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Abstract—In this paper, a novel reinforcement learning 
neural network (NN)-based controller, referred to adaptive 
critic controller, is proposed for general multi-input and multi-
output affine unknown nonlinear discrete-time systems in the 
presence of bounded disturbances. Adaptive critic designs 
consist of two entities, an action network that produces optimal 
solution and a critic that evaluates the performance of the 
action network. The critic is termed adaptive as it adapts itself 
to output the optimal cost-to-go function and the action 
network is adapted simultaneously based on the information 
from the critic. In our online learning method, one NN is 
designated as the critic NN, which approximates the Bellman 
equation. An action NN is employed to derive the control signal 
to track a desired system trajectory while minimizing the cost 
function. Online updating weight tuning schemes for these two 
NNs are also derived and uniformly ultimate boundedness 
(UUB) of the tracking error and weight estimates is shown. The 
effectiveness of the controller is evaluated on a two-link robotic 
arm system. 

I. INTRODUCTION 
In the literature, there are many approaches proposed for 

designing stable controllers for nonlinear systems. However, 
stability is only a bare requirement for the controller design. 
A further consideration is the optimality based on a cost 
function which is used to determine the performance. Of the 
available methods, dynamic programming (DP) has been 
extensively applied to generate optimal control for nonlinear 
systems [1]-[2]. However, one of the drawbacks for DP is 
the computation cost with the increasing dimension of the 
nonlinear system, which is referred to as the “curse of 
dimensionality” [2]. Therefore, adaptive methods for DP 
(e.g., see [3]) have been developed recently. However, most 
of them are implemented either by offline using iterative 
schemes or require the nonlinear system dynamics to be 
known a priori. These requirements are often not practical 
for real-world systems. Additionally, stability of the closed-
loop system is not discussed.  

On the other hand, it is common to apply reinforcement 
learning for optimal controller design, since the cost 
function can be directly seen as a form of reinforcement 
signal. Of the available reinforcement learning schemes, the 
temporal difference (TD) learning method [4]-[5] has found 
many applications. However, to obtain a satisfactory 
reinforcement signal for each action, the approach must visit 
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each system state and apply each action often enough [6], 
and requires the system to be time-invariant, or stationary in 
the case of stochastic system. 

To overcome the iterative offline methodology for real-
time applications, several appealing online neural controller 
designs methods were introduced in [7]-[9]. They are also 
referred to as forward dynamic programming (FDP) or 
adaptive critic designs (ACD). The central theme of this 
approach is that the optimal control law and cost function 
are approximated by parametric structures, such as neural 
networks (NNs), which are trained over time along with the 
information that is fed back from the system response. 
Depending upon whether the NNs approximate the cost 
function or its derivative, or both are approximated by a 
critic structure, this family of ACD is classified into three 
categories: 1) heuristic dynamic programming (HDP); 2) 
dual heuristic dynamic programming (DHP); and 3) 
globalized dual heuristic dynamic programming (DHP).  It is 
important to note that when the action value is introduced as 
an additional input to the critic, then it will be referred to 
action dependent (AD) version. 

In [10], a new NN learning algorithm based on gradient 
descent rule is introduced without any convergence or 
stability proof. By contrast, Lyapunov analysis was derived 
in [11] and [12].  However, approach presented in [12] is 
specific to robotic systems in continuous-time whereas [10] 
and [11] employ simplified binary reward or cost function, 
which is a variant of the standard Bellman equation. 
In this paper, we are considering NNs for the control of 
nonlinear discrete systems with quadratic-performance index 
as the cost function. The entire system consists of two NNs:  
an action NN to derive the optimal (or near optimal) control 
signal to track not only the desired system output but also to 
minimize the long-term cost function; an adaptive critic NN 
to approximate the long-term cost function and to tune the 
action NN weights. Since the control signal is not used in 
the critic NN as an additional input, our approach could be 
seen as a HDP approach.  

Besides addressing optimization, contributions of this 
paper include: 1) the demonstration of the UUB of the 
overall system is shown even in the presence of NN 
approximation errors and bounded unknown disturbances 
unlike in the existing adaptive critic works where the 
convergence is given under ideal circumstances; 2) the NN 
weights are tuned online instead of offline; and 3) the 
proposed approach uses the standard Bellman equation and 
not a variant of the Bellman equation as in [11]. 
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II. BACKGROUND 
In this paper, we consider the following stabilizable 

nonlinear affine system, given in the form 
 0( 1) ( ( ), ( )) ( ( )) ( ( )) ( ) ( )x k f x k u k f x k g x k u k d k+ = = + +  (1) 

with the state [ ]1 2( ) ( ), ( ), , ( ) T n
nx k x k x k x k R= ⋅⋅⋅ ∈  at time 

instant k. ( ( )) nf x k R∈  is a unknown nonlinear function 
vector, and ( ( )) n ng x k R ×∈  is a matrix of unknown nonlinear 
functions, ( ) nu k R∈  is the control input vector and 

( ) nd k R∈  is the unknown but bounded disturbance vector, 

whose bound is assumed to be a known constant, 
( ) md k d≤ . Here  stands for the Frobenius norm [13], 

which will be used through out this paper. It is also assumed 
that the state vector ( )x k  is available. 
Assumption 1: Let the diagonal matrix ( ( )) n ng x k R ×∈  be a 
positive definite matrix for each ( ) nx k R∈ , with min ,g  

maxg R+∈  represent the minimum and maximum 
eigenvalues of ( ( ))g x k  respectively, such that 

min max0 g g< ≤ . 
The long-term cost function is defined as 

  0

0

( ) ( ( ), ) ( )

[ ( ( )) ( ) ( )]

i

i t

i T

i t

J k J x k u r k i

q x k i u k i Ru k i

γ

γ

∞

=

∞

=

= = +

= + + + +

∑

∑

     (2) 

where ( )J k  stands for ( ( ), )J x k u  for simplicity, and u  is a 
control policy. As observed from (2), the long-term cost 
function is the discounted sum of the immediate cost 
function or Lagrangian 

 ( ) ( ( )) ( ) ( )
( ( ) ( )) ( ( ) ( )) ( ) ( )

T

T T
d d

r k q x k u k Ru k
x k x k Q x k x k u k Ru k

= +

= − − +
(3) 

where R and Q are positive definite matrices and 
 (0 1)γ γ≤ ≤  is the discount factor for the infinite-horizon 

problem. In this paper, we are using a widely used standard 
quadratic cost function defined based on the tracking error 

( )e k , which will be defined later in contrast with [10]. The 

immediate cost function ( )r k  can be viewed as the system 
performance index for the current step. 

The basic idea in adaptive critic or reinforcement learning 
design is to approximate the long-term cost function J (or its 
derivative, or both), and generate the control signal 
minimizing the cost. By using a learning algorithm, the 
approximator will converge to the optimal cost function and 
the controller will converge to the optimal controller 
correspondingly. As a matter of fact, for an optimal control 
law, which can be expressed as *( ) *( ( ))u k u x k= , the 
optimal long-term cost function can be written alternatively 
as *( ) *( ( ), * ( ( ))) *( ( ))J k J x k u x k J x k= = , which is just a 
function of the current state [14]. 
Assumption 2: The optimal cost function *( )J k  is finite and 

bounded over the compact set nS R⊂  by 
mJ . 

III. ONLINE REINFORCEMENT LEARNING CONTROLLER 
DESIGN 

For the purpose of this paper, our objective is to design an 
online reinforcement learning NN controller for the system 
(1) such that 1) all the signals in the closed-loop system 
remain UUB; 2) the state ( )x k  follows a desired trajectory 

( ) n
dx k R∈ ; and 3) the long-term cost function (2) is 

minimized so that a near optimal control input can be 
generated. Here, the “online” means the learning of the 
controller takes place “in real-time” by interacting with the 
plant, instead of in an offline manner. 

The block diagram of the proposed controller is shown in 
Fig. 1 where the action NN is providing a near optimal 
control signal to the plant while the critic NN approximates 
the long-term cost function. The learning of the two NNs is 
performed online without any offline learning phase. 

( )Ĵ k

1z− ( )ˆ 1J k −

 
Fig. 1. Online neural dynamic programming based controller structure. 

 
In our controller architecture, we consider the action and 

the critic NN having two layers. The output of the NN can 
be given by ( )T TY W V Xφ= , where V  and W  are the 
hidden layer and output layer weights respectively, and X  
is the input. The hidden layer nodes is denoted as 2N . 

A general function 3( ) ( )Nf x C S∈  can be written as 
 ( ) ( ) ( )T Tf x W V x xφ ε= +                      (4) 
with ( )xε  a NN functional reconstruction error vector. In 
our design, V  is selected initially at random and held fixed 
during learning. It is demonstrated in [15] that if the hidden 
layer weights, V , are chosen initially at random and kept 
constant and if 

2N  is sufficiently large, the NN 

approximation error ( )xε  can be made arbitrarily small 
since the activation function vector forms a basis.  
Furthermore, in the proposed adaptive controller, the 
persistence of excitation (PE) condition is relaxed. Next we 
present the controller design. Before we proceed, the 
following mild assumption is needed. 
Assumption 3: The desired trajectory of the system states, 

( )dx k , is a smooth bounded function over the compact 

subset of nR . 
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A. The Action NN Design 
The tracking error at instant k is defined as 

                              ( ) ( ) ( )de k x k x k= −                            (5) 
Then future value of the tracking error using system 
dynamics from (1) can be rewritten as 
     ( 1) ( ( )) ( ( )) ( ) ( ) ( 1)de k f x k g x k u k d k x k+ = + + − +    (6) 
The desired control signal can be given by 
 1

1( ) ( ( ))( ( ( ) ( 1) ( ))d du k g x k f x k x k l e k−= − + + +     (7) 

where 1
n nl R ×∈  is a design matrix selected such that the 

tracking error, ( )e k , is converging to zero. 

Since both of ( ( ))f x k  and ( ( ))g x k  are unknown 
smooth nonlinear functions, the desired feedback control 

( )du k  cannot be implemented directly. Instead, an action 
NN is employed to generate the control signal. From (7) and 
considering Assumption 1 and 2, the desired control signal 
can be approximated as 
 ( ) ( ( )) ( ( )) ( ) ( )T T T

d a a a a a a au k w v s k s k w k kφ ε φ ε= + = +      (8) 

where 2( ) ( ), ( )
TT T ns k x k e k R⎡ ⎤= ∈⎣ ⎦  is the action NN input 

vector. The action NN consists of two layers, and 
an n

aw R ×∈  and 2 an n
av R ×∈  denote the desired weights of the 

output and hidden layer respectively with ( ) ( ( ))a ak s kε ε=  
is the action NN approximation error, and 

an  is the number 

of the neurons in the hidden layer. Since av  is fixed, for 
simplicity purpose, the hidden layer activation function 
vector 2( ( )) nT

a av s k Rφ ∈  is denoted as ( )a kφ . 
Considering the fact that the desired weights of the action 

NN are unknown, the actual NN weights have to be trained 
online and its actual output can be expressed as 
 ˆ ˆ( ) ( ) ( ( )) ( ) ( )T T T

a a a a au k w k v s k w k kφ φ= =               (9) 
where ˆ ( ) an n

aw k R ×∈  is the actual weight matrix of the output 
layer at instant k. 

Using the action NN output as the control signal, and 
substituting (8) and (9) into (6) yields 

1

1

1

( 1) ( ( )) ( ( )) ( ) ( ) ( 1)
( ) ( ( ))( ( ) ( )) ( )

( ) ( ( ))( ( ) ( ) ( )) ( )
( ) ( ( )) ( ) ( )

d

d
T
a a a

a a

e k f x k g x k v k d k x k
l e k g x k v k v k d k

l e k g x k w k k k d k
l e k g x k k d k

φ ε
ζ

+ = + + − +
= + − +

= + − +
= + +

%

 (10) 

where 
 ˆ( ) ( )a a aw k w k w= −%                              (11) 

 ( ) ( ) ( )T
a a ak w k kζ φ= %                                 (12) 

 ( ) ( ( )) ( ) ( )a ad k g x k k d kε= − +                     (13) 
Thus, the closed-loop tracking error dynamics is 

expressed as 
  1( 1) ( ) ( ( )) ( ) ( )a ae k l e k g x k k d kζ+ = + +          (14) 
Next the critic NN design is introduced. 

B. The Critic NN Design 
As stated above, a near optimal controller should be able 

to stabilize the closed-loop system by minimizing the cost 
function. In this paper, a critic NN is employed to 
approximate the long-term cost function ( )J k . Since the 

actual ( )J k  is unavailable for us at the kth time instant in an 

online learning framework, the critic NN is tuned online in 
order to converge to the actual ( )J k . 

First, the prediction error of the critic or the Bellman error 
[10] is defined as  
 ˆ ˆ( ) ( ) [ ( 1) ( )]ce k J k J k r kγ= − − −             (15) 
where the subscript “c” stands for the “critic” and  
 ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T

c c c c cJ k w k v x k w k x kφ φ= =     (16) 

where ˆ( )J k R∈  is the critic NN output which is an 
approximation of ( )J k . In our design, the critic NN is also a 
two-layer NN, while 1ˆ ( ) cn

cw k R ×∈  and cn n
cv R ×∈  represent 

its actual weight matrix of the output and hidden layer 
respectively. The term cn  denotes the number of the 
neurons in the hidden layer. Similar to HDP, the system 
states ( ) nx k R∈  are selected as the critic NN input. The 
activation function vector of the hidden layer 

( ( )) cnT
c cv x k Rφ ∈  is denoted as ( )c kφ  for simplicity. 

Provided that enough number of the neurons in the hidden 
layer, the optimal long-term cost function *( )J k  can be 
approximated by the critic NN with arbitrarily small 
approximation error ( )c kε , 

 *( ) ( ( )) ( ( )) ( ) ( )T T T
c c c c c c cJ k w v x k x k w k kφ ε φ ε= + = + (17) 

Similarly, the critic NN weight estimation error can be 
defined as 
 ˆ( ) ( )c c cw k w k w= −%                          (18) 
where the approximation error is given by 
 ( ) ( ) ( )T

c c ck w k kζ φ= %                          (19) 
Thus, we have  

       
ˆ ˆ( ) ( ) ( 1) ( )

( ) *( ) ( 1) *( 1)
( ) ( ) ( 1)

c

c c

c c

e k J k J k r k
k J k k J k

r k k k

γ
γζ γ ζ

ε ε

= − − +
= + − − − −
+ − + −

 (20) 

Next we discuss the weight tuning algorithms for critic and 
action NNs. 

C. Weight Updating for the Critic NN 
Following the discussion from the last section, the 

objective function to be minimized by the critic NN can be 
defined as a quadratic function of tracking errors as 
 2( ) ( ) ( ) 2 ( ) 2T

c c c cE k e k e k e k= =               (21) 
Using a standard gradient-based adaptation method, the 
weight updating algorithm for the critic NN is given by 
 ˆ ˆ ˆ( 1) ( ) ( )c c cw k w k w k+ = + Δ                  (22) 
where 
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 ( )ˆ ( )
ˆ ( )

c
c c

c

E kw k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥∂⎣ ⎦
                     (23) 

with c Rα ∈  is the adaptation gain. 
Combining (15), (16), (21) with (23), the critic NN 

weight updating rule can be obtained by using the chain rule 
as 

 
ˆ( ) ( ) ( ) ( )ˆ ( ) ˆˆ ˆ( ) ( ) ( )( )

( ) ( )

c c c
c c c

c c c

c c c

E k E k e k J kw k
w k e k w kJ k

k e k

α α

α γφ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂∂
= −

   (24) 

Thus, the critic NN weight updating algorithm is obtained as 
    ˆ ˆˆ ˆ( 1) ( ) ( )( ( ) ( ) ( 1))c c c cw k w k k J k r k J kα γφ γ+ = − + − −  (25) 

D. Weight Updating for the Action NN 
The basis for adapting the action NN is to track the 

desired trajectory and to lower the cost function. Therefore, 
the error for the action NN can be formed by using the 
functional estimation error ( )a kζ , and the error between the 
nominal desired long-term cost function ( )dJ k R∈  and the 
critic signal ˆ( )J k . Now we define the cost function vector as 

1ˆ ˆ ˆ( ) ( ) ( ) ... ( )
T nJ k J k J k J k R ×⎡ ⎤= ∈⎣ ⎦

. Let 

 ( )
( )

1

1

( ) ( ( )) ( ) ( ( )) ( ( ) ( ))

( ( )) ( ) ( ( )) ( )

a a d

a

e k g x k k g x k J k J k

g x k k g x k J k

ζ

ζ

−

−

= + −

= +

  (26) 

where ( )a kζ  is defined in (12). Given Assumption 1, we 
define ( ( )) n ng x k R ×∈  as the principle square root of the 
diagonal positive definite matrix ( ( ))g x k , i.e., 

( ( )) ( ( )) ( ( ))g x k g x k g x k× = , and ( )( ( )) ( ( ))
T

g x k g x k=  [11]. 

The desired long-term cost function ( )dJ k  is nominally 
defined and is considered to be zero (“0”), which means as 
low as possible. 

Hence, the weights of the action NN ˆ ( )aw k  are tuned to 
minimize the error  
 ( ) ( ) ( ) 2T

a a aE k e k e k=                            (27) 
Combining (10), (12), (14), (26), (27) and using the chain 

rule yields 

 

1

( ) ( ) ( ) ( )ˆ ( )
ˆ ˆ( ) ( ) ( ) ( )

( )( ( ( )) ( ) ( ))

( )( ( 1) ( ) ( ) ( ))

a a a a
a a a

a a a c

T
a a a

T
a a a

E k E k e k kw k
w k e k k w k

k g x k k J k

k e k l e k d k J k

ζα α
ζ

α φ ζ

α φ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂ ∂

= − +

= − + − − +

 (28) 

where a Rα +∈  is the adaptation gain of the action NN.  

However, ( )ad k  is typically unavailable, so as in the ideal 
case, we take it as zero and obtain the weight updating 
algorithm for the action NN as 

1ˆ ˆ( 1) ( ) ( )( ( 1) ( ) ( ))T
a a a aw k w k k e k l e k J kα φ+ = − + − +  (29) 

IV. MAIN THEORETIC RESULT 

Assumption 4: Let aw  and cw  be the unknown output 

layer target weights for the action and critic NNs 
respectively, and assume that they are upper bounded such 
that 
 a amw w≤ , and c cmw w≤                     (30) 

where amw R+∈  and cmw R+∈  represent the bounds on the 
unknown target weights. 
Fact 1: The activation functions for the action and critic 
NNs are bounded by known positive values, such that  
 ( ) ,  ( )a am c cmk kφ φ φ φ≤ ≤                     (31) 

where ,am cm Rφ φ +∈  is the upper bound for the activation 
functions. 
Assumption 5: The NN approximation errors ( )a kε  and 

( )c kε  are bounded above over the compact set nS R⊂  by 

amε  and cmε  [13]. 
Fact 2: With the Assumption 1, 4, the term ( )ad k  in (13) is 

bounded over the compact set nS R⊂  by 
 max( )a am am md k d g dε≤ = +             (32) 

Combining Assumption 1, 3 and 4, with Facts 1 and 2, the 
main result of this paper is introduced as following theorem. 
Theorem 1: Consider the system given by (1). Let the 
Assumptions 1 through 4 hold with the disturbance bound 

md  a known constant. Let the control input be provided by 
the action NN (9), with the critic NN (16). Further, let the 
weights of the action NN and the critic NN be tuned by (24) 
and (28) respectively. Then the tracking error ( )e k , and the 
NN weight estimates of the action and critic NNs, ˆ ( )aw k  
and ˆ ( )cw k  are UUB, with the bounds specifically given by 
(A.9) through (A.11) provided the controller design 
parameters are selected as 
(a)       2 2

min max0 ( )a a k g gα φ< <                    (33) 

(b)                       20 ( ) 1c c kα φ< <                             (34) 

(c)                            max0 3 3l< <                                (35) 

(d)                                   1 2γ >                           (36) 
where aα  and cα  are NN adaptation gains, and α  is 
employed to define the strategic utility function. 
Proof: See Appendix. 
Remark 1: The action and critic NN weights can be 
initialized at zero or random. This means that there is no 
explicit off-line learning phase needed. 
Remark 2: It is important to note that persistency of 
excitation condition is not utilized in order to show the 
boundedness of the NN weights and certainty equivalence 
principle is not employed. 

V. SIMULATION RESULTS 
In the implementation, the two-link planar robot arm 

system discussed in [13] is considered and the dynamics are 
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discretized as an affine nonlinear discrete-time system with 
standard zero-order-hold discretization techniques [14]. The 
continuous-time manipulator dynamics is as follows [13] 

 

2
2 2 1 1 2 2 2

2
2 2 1 2

1 1 1 1 2 1

1 1 2 2

2 cos cos (2 )sin
cos sin

cos cos( )
cos( )

q q q q q q q
q q q q

e q e q q
e q q

α β η β η η
β η β η

α η τ
η τ

+ + + ⎡ ⎤− +⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

&& & & &

&& &

 (37) 
where 2

1 2 1( )m m aα = + , 2
2 2m aβ = , 2 1 2m a aη = , 1 1e g a= , 

g = 9.8 2/m s , the acceleration of gravity; 1m , 2m denote 

point mass of the links at distal end; 1a , 2a represent length 

of the links; 1q , 2q  denote rotational angle of the joints; 

and 1τ , 2τ represent torque applied on the joints. 

In the controller designs, joint angles 1q  and 2q  are the 

states while 1τ  and 2τ  are the control inputs. To fulfill 
Assumption 1, we define the filtered tracking error as 
s e e= + Λ& , and use them as the system states with Λ  is a 
positive definite design parameter matrix. Common usage is 
to select Λ  diagonal with large positive entries. Then the 
filtered error s  is bounded as long as the controller 
guarantees that the tracking error e  is bounded. The filtered 
tracking error is also treated as the system state for the 
pendulum example in this paper.  The parameters used in 
our simulation are tabulated as below: 

 
TABLE 1 

SUMMARY OF PARAMETERS USED IN SIMULATION OF 2-LINK ROBOT ARM 

Parameter 1m
 2m

 1a
 2a

 
R  F  γ  

Value 0.8 2.3 1 1 2 1 0.5 

Parameter Λ  1l  cn  an  cα  aα   

Value 10 0.8 10 10 1×e-4 1×e-5  

 
In the simulation, the time step is set as 1 ms.  To be more 

realistic, the system was added with a uniformly distributed 
random disturbance. The bound of the disturbance 

md  is 
selected to be 0.1. The initial states of the system are set at 

1 2(0) (0) 10q q= = o . Our goal is to manipulate the robot arm 
back to zero condition with the lowest cost and simulation 
will be stopped when the rotational angles converge to zero.  

To obtain a measurement of the cost to accomplish the 
task, the simulation is run 100 times. At the beginning of 
each running instance, the NN weights are initialized 
randomly to exclude any information about the system 
obtained from previous learning. During the simulation, the 
cost function as defined in (2) is accumulated online for 10 
seconds with parameters shown in Table 1. The average cost 
of the 100 trials for the algorithm is calculated as 79.94.  For 
comparison, an adaptive NN controller is also implemented 
[13] with same parameters, and the average cost of 100 trial 

running is computed to be 129.92. From the simulation 
results (not shown), it can be noted that the performance of 
the proposed controller design is highly satisfactory. 

VI. CONCLUSIONS 
A novel reinforcement learning-based online neural 

controller is designed for affine nonlinear systems to deliver 
a desired performance under bounded disturbance. The 
proposed NN controller optimizes the long-term cost 
function by introducing a critic NN. Unlike the many 
applications where the controller is trained offline, the 
control input is updated in an online fashion. To guarantee 
that a control system must be stable all of the time, the UUB 
of the closed-loop tracking errors and NN weight estimates 
is verified by using Lyapunov analysis in the presence of 
bounded disturbances and approximation errors. 

APPENDIX 
Proof of Theorem 1: Define the Lyapunov candidate as 
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where i Rγ +∈ , 1, 2,3,4i =  are design parameters. Hence, 
the first difference of the Lyapunov function is given by 
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Set 2 2 2γ γ γ′ ′′= , where 
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At the same time, 
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where 

maxQ  and 
maxR  are the maximum eigenvalue of matrix 

Q  and R  respectively. 
                    ( )2 2

4 4 ( ) ( 1)c cL k kγ ζ ζΔ = − −  (A.6) 

Combining (A.1) - (A.6) yields 
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where 
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For the standard Lