
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jul 2007

Online Reinforcement Learning-Based Neural Network Controller Online Reinforcement Learning-Based Neural Network Controller

Design for Affine Nonlinear Discrete-Time Systems Design for Affine Nonlinear Discrete-Time Systems

Qinmin Yang

Jagannathan Sarangapani
Missouri University of Science and Technology, sarangap@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Computer Sciences Commons, Electrical and Computer Engineering Commons, and the

Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Q. Yang and J. Sarangapani, "Online Reinforcement Learning-Based Neural Network Controller Design for
Affine Nonlinear Discrete-Time Systems," Proceedings of the American Control Conference, 2007. ACC'07,
Institute of Electrical and Electronics Engineers (IEEE), Jul 2007.
The definitive version is available at https://doi.org/10.1109/ACC.2007.4282709

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1798&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1798&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ACC.2007.4282709
mailto:scholarsmine@mst.edu

Abstract—In this paper, a novel reinforcement learning
neural network (NN)-based controller, referred to adaptive
critic controller, is proposed for general multi-input and multi-
output affine unknown nonlinear discrete-time systems in the
presence of bounded disturbances. Adaptive critic designs
consist of two entities, an action network that produces optimal
solution and a critic that evaluates the performance of the
action network. The critic is termed adaptive as it adapts itself
to output the optimal cost-to-go function and the action
network is adapted simultaneously based on the information
from the critic. In our online learning method, one NN is
designated as the critic NN, which approximates the Bellman
equation. An action NN is employed to derive the control signal
to track a desired system trajectory while minimizing the cost
function. Online updating weight tuning schemes for these two
NNs are also derived and uniformly ultimate boundedness
(UUB) of the tracking error and weight estimates is shown. The
effectiveness of the controller is evaluated on a two-link robotic
arm system.

I. INTRODUCTION
In the literature, there are many approaches proposed for

designing stable controllers for nonlinear systems. However,
stability is only a bare requirement for the controller design.
A further consideration is the optimality based on a cost
function which is used to determine the performance. Of the
available methods, dynamic programming (DP) has been
extensively applied to generate optimal control for nonlinear
systems [1]-[2]. However, one of the drawbacks for DP is
the computation cost with the increasing dimension of the
nonlinear system, which is referred to as the “curse of
dimensionality” [2]. Therefore, adaptive methods for DP
(e.g., see [3]) have been developed recently. However, most
of them are implemented either by offline using iterative
schemes or require the nonlinear system dynamics to be
known a priori. These requirements are often not practical
for real-world systems. Additionally, stability of the closed-
loop system is not discussed.

On the other hand, it is common to apply reinforcement
learning for optimal controller design, since the cost
function can be directly seen as a form of reinforcement
signal. Of the available reinforcement learning schemes, the
temporal difference (TD) learning method [4]-[5] has found
many applications. However, to obtain a satisfactory
reinforcement signal for each action, the approach must visit

The authors are with the Department of Electrical & Computer
Engineering, University of Missouri, Rolla, MO, 65401 USA (e-mail:
qyy74@ umr.edu). Research supported in part by NSF awards ECCS
#0327877 and ECCS#0621924.

each system state and apply each action often enough [6],
and requires the system to be time-invariant, or stationary in
the case of stochastic system.

To overcome the iterative offline methodology for real-
time applications, several appealing online neural controller
designs methods were introduced in [7]-[9]. They are also
referred to as forward dynamic programming (FDP) or
adaptive critic designs (ACD). The central theme of this
approach is that the optimal control law and cost function
are approximated by parametric structures, such as neural
networks (NNs), which are trained over time along with the
information that is fed back from the system response.
Depending upon whether the NNs approximate the cost
function or its derivative, or both are approximated by a
critic structure, this family of ACD is classified into three
categories: 1) heuristic dynamic programming (HDP); 2)
dual heuristic dynamic programming (DHP); and 3)
globalized dual heuristic dynamic programming (DHP). It is
important to note that when the action value is introduced as
an additional input to the critic, then it will be referred to
action dependent (AD) version.

In [10], a new NN learning algorithm based on gradient
descent rule is introduced without any convergence or
stability proof. By contrast, Lyapunov analysis was derived
in [11] and [12]. However, approach presented in [12] is
specific to robotic systems in continuous-time whereas [10]
and [11] employ simplified binary reward or cost function,
which is a variant of the standard Bellman equation.
In this paper, we are considering NNs for the control of
nonlinear discrete systems with quadratic-performance index
as the cost function. The entire system consists of two NNs:
an action NN to derive the optimal (or near optimal) control
signal to track not only the desired system output but also to
minimize the long-term cost function; an adaptive critic NN
to approximate the long-term cost function and to tune the
action NN weights. Since the control signal is not used in
the critic NN as an additional input, our approach could be
seen as a HDP approach.

Besides addressing optimization, contributions of this
paper include: 1) the demonstration of the UUB of the
overall system is shown even in the presence of NN
approximation errors and bounded unknown disturbances
unlike in the existing adaptive critic works where the
convergence is given under ideal circumstances; 2) the NN
weights are tuned online instead of offline; and 3) the
proposed approach uses the standard Bellman equation and
not a variant of the Bellman equation as in [11].

Online Reinforcement Learning-based Neural Network Controller
Design for Affine Nonlinear Discrete-time Systems

Qinmin Yang and S. Jagannathan

Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

FrA17.2

1-4244-0989-6/07/$25.00 ©2007 IEEE. 4774

II. BACKGROUND
In this paper, we consider the following stabilizable

nonlinear affine system, given in the form
 0(1) ((), ()) (()) (()) () ()x k f x k u k f x k g x k u k d k+ = = + + (1)

with the state []1 2() (), (), , () T n
nx k x k x k x k R= ⋅⋅⋅ ∈ at time

instant k. (()) nf x k R∈ is a unknown nonlinear function
vector, and (()) n ng x k R ×∈ is a matrix of unknown nonlinear
functions, () nu k R∈ is the control input vector and

() nd k R∈ is the unknown but bounded disturbance vector,

whose bound is assumed to be a known constant,
() md k d≤ . Here stands for the Frobenius norm [13],

which will be used through out this paper. It is also assumed
that the state vector ()x k is available.
Assumption 1: Let the diagonal matrix (()) n ng x k R ×∈ be a
positive definite matrix for each () nx k R∈ , with min ,g

maxg R+∈ represent the minimum and maximum
eigenvalues of (())g x k respectively, such that

min max0 g g< ≤ .
The long-term cost function is defined as

 0

0

() ((),) ()

[(()) () ()]

i

i t

i T

i t

J k J x k u r k i

q x k i u k i Ru k i

γ

γ

∞

=

∞

=

= = +

= + + + +

∑

∑

 (2)

where ()J k stands for ((),)J x k u for simplicity, and u is a
control policy. As observed from (2), the long-term cost
function is the discounted sum of the immediate cost
function or Lagrangian

 () (()) () ()
(() ()) (() ()) () ()

T

T T
d d

r k q x k u k Ru k
x k x k Q x k x k u k Ru k

= +

= − − +
(3)

where R and Q are positive definite matrices and
 (0 1)γ γ≤ ≤ is the discount factor for the infinite-horizon

problem. In this paper, we are using a widely used standard
quadratic cost function defined based on the tracking error

()e k , which will be defined later in contrast with [10]. The

immediate cost function ()r k can be viewed as the system
performance index for the current step.

The basic idea in adaptive critic or reinforcement learning
design is to approximate the long-term cost function J (or its
derivative, or both), and generate the control signal
minimizing the cost. By using a learning algorithm, the
approximator will converge to the optimal cost function and
the controller will converge to the optimal controller
correspondingly. As a matter of fact, for an optimal control
law, which can be expressed as *() *(())u k u x k= , the
optimal long-term cost function can be written alternatively
as *() *((), * (())) *(())J k J x k u x k J x k= = , which is just a
function of the current state [14].
Assumption 2: The optimal cost function *()J k is finite and

bounded over the compact set nS R⊂ by
mJ .

III. ONLINE REINFORCEMENT LEARNING CONTROLLER
DESIGN

For the purpose of this paper, our objective is to design an
online reinforcement learning NN controller for the system
(1) such that 1) all the signals in the closed-loop system
remain UUB; 2) the state ()x k follows a desired trajectory

() n
dx k R∈ ; and 3) the long-term cost function (2) is

minimized so that a near optimal control input can be
generated. Here, the “online” means the learning of the
controller takes place “in real-time” by interacting with the
plant, instead of in an offline manner.

The block diagram of the proposed controller is shown in
Fig. 1 where the action NN is providing a near optimal
control signal to the plant while the critic NN approximates
the long-term cost function. The learning of the two NNs is
performed online without any offline learning phase.

()Ĵ k

1z− ()ˆ 1J k −

Fig. 1. Online neural dynamic programming based controller structure.

In our controller architecture, we consider the action and

the critic NN having two layers. The output of the NN can
be given by ()T TY W V Xφ= , where V and W are the
hidden layer and output layer weights respectively, and X
is the input. The hidden layer nodes is denoted as 2N .

A general function 3() ()Nf x C S∈ can be written as
 () () ()T Tf x W V x xφ ε= + (4)
with ()xε a NN functional reconstruction error vector. In
our design, V is selected initially at random and held fixed
during learning. It is demonstrated in [15] that if the hidden
layer weights, V , are chosen initially at random and kept
constant and if

2N is sufficiently large, the NN

approximation error ()xε can be made arbitrarily small
since the activation function vector forms a basis.
Furthermore, in the proposed adaptive controller, the
persistence of excitation (PE) condition is relaxed. Next we
present the controller design. Before we proceed, the
following mild assumption is needed.
Assumption 3: The desired trajectory of the system states,

()dx k , is a smooth bounded function over the compact

subset of nR .

FrA17.2

4775

A. The Action NN Design
The tracking error at instant k is defined as

 () () ()de k x k x k= − (5)
Then future value of the tracking error using system
dynamics from (1) can be rewritten as
 (1) (()) (()) () () (1)de k f x k g x k u k d k x k+ = + + − + (6)
The desired control signal can be given by
 1

1() (())((() (1) ())d du k g x k f x k x k l e k−= − + + + (7)

where 1
n nl R ×∈ is a design matrix selected such that the

tracking error, ()e k , is converging to zero.

Since both of (())f x k and (())g x k are unknown
smooth nonlinear functions, the desired feedback control

()du k cannot be implemented directly. Instead, an action
NN is employed to generate the control signal. From (7) and
considering Assumption 1 and 2, the desired control signal
can be approximated as
 () (()) (()) () ()T T T

d a a a a a a au k w v s k s k w k kφ ε φ ε= + = + (8)

where 2() (), ()
TT T ns k x k e k R⎡ ⎤= ∈⎣ ⎦ is the action NN input

vector. The action NN consists of two layers, and
an n

aw R ×∈ and 2 an n
av R ×∈ denote the desired weights of the

output and hidden layer respectively with () (())a ak s kε ε=
is the action NN approximation error, and

an is the number

of the neurons in the hidden layer. Since av is fixed, for
simplicity purpose, the hidden layer activation function
vector 2(()) nT

a av s k Rφ ∈ is denoted as ()a kφ .
Considering the fact that the desired weights of the action

NN are unknown, the actual NN weights have to be trained
online and its actual output can be expressed as
 ˆ ˆ() () (()) () ()T T T

a a a a au k w k v s k w k kφ φ= = (9)
where ˆ () an n

aw k R ×∈ is the actual weight matrix of the output
layer at instant k.

Using the action NN output as the control signal, and
substituting (8) and (9) into (6) yields

1

1

1

(1) (()) (()) () () (1)
() (())(() ()) ()

() (())(() () ()) ()
() (()) () ()

d

d
T
a a a

a a

e k f x k g x k v k d k x k
l e k g x k v k v k d k

l e k g x k w k k k d k
l e k g x k k d k

φ ε
ζ

+ = + + − +
= + − +

= + − +
= + +

%

 (10)

where
 ˆ() ()a a aw k w k w= −% (11)

 () () ()T
a a ak w k kζ φ= % (12)

 () (()) () ()a ad k g x k k d kε= − + (13)
Thus, the closed-loop tracking error dynamics is

expressed as
 1(1) () (()) () ()a ae k l e k g x k k d kζ+ = + + (14)
Next the critic NN design is introduced.

B. The Critic NN Design
As stated above, a near optimal controller should be able

to stabilize the closed-loop system by minimizing the cost
function. In this paper, a critic NN is employed to
approximate the long-term cost function ()J k . Since the

actual ()J k is unavailable for us at the kth time instant in an

online learning framework, the critic NN is tuned online in
order to converge to the actual ()J k .

First, the prediction error of the critic or the Bellman error
[10] is defined as
 ˆ ˆ() () [(1) ()]ce k J k J k r kγ= − − − (15)
where the subscript “c” stands for the “critic” and
 ˆ ˆ ˆ() () (()) () (())T T T

c c c c cJ k w k v x k w k x kφ φ= = (16)

where ˆ()J k R∈ is the critic NN output which is an
approximation of ()J k . In our design, the critic NN is also a
two-layer NN, while 1ˆ () cn

cw k R ×∈ and cn n
cv R ×∈ represent

its actual weight matrix of the output and hidden layer
respectively. The term cn denotes the number of the
neurons in the hidden layer. Similar to HDP, the system
states () nx k R∈ are selected as the critic NN input. The
activation function vector of the hidden layer

(()) cnT
c cv x k Rφ ∈ is denoted as ()c kφ for simplicity.

Provided that enough number of the neurons in the hidden
layer, the optimal long-term cost function *()J k can be
approximated by the critic NN with arbitrarily small
approximation error ()c kε ,

 *() (()) (()) () ()T T T
c c c c c c cJ k w v x k x k w k kφ ε φ ε= + = + (17)

Similarly, the critic NN weight estimation error can be
defined as
 ˆ() ()c c cw k w k w= −% (18)
where the approximation error is given by
 () () ()T

c c ck w k kζ φ= % (19)
Thus, we have

ˆ ˆ() () (1) ()

() *() (1) *(1)
() () (1)

c

c c

c c

e k J k J k r k
k J k k J k

r k k k

γ
γζ γ ζ

ε ε

= − − +
= + − − − −
+ − + −

 (20)

Next we discuss the weight tuning algorithms for critic and
action NNs.

C. Weight Updating for the Critic NN
Following the discussion from the last section, the

objective function to be minimized by the critic NN can be
defined as a quadratic function of tracking errors as
 2() () () 2 () 2T

c c c cE k e k e k e k= = (21)
Using a standard gradient-based adaptation method, the
weight updating algorithm for the critic NN is given by
 ˆ ˆ ˆ(1) () ()c c cw k w k w k+ = + Δ (22)
where

FrA17.2

4776

 ()ˆ ()
ˆ ()

c
c c

c

E kw k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥∂⎣ ⎦
 (23)

with c Rα ∈ is the adaptation gain.
Combining (15), (16), (21) with (23), the critic NN

weight updating rule can be obtained by using the chain rule
as

ˆ() () () ()ˆ () ˆˆ ˆ() () ()()

() ()

c c c
c c c

c c c

c c c

E k E k e k J kw k
w k e k w kJ k

k e k

α α

α γφ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂∂
= −

 (24)

Thus, the critic NN weight updating algorithm is obtained as
 ˆ ˆˆ ˆ(1) () ()(() () (1))c c c cw k w k k J k r k J kα γφ γ+ = − + − − (25)

D. Weight Updating for the Action NN
The basis for adapting the action NN is to track the

desired trajectory and to lower the cost function. Therefore,
the error for the action NN can be formed by using the
functional estimation error ()a kζ , and the error between the
nominal desired long-term cost function ()dJ k R∈ and the
critic signal ˆ()J k . Now we define the cost function vector as

1ˆ ˆ ˆ() () () ... ()
T nJ k J k J k J k R ×⎡ ⎤= ∈⎣ ⎦

. Let

 ()
()

1

1

() (()) () (()) (() ())

(()) () (()) ()

a a d

a

e k g x k k g x k J k J k

g x k k g x k J k

ζ

ζ

−

−

= + −

= +

 (26)

where ()a kζ is defined in (12). Given Assumption 1, we
define (()) n ng x k R ×∈ as the principle square root of the
diagonal positive definite matrix (())g x k , i.e.,

(()) (()) (())g x k g x k g x k× = , and ()(()) (())
T

g x k g x k= [11].

The desired long-term cost function ()dJ k is nominally
defined and is considered to be zero (“0”), which means as
low as possible.

Hence, the weights of the action NN ˆ ()aw k are tuned to
minimize the error
 () () () 2T

a a aE k e k e k= (27)
Combining (10), (12), (14), (26), (27) and using the chain

rule yields

1

() () () ()ˆ ()
ˆ ˆ() () () ()

()((()) () ())

()((1) () () ())

a a a a
a a a

a a a c

T
a a a

T
a a a

E k E k e k kw k
w k e k k w k

k g x k k J k

k e k l e k d k J k

ζα α
ζ

α φ ζ

α φ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂ ∂

= − +

= − + − − +

 (28)

where a Rα +∈ is the adaptation gain of the action NN.

However, ()ad k is typically unavailable, so as in the ideal
case, we take it as zero and obtain the weight updating
algorithm for the action NN as

1ˆ ˆ(1) () ()((1) () ())T
a a a aw k w k k e k l e k J kα φ+ = − + − + (29)

IV. MAIN THEORETIC RESULT

Assumption 4: Let aw and cw be the unknown output

layer target weights for the action and critic NNs
respectively, and assume that they are upper bounded such
that
 a amw w≤ , and c cmw w≤ (30)

where amw R+∈ and cmw R+∈ represent the bounds on the
unknown target weights.
Fact 1: The activation functions for the action and critic
NNs are bounded by known positive values, such that
 () , ()a am c cmk kφ φ φ φ≤ ≤ (31)

where ,am cm Rφ φ +∈ is the upper bound for the activation
functions.
Assumption 5: The NN approximation errors ()a kε and

()c kε are bounded above over the compact set nS R⊂ by

amε and cmε [13].
Fact 2: With the Assumption 1, 4, the term ()ad k in (13) is

bounded over the compact set nS R⊂ by
 max()a am am md k d g dε≤ = + (32)

Combining Assumption 1, 3 and 4, with Facts 1 and 2, the
main result of this paper is introduced as following theorem.
Theorem 1: Consider the system given by (1). Let the
Assumptions 1 through 4 hold with the disturbance bound

md a known constant. Let the control input be provided by
the action NN (9), with the critic NN (16). Further, let the
weights of the action NN and the critic NN be tuned by (24)
and (28) respectively. Then the tracking error ()e k , and the
NN weight estimates of the action and critic NNs, ˆ ()aw k
and ˆ ()cw k are UUB, with the bounds specifically given by
(A.9) through (A.11) provided the controller design
parameters are selected as
(a) 2 2

min max0 ()a a k g gα φ< < (33)

(b) 20 () 1c c kα φ< < (34)

(c) max0 3 3l< < (35)

(d) 1 2γ > (36)
where aα and cα are NN adaptation gains, and α is
employed to define the strategic utility function.
Proof: See Appendix.
Remark 1: The action and critic NN weights can be
initialized at zero or random. This means that there is no
explicit off-line learning phase needed.
Remark 2: It is important to note that persistency of
excitation condition is not utilized in order to show the
boundedness of the NN weights and certainty equivalence
principle is not employed.

V. SIMULATION RESULTS
In the implementation, the two-link planar robot arm

system discussed in [13] is considered and the dynamics are

FrA17.2

4777

discretized as an affine nonlinear discrete-time system with
standard zero-order-hold discretization techniques [14]. The
continuous-time manipulator dynamics is as follows [13]

2
2 2 1 1 2 2 2

2
2 2 1 2

1 1 1 1 2 1

1 1 2 2

2 cos cos (2)sin
cos sin

cos cos()
cos()

q q q q q q q
q q q q

e q e q q
e q q

α β η β η η
β η β η

α η τ
η τ

+ + + ⎡ ⎤− +⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

&& & & &

&& &

 (37)
where 2

1 2 1()m m aα = + , 2
2 2m aβ = , 2 1 2m a aη = , 1 1e g a= ,

g = 9.8 2/m s , the acceleration of gravity; 1m , 2m denote

point mass of the links at distal end; 1a , 2a represent length

of the links; 1q , 2q denote rotational angle of the joints;

and 1τ , 2τ represent torque applied on the joints.

In the controller designs, joint angles 1q and 2q are the

states while 1τ and 2τ are the control inputs. To fulfill
Assumption 1, we define the filtered tracking error as
s e e= + Λ& , and use them as the system states with Λ is a
positive definite design parameter matrix. Common usage is
to select Λ diagonal with large positive entries. Then the
filtered error s is bounded as long as the controller
guarantees that the tracking error e is bounded. The filtered
tracking error is also treated as the system state for the
pendulum example in this paper. The parameters used in
our simulation are tabulated as below:

TABLE 1

SUMMARY OF PARAMETERS USED IN SIMULATION OF 2-LINK ROBOT ARM

Parameter 1m
 2m

 1a
 2a

R F γ

Value 0.8 2.3 1 1 2 1 0.5

Parameter Λ 1l cn an cα aα

Value 10 0.8 10 10 1×e-4 1×e-5

In the simulation, the time step is set as 1 ms. To be more

realistic, the system was added with a uniformly distributed
random disturbance. The bound of the disturbance

md is
selected to be 0.1. The initial states of the system are set at

1 2(0) (0) 10q q= = o . Our goal is to manipulate the robot arm
back to zero condition with the lowest cost and simulation
will be stopped when the rotational angles converge to zero.

To obtain a measurement of the cost to accomplish the
task, the simulation is run 100 times. At the beginning of
each running instance, the NN weights are initialized
randomly to exclude any information about the system
obtained from previous learning. During the simulation, the
cost function as defined in (2) is accumulated online for 10
seconds with parameters shown in Table 1. The average cost
of the 100 trials for the algorithm is calculated as 79.94. For
comparison, an adaptive NN controller is also implemented
[13] with same parameters, and the average cost of 100 trial

running is computed to be 129.92. From the simulation
results (not shown), it can be noted that the performance of
the proposed controller design is highly satisfactory.

VI. CONCLUSIONS
A novel reinforcement learning-based online neural

controller is designed for affine nonlinear systems to deliver
a desired performance under bounded disturbance. The
proposed NN controller optimizes the long-term cost
function by introducing a critic NN. Unlike the many
applications where the controller is trained offline, the
control input is updated in an online fashion. To guarantee
that a control system must be stable all of the time, the UUB
of the closed-loop tracking errors and NN weight estimates
is verified by using Lyapunov analysis in the presence of
bounded disturbances and approximation errors.

APPENDIX
Proof of Theorem 1: Define the Lyapunov candidate as

4

2
1 2

1

2
3 4

() () 3 (() ())

(() ()) (1)

T
i a a a

i

T
c c c c

L k L e k tr W k W k

tr W k W k k

γ γ α

γ α γ ζ
=

= = +

+ + −

∑ % %

% %

 (A.1)

where i Rγ +∈ , 1, 2,3,4i = are design parameters. Hence,
the first difference of the Lyapunov function is given by

2 2
1 1

2 2
1

2 2 22 2
1 max 1 max 1

((1) ()) 3

(() (()) () () ()) 3

(1 3) () 3 () ()
a a

a a

L e k e k

le k g x k k d k e k

l e k g k d k

γ

γ ζ

γ γ ζ γ

Δ = + −

= + + −

≤ − − + +

 (A.2)

2 2

2 2

22
2

2
2 min 2

2 2 22
2 max 2

((1) (1) () ())

2 () (()) () 2 ()(() ())

() (()) () () ()

2 () 2 ()(() ())

() () ()

()

T T
a a a a a
T T
a a a a

a a a a

T
a a a

a a a a a

L tr W k W k W k W k

k g x k k k J k d k

k g x k k J k d k

g k k J k d k

k g k k

J k d

γ α

γ ζ ζ γ ζ

γ α φ ζ

γ ζ γ ζ

γ α φ ζ γ α φ

Δ = + + −

= − − +

+ + +

≤ − − +

+ +

× +

% % % %

()
(){

}
{

2
2

2 2 22
2 min min max

2

22

2 2 2
2 min min max

2

min

() 2 (() ()) (()) ()

() () ()

2 ()(() (()))(() ())

() () ()

() (())

() (())
()

T
a a a a

a a a a

T
a a a a

a a a

a a a

a a
a

a

k J k d k g x k k

g k g k g k

k I k g x k J k d k

k J k d k

g k g k g

I k g x k
k

g

γ α ζ

γ ζ α φ ζ

ζ α φ

α φ

γ ζ α φ

α φ
ζ

α

+ +

= − − −

− − +

+ +

= − − −

−
× +

−

2

2 2
max

2
2min

2 2
min max

()

1 ()
() ()

()

a

a a
a

a a

k g

k g
J k d k

g k g

φ

α φ
α φ

⎫− ⎪+ + ⎬
− ⎪⎭

 (A.3)

Set 2 2 2γ γ γ′ ′′= , where
2

min
2 2

2min max

1 () 1"
2()

a a

a a

k g
g k g

α φ
γ

α φ
−

≤
−

, therefore,

FrA17.2

4778

()

()
()

2 2
2

2 2 min 2 min max

22 2

22
2

min max

2 2
2

2 min 2 min max

22

2
22

2
min max

2

() (())

() (()) () ()
()

2()

() ()

() (())
() ()

()

*()

a a a

a a a
a

a a

a a a

a a

a c
a a

L g k g k g

I k g x k J k d k
k

g k g

g k g k g

I k g x k
k n k

g k g

n J k d

γ ζ γ α φ

α φ
ζ γ

α φ

γ ζ γ α φ

α φ
ζ γ ζ

α φ

γ

Δ ≤ − − −

− +
′× + +

−

≤ − − −

−
′× + +

−

′+ + 2()a k

(A.4)

At the same time,

(
)

3 3

22 2
3 3

3

22 2
3

22 2 2
3 3 3

((1) (1) () ())

2 () () () ()

2 () () *() (1) *(1) ()

() (1) () ()

(1 ()) () () 2 () *(

T T
c c c c c

c c c c c

c c c

c c c c c

c c c c c

L tr W k W k W k W k

k e k e k k

e k e k J k k J k r k

k k e k k

k e k e k e k J

γ α

γ γζ γ α γ φ

γ γ ζ

ε ε γ α γ φ

γ α γ φ γ γ γ

Δ = + + −

= − +

= − − + − + − −

+ − − +

= − − − +

% % % %

(
)

22 2 2 2
3 3

2
3

22 2 2 2 2
3

2

)

(1) *(1) () () (1)

(1 ()) () ()

(*() (1) *(1) () () (1))

((1 ()) () () (1) 4

(*() *(1)) 4 () 4 (() (

c c c

c c c c

c c c

c c c c c

c c

k

k J k r k k k

k e k k

J k k J k r k k k

k e k k k

J k J k r k k k

ζ ε ε

γ α γ φ γ γ ζ

γ γ ζ ε ε

γ α γ φ γ ζ ζ

γ ε ε

− − − − + − + −

= − − −

+ − − − − + − + −

≤ − − − + −

+ − − + + − 2

22 2 2 2 2
3 3 3

22
3 3 max

22 2
3 max 3 max 3

1)) 4)

(1 ()) () () (1) 4

(*() *(1)) 4 () 4

() 8 () 8

c c c c c

T
a a a cm

k e k k k

J k J k Q e k

R k R w k

γ α γ φ γ γ ζ γ ζ

γ γ γ

γ ζ γ φ γ ε

−

≤ − − − + −

+ − − +

+ + +

 (A.5)
where

maxQ and
maxR are the maximum eigenvalue of matrix

Q and R respectively.
 ()2 2

4 4 () (1)c cL k kγ ζ ζΔ = − − (A.6)

Combining (A.1) - (A.6) yields

()

2 2 22 2
1 max 1 max 1

2 2 2
2 min 2 min max

22
2

22 2
min max

2 22 2
2 3

2 2 23
3

() (1 3) () 3 () ()

() (())

() (())
() ()

()

*() () 1 () ()

() (1)
4

a a

a a a

a a
a c

a a

a c c c

c c

L k l e k g k d k

g k g k g

I k g x k
k n k

g k g

n J k d k k e k

k k

γ γ ζ γ

γ ζ γ α φ

α φ
ζ γ ζ

α φ

γ γ α γ φ

γγ γ ζ ζ

Δ ≤ − − + +

− − −

−
′× + +

−

′+ + − −

− + − + ()

()
()

()
() ()

()

23

22 23 3 3
max max max

2 2 2
4 3

22
1 max 3 max

22
2 min 1 max 3 max

2 22
3 2 4 4 3

22 2
3

*() *(1)
4

() () ()
4 8 8

() (1)

(1 3) 3 4 ()

8 ()

() 4 (1)

1 () ()

T
a a a

c c cm

a

c c

c c c

J k J k

Q e k R k R w k

k k

l Q e k

g g R k

n k k

k e k

γ γ

γ γ γζ φ

γ ζ ζ γ ε

γ γ

γ γ γ ζ

γ γ γ γ ζ γ γ ζ

γ α γ φ

− −

+ + +

+ − − +

= − − −

− − −

′− − − − − −

− − − ()2 2
2 min max

22
2

2 2
min max

()

() (())
()

()

a a

a a
a M

a a

g k g

I k g x k
k D

g k g

γ α φ

α φ
ζ

α φ

−

−
× + +

−

 (A.7)

where

 ()22 2
2 1 3 2

2 2 2
3 max 3

(2) () 4 2

6
M a m

am am cm

D n d k n J

R w

γ γ γ γ

γ φ γ ε

′ ′= + + +

+ +
 (A.8)

For the standard Lyapunov analysis, equation (A.7) and
(A.8) implies that 0LΔ ≤ as long as the conditions (32) –
(35) are satisfied and following holds

2
1 max 3 max

2 3()
4 (1 3) 3

MDe k
l Qγ γ

≥
− −

 (A.9)

or

2
2 min 1 max 3 max

2 2()
8 8

M
a

Dk
g g R

ζ
γ γ γ

≤
− −

 (A.10)

or

2
3 2 4

() M
c

Dk
n

ζ
γ γ γ γ

≤
′− −

 (A.11)

According to the Lyapunov extension theorem [13], the
analysis above demonstrates that the tracking error ()e k

and the weights of the estimation errors are UUB. Further,
the boundedness of ()a kζ and ()c kζ implies that the

weight estimations ˆ ()aw k and ˆ ()cw k are also bounded.

REFERENCES
[1] R. Bellman and S. Dreyfus, “Applied Dynamic Programming,”

Princeton, NJ: Princeton Univ. Press, 1962.
[2] D. Kirk, Optimal Control Theory: An Introduction. Englewood Cliffs,

NJ: Prentice-Hall, 1970.
[3] R. Luus, “Iterative Dynamic Programming”, CRC Press, Boca Raton,

FL, 2000.
[4] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron like adaptive

elements that can solve difficult learning control problems,” IEEE
Trans. Syst., Man, Cybern., vol. 13, pp. 834–847, 1983.

[5] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An
Introduction”, the MIT Press, Cambridge, MA, 1998.

[6] G. Boone, “Efficient reinforcement learning: Model-based acrobot
control.” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp.
229 - 234, Albuquerque, NM, 1997.

[7] J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Eds., “Handbook of
Learning and Approximate Dynamic Programming”, Wiley-IEEE
Press, 2004.

[8] D. Prokhorov and D. Wunsch, “Adaptive critic designs”, IEEE Trans.
Neural Networks, Vol. 8, No.5, p.997-1007, 1997.

[9] W. T. Miller, R. S. Sutton, and P. J. Werbos, Eds., “Neural Networks
for Control”, Cambridge, MA, MIT Press, 1990.

[10] J. Si and Y. T. Wang, “On-line learning control by association and
reinforcement,” IEEE Trans. Neural Networks, vol. 12, no. 2, pp. 264–
276, Mar.2001.

[11] P. He and S. Jagannathan, “Reinforcement learning-based output
feedback control of nonlinear systems with input constraints”, IEEE
Trans. Syst., Man, Cybern., vol. 35, pp. 150–154, 2005.

[12] Y. Kim and F.L. Lewis, "Optimal design of CMAC neural network
controller for Robot Manipulators," IEEE Trans. Systems, Man, and
Cybernetics, vol. 30, no. 1, pp. 22-31, Feb 2000.

[13] S. Jagannathan, “Neural Network Control of Nonlinear Discrete-time
Systems,” Taylor & Francis, FL, 2007.

[14] D. P. Bertsekas, “Dynamic Programming and Optimal Control.
Belmont,” MA: Athena Scientific, 2000.

[15] B. Igelnik and Y. H. Pao, “Stochastic choice of basis functions in
adaptive function approximation and the functional-link net,” IEEE
Trans. Neural Network, vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

FrA17.2

4779

	Online Reinforcement Learning-Based Neural Network Controller Design for Affine Nonlinear Discrete-Time Systems
	Recommended Citation

	Online Reinforcement Learning-Based Neural Network Controller Design for Affine Nonlinear Discrete-Time Systems

