε= + − + +  (40)        

Replacing actual with estimated states, (40) becomes 
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )
2 3 3 3 1 5 1

3 3 1 5 1

ˆ ˆ ˆˆ 1

ˆˆ ˆ1

T T
d d

T
d

x k w k v z k x k l e k

w k k x k l e k

φ

φ

= − + +

= − + +

 (41) 

Where ( ) ( ) ( ) 2
3 1 2ˆ ˆˆ ,

T
z k x k x k⎡ ⎤= ∈ℜ⎣ ⎦  is the input vector using 

estimated states, and ( ) ( ) ( )1 1 1ˆ ˆ ˆ de k x k x k= − . Define the error 
between ( )2x k  and ( )kx d2ˆ  as ( )2e k ∈ℜ  

( ) ( ) ( )2 2 2ˆ de k x k x k= −  (42) 

Equation (37) can be rewritten using (42) as  
( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1ˆ1 1d de k x k e k d k x k+ = Φ ⋅ − − + − +  (43) 

Combining (41) and (43), we get 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 3 3 1 5 1

2 1 1

3 3 3 3 5 1 2 1

ˆˆ ˆ1 1

1

ˆ

T
d

d

T

e k w k k x k l e k

e k x k d k

k w k k l e k e k d k

φ

ζ φ ε

+ = Φ ⋅ − − + +

− − + +

= − − + − − +

  (44) 

where 
( ) ( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3

ˆ ˆ ˆˆT T Tk w k k w k k w kζ φ φ φ= = −  (45) 

( ) ( )( ) ( )( )3 3 3 3 3ˆk v z k v z kφ φ φ= −  (46) 

C. Virtual Control Weight Update 
Let us define 
( ) ( ) ( ) ( ) ( )( )1 3 3̂

ˆˆ T
a de k w k k Q k Q kφ= + −  (47) 

where ( )3 kζ  and ( )kQ̂  are defined in (45) and (27).  ( ) ℜ∈kea1  
is the error for the first action NN, indicated by the a1 sub-
script. The desired strategic utility function ( )kQd  is “0” to 
indicate that the nonlinear system can track the reference 
signal well at all steps. Thus, (47) becomes 

( ) ( ) ( ) ( )1 3 3̂
ˆˆ T

ae k w k k Q kφ= +  (48) 

The objective function to be minimized by the first action 
NN is given by 

( ) ( )kekE aa
2
11 2

1
=  (49) 

The weight update rule for the action NN is also a gradi-
ent-based adaptation, which is defined as 

( ) ( ) ( )3 3 3ˆ ˆ ˆ1w k w k w k+ = + Δ  (50) 

( ) ( )
( )

1
3 3

3

ˆ
ˆ
aE k

w k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (51) 
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( ) ( ) ( ) ( ) ( ) ( )( )3 3 3 3 3 3
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k Q k w k kα φ φ+ = − +  (52) 

where
3α ∈ℜ  is the NN adaptation gain. 

VI. CONTROL INPUT DESIGN  
Choose the following desired control input  
( ) ( ) ( ) ( ) ( )( )2 2 6 2

2

1 ˆ 1d du k f k x k l e k
g k

= − + + +
, (53) 

Note that ( )kud  is non-causal since it depends upon future 
value of ( )1ˆ2 +kx d . We solve this problem by using a semi-
recurrent NN. The term ( )1ˆ2 +kx d  depends on state ( )kx , vir-
tual control input ( )kx d2ˆ , desired trajectory ( )21 +kx d  and sys-
tem errors ( )ke1  and ( )ke2 . By taking the independent vari-
ables as the input to a NN, ( )1ˆ2 +kx d  can be approximated 
during control input selection. Assume the NN input as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 6
4 1 2 1 6 2 2 1ˆ, , , , , 2

T
d dz k x k x k e k l e k x k x k⎡ ⎤= + ∈ℜ⎣ ⎦ , then 

( )kud  can be approximated as   
( ) ( )( ) ( )( ) ( ) ( )4 4 4 4 4 4 4

T T T
du k w v z k z k w k kφ ε φ ε= + = + ,  (54) 

where 4
4

nw ∈ℜ  and 46
4

nv ×∈ℜ denote the constant ideal output 
and hidden layer weights, ( ) 4

4
nkφ ∈ℜ  is the activation func-

tion vector, 4n  is the number of hidden layer nodes , and 
( )( )4z kε  is the estimation error. Again, we hold the input 

weights constant and adapt the output weights only. We also 
replace actual with estimated states. 

( ) ( ) ( )( ) ( ) ( )4 4 4 4 4̂ˆ ˆ ˆˆT T Tu k w k v z k w k kφ φ= = ,          (55) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) 6
4 1 2 1 6 2 2 1ˆ ˆ ˆ ˆ ˆˆ , , , , , 2

T
d dz k x k x k e k l e k x k x k⎡ ⎤= + ∈ ℜ⎣ ⎦  is 

the input vector. Rewriting (42) and substituting (53) 
through (55), we get 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2 2 4 4 2 2

2 2 4 4 2 4 4 4

2 2

2 2 4 2 4 4 4

2 2

6 2 2 4 2 4 2 4 4 2

ˆ1 1 1

ˆˆ ˆ 1

ˆ 1

ˆ 1

d

T
d

T T

d

T
d

d

T

e k x k x k

f g w k k d k x k

f g w k k g k w k

d k x k

f g u k k g k w k

d k x k

l e k g k g k g w k d k

φ

φ ζ φ

ε ζ φ

ε ζ φ

+ = + − +

= ⋅ + ⋅ + − +

= ⋅ + ⋅ + ⋅ +

+ − +

= ⋅ + ⋅ − + ⋅ +

+ − +

= − ⋅ + ⋅ + ⋅ +

 (56) 

where 
( ) ( ) ( ) ( ) ( ) ( )4 4 4 4 4 4 4

ˆ ˆ ˆˆT T Tk w k k w k k w kζ φ φ φ= = − ,             (57) 

( ) ( ) ( )4 4 4
ˆk k kφ φ φ= −  (58) 

Equations (44) and (56) represent the closed-loop error 
dynamics.  Next we derive the weight update law. Define 

( ) ( ) ( ) ( )2 4 4̂
ˆˆ T

ae k w k k Q kφ= + ,               (59) 

where ( ) ℜ∈kea2  is the error where the subscript a2 stands for 
the second action NN. Following the similar design proce-
dure and taking the bounded unknown disturbance ( )kd2

 and 
the NN approximation error ( )( )4z kε  to be zeros, the second 
action NN weight updating rule is given by 

( ) ( ) ( ) ( ) ( ) ( )( )4 4 4 4 4 4
ˆ ˆ ˆˆ ˆ ˆ1 Tw k w k k w k k Q kα φ φ+ = − + ,  (60) 

The proposed controller structure is shown in Figure 1.  

 

 
Figure 1 Adaptive-critic NN-based controller diagram. 
 

Theorem 1:  Consider the system given by (1) and (2), 
and the disturbance bounds md1  and md2 be known constants. 
Let the observer, critic, virtual control, and control input NN 
weight tuning be given by (24), (32), (52), and (60), respec-
tively. Let the virtual control input and control input be 
given by (41), and (55), the tracking errors ( )ke1  and ( )ke2  and 
weight estimates ( ) ( )kwkw 21 ˆ,ˆ , ( )kw3ˆ , and ( )4ŵ k  are UUB, with 
the bounds specifically given by (A.15) with the controller 
design parameters selected as  

( ) 2
0 1, {1,2,3,4}i i k iα φ< < ∈  (61) 

1 2 3 4 5 6
1 3 3 3 1 3; ; ; ; ;
2 3 3 3 35

l l l l l l< < < < < <  (62) 

20
2

β< <  (63) 

where {1, 2,3, 4}iα ∈  are NN adaptation gains, {1, 2,...,6}il ∈  are 
controller gains, β  is the strategic utility function constant. 

Proof: See Appendix.               
Corollary 1: The proposed adaptive critic NN controller 

and the weight updating rules with the parameter selection 
based on (61) through (63), the state ( )kx2

 approaches the 
desired virtual control input ( )kx d2 . 

Proof: Combining (40) and (41), the difference between 
( )kx d2ˆ  and ( )kx d2  is given by 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 3 3 3 3 3ˆ d dx k x k w k k z k k kφ ε ζ ε− = − = −  (64) 

where ( ) 3
3

nw k ∈ℜ  is the first action NN weight estimation 
error and ( )3 kζ ∈ℜ  is defined in (45). Since both ( )3 kζ ∈ℜ  
and ( )3 kε  are bounded, ( )kx d2ˆ  is bounded to ( )kx d2 . In Theo-
rem 1, we show that ( )ke2

 is bounded, i.e., the state ( )kx2
 is 

bounded to the virtual control signal ( )kx d2ˆ .  Thus the state 

( )kx2
 is bounded to the desired virtual control signal ( )kx d2 . 

VII. EXPERIMENTAL RESULTS 
Lean operation of SI engine allows lower emissions and 

improved fuel efficiency. However, the engine becomes 
unstable due to the cyclic dispersion of heat release. The 
adaptive critic NN controller is designed to stabilize the SI 
engine operating lean.  

A. Daw Engine Model 
Spark ignition (SI) engine dynamics can be expressed ac-

cording to the Daw model [9] as follows. 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 11x k AF k F k x k R F k CE k x k d k+ = + − ⋅ + , (65) 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )2 2 21 1x k CE k F k x k MF k u k d k+ = − + + + , (66) 
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( ) ( ) ( )2y k x k CE k= , (67) 

( ) ( )
( )

2

1

x k
k R

x k
ϕ =

, (68) 

( ) ( )
( )

max
( )

1 100
m

u l

k

CECE k ϕ ϕ
ϕ ϕ

− −
−

=

+

, (69) 

2
u l

m
ϕ ϕϕ −

= , (70) 

where ( )1x k  and ( )2x k  are mass of air and fuel, ( )1y k  is the 
heat release, ( )CE k  is bounded by ( )min max0 CE CE k CE< < < , 

( )F k  is bounded by ( )min max0 F F k F< < < , ( ) , {1, 2}id k i ∈  are 
unknown but bounded disturbances bounded by 

( ) , {1,2}i imd k d i< ∈  with , {1,2}imd i ∈  being unknown positive 
scalars. To implement the observer, replace the following 
from the Daw model into the general case 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )
( )

1 1

1

2 2

2

1

1

f AF k F k x k

g R F k CE k

f CE k F k x k MF k

g

⋅ = +

⋅ = − ⋅

⋅ = − +

⋅ =

  

( )

( ) ( )

10 0 0 1

10 0 0

10 0 0 2 0

10

ˆ

ˆ1
1

f AF F x k
g R F CE
f CE F x k MF
g

= +

= − ⋅

= − +

=

 (71) 

To implement the controller, replace the following 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2AF k F k x k R F k CE k x k x kΦ ⋅ = + − ⋅ +  (72) 

To calculate the nominal values for equations (4) through 
(7), we run the engine at the desired equivalence ratio.  That 
will give us the nominal fuel, air, and equivalence ratio - 

0MF , 0AF  and 0ϕ .  From those, combustion efficiency 0CE  is 
calculated. 

B. Simulation Data 
The controller is easily simulated in C in conjunction with 

the Daw model.  The learning rates are 0.01, 0.001, 0.04, 
and 0.005 for for the observer, critic, virtual control input, 
and control input, respectively. The gains l1, l2, l3, l4, l5, and l6 
are selected as 0.99, 1.99, 0.13, 0.49, 0.1 and 0.08.  The sys-
tem constants CEmax, φl, and φu are chosen as 1, 0.73, and 
0.66.  The critic constants β  and N are 0.4 and 4 for all 
equivalence ratios. All NNs have 20 hidden neurons and 
hyperbolic tangent sigmoid activation functions.  Simula-
tions are run for 5000 cycles for both uncontrolled and con-
trolled system. The maximum mole of molecules a single 
cylinder holds is set as 0.021. Using this constant along with 
the following equations, 

( )AF
MFR=ϕ  (73) 

fuel air

MF AFtm
mw mw

= +
 (74) 

where fuelmw  and airmw  are molecular weights of fuel and air, 
respectively. tm  is the maximum mole of molecules each 
cylinder is capable of holding. For each equivalence ratio set 
point, ϕ , MF and AF can be calculated. Figures 2 and 3 
shows one simulation result at 0.79. 
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Figure 2 Uncontrolled and controlled heat release return map at φ=0.75. 
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Figure 3 Heat release vs iteration number. Controller turns on at k=3999. 

 
In order to quantify the performance of the controller, we 

compare the coefficient of variation (COV).  It is the ratio of 
the deviation over the mean of the heat release.  As the COV 
decreases, the performance of the controller increases.  The 
return map consequently approaches a target value.  Table 1 
tabulates all of the data from simulation.  The COV of each 
set point decreased drastically as the controller operates.  
The performance outperformed the slight increase in the 
mean fuel input. 

Table 1 Covariance and fuel data. The fuel change is nominal. 
        Covariance (COV) % COV % Fuel 

PHI Uncontrolled Controlled change Change 
0.90 0.0080 0.0078 -4.1 0.29
0.80 0.0267 0.0221 -17.0 0.66
0.77 0.0475 0.0435 -8.3 0.48
0.75 0.1217 0.1071 -12.0 0.56

VIII. CONCLUSIONS 
The controller presented successfully controlled a SI en-

gine to reduce cyclic dispersion under lean condition. The 
system is modeled under a nonstrict feedback nonlinear de-
screte-time system. It converged upon a near optimal solu-
tion through the use of a long-term strategic utility function 
even though the exact dynamics are not known beforehand. 
Simulation shows the stability of the controller under a vari-
ety of set points. The output is stable, as predicted by the 
Lyapunov proof. 

APPENDIX 
Proof of Theorem 1:  Define the Lyapunov function  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

10 6
2 21 2
1 2

1 3 2

2 2 2 28 9 10
7 2 1 2

5 3

1
3 3 3

j T
i j j

i j j

J k J k e k e k w k w k

k x k x k y

γγ γ
α

γ γ γγ ζ

= = −

= = + + +

− + + +

∑ ∑   (A.1) 

where 0 , {1,...,6}i iγ< ∈  are auxiliary constants; the NN 
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weights estimation errors ( )1 1Tw k + , ( )2 1Tw k + , ( )3 1Tw k + , and 
( )4 1Tw k +  are defined in (24), (32), (52), and (60), by sub-

tracting their respective ideal weights , {1,2,3,4}iw i ∈  on both 
sides; the observation errors ( )1 1x k + , ( )2 1x k + , are defined in 
(18) and (19), respectively; the system errors ( )1 1e k +  and 

( )2 1e k +  are defined in  (44) and (56), respectively; and 
, {1,2,3,4}i iα ∈  are NN adaptation gains. The Lyapunov func-

tion (A.1) obviates the need for the separation principle. 
Take the first term and the first difference using (44) to get 

( ) ( ) ( ) ( ) ( )

( ) ( )1

2 2 2 2 2 2
1 1 5 1 1 5 1 1 2 1 3

2 2
1 3m 3m 3m 1m 15

J k l x k l e k e k k

w d e kγ

γ γ γ γ ζ

γ ε φ

Δ ≤ + + + +

+ + −

 (A.2) 

Take the second term, substitute (56), and simplify 
( ) ( ) ( ) ( ) ( )

22 2 2 2 2
2 6 2 2max 4 2 2m 2max 4m 2max 4m 4m 23 3J k l e k g k d g g w e kζ γ ε φΔ ≤ + + + + −  (A.3) 

Take the third term, substitute (24), and simplify 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

22

3 3 1 1 1 1 4

2 2 2 2
3 1m 1m 3 4 3 1

ˆ ˆˆ1

ˆ2 2

J k k w k k l y k

w l y k k

γ α φ φ

γ φ γ γ ζ

⎛ ⎞Δ ≤ − − + +⎜ ⎟
⎝ ⎠

+ −

 (A.4) 

Take the fourth term, substitute (32), and simplify 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

22 1
4 4 2 2

22 2 2 1
4 2 4 2 4 2m 2m

ˆ ˆ ˆ1 1

ˆ2 1 2 1

N

N

J k k Q k p k Q k

k k w

γ α φ β β

γ ζ γ β ζ γ φ β β

+

+

⎛ ⎞Δ ≤ − − + − −⎜ ⎟
⎝ ⎠

− + − + + +

 (A.5) 

Take the fifth term, substitute (52), and simplify 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

22

5 5 3 3 3 3

22 2
5 2 5 2m 2m 3m 3m 5 3

ˆ ˆ ˆˆ1

ˆ ˆ2 2

TJ k k Q k w k k

k w w k

γ α φ φ

γ ζ γ φ φ γ ζ

⎛ ⎞Δ ≤ − − + +⎜ ⎟
⎝ ⎠

+ + −

 (A.6) 

Take the sixth term, substitute (60), and simplify 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

22

6 6 4 4 4 4

2 2 2
6 4m m 2m 2m 6 2 6 4

ˆ ˆ ˆˆ1

ˆ ˆ2 2

TJ k k w k k Q k

w w k k

γ α φ φ

γ φ φ γ ζ γ ζ

⎛ ⎞Δ = − − + +⎜ ⎟
⎝ ⎠

+ + −

 (A.7) 

Take the seventh term, set 2
7 42γ γ β=  

( ) ( ) ( )2 2 2 2
7 4 2 4 22 2 1J k k kγ β ζ γ β ζΔ = − −  (A.8) 

Take the eighth term, substitute (18), and simplify 
( ) ( ) ( ) ( ) ( )822 2 2 2

8 8 2 8 2 8 3m 3m 10 3m 1m 13J k l y k x k w f d x kγγ γ γ φ εΔ ≤ + + + + + −  (A.9) 

Take the ninth term, substitute (19), and simplify 
( ) ( )( )

( ) ( ) ( ) ( )9

2

9 9 20 20 2max 4m 4m 2max 2m

2 2 2
9 20 2max 4 9 3 23

ˆJ k f g g w f d

g g k l y k x kγ

γ φ

γ ζ γ

Δ ≤ + + + + +

+ + −

 (A.10) 

Take the final term, substitute (20), and simplify 
( ) ( ) ( ) ( ) ( )102 2 2

10 10 1 10 1 10 1m 1m 1m 3J k k l y k w y kγγ ζ γ γ φ εΔ ≤ + + + −  (A.11) 

Combining (A.2) through (A.11) and simplify to get the 
first difference of the Lyapunov function 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

8 10

9

2 2 2 2
4 5 6 4 2 6 2 2max 9 20 2max 4

2 2 2 2 2 2 2 2
1 5 1 3 4 8 2 9 3 10 1 3 10 13 3

22 2 2
3 1 1 1 1 4 8 23

2 2 2

2

ˆ ˆˆ1 ...M

J k g g g k

l x k l l l l y k k

k w k k l y k x k D

γ γ

γ

γ γ γ γ β ζ γ γ γ ζ

γ γ γ γ γ γ γ ζ

γ α φ φ γ

Δ ≤ − − − − − − − +

− − − − − − − − −

⎛ ⎞− − + − − +⎜ ⎟
⎝ ⎠

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

1

2

22 1 2
4 2 2 5 1 3

22 2 2
5 3 3 3 3 1 5 15

22 2 2
6 4 4 4 4 1 2 6 23

ˆ ˆ ˆ1 1

ˆ ˆ ˆˆ1

ˆ ˆ ˆˆ1

N

T

T

k Q k p k Q k k

k Q k w k k l e k

k w k k Q k l e k

γ

γ

γ α φ β β γ γ ζ

γ α φ φ γ

γ α φ φ γ γ

+⎛ ⎞− − + − − − −⎜ ⎟
⎝ ⎠
⎛ ⎞− − + − −⎜ ⎟
⎝ ⎠
⎛ ⎞− − + − − −⎜ ⎟
⎝ ⎠

 (A.12) 

where 

( ) ( )
( ) ( )( )
( ) ( )

( )( )
( ) ( )

222
m 1 3m 3m 3m 1m 5 2m 2m 3m 3m

3 21
3 1m 1m 4 2m 2m

2 2
6 4m m 2m 2m 8 3m 3m 10 3m 1m

2

9 20 20 2max 4m 4m 2max 2m

2 2

2 2m 2max 4m 2max 4m 4m 10 1m 1m 1m

ˆ ˆ2

ˆ ˆ2 2 1

ˆ ˆ2

ˆ

N

D w d w w

w w

w w w f d

f g g w f d

d g g w w

γ ε φ γ φ φ

γ φ γ φ β β

γ φ φ γ φ ε

γ φ

γ ε φ γ φ ε

+

= + + + + +

+ + + +

+ + + + + +

+ + + + +

+ + + +

 (A.13) 

Select  

( )

2 2 2
1 1 5 2 1 2 6 3 10 4 5 6 4

2 2 2
6 2 2max 9 20 2max 7 4 8 1 5

2 2 2 2
10 3 4 8 2 9 3 10 1 5 1 9 8

5 ; 3 3 ; ; 2 2 2 ;

; 2 ; 3 ;

6 3 3 3 ; ; 3 ;

l l

g g g l

l l l l

γ γ γ γ γ γ γ γ γ γ γ β

γ γ γ γ γ β γ γ

γ γ γ γ γ γ γ γ γ

> > + > > + +

> + + = >

> + + + > >

 (A.14) 

This implies ( ) 0<Δ kJ  as long as (61) through (63) hold 
and any one of the following hold  

( ) ( ) ( )

( ) ( )

( )
( )

( )

( ) ( )

1 2

8

9 10

1 2 12 2
3 101 5 1 2 65 3

3 2 2
5 1 4 5 6 4

4 12 2
6 2 2max 9 20 2max 1 53

2 2 2 2 2
8 3 4 8 2 9 3 10 13 3

; ; ;

; ;
2 2 2

; ;

; ;
2

M M M

M M

M M

M M

D D De k e k k
l l

D Dk k

D Dk x k
g g g l

D Dx k y k
l l l l

γ γ

γ

γ γ

ζ
γ γγ γ γ

ζ ζ
γ γ γ γ γ γ β

ζ
γ γ γ γ

γ γ γ γ γ

> > >
−− − −

> >
− − − −

> >
− − + −

> >
− − − − −

 (A.15) 
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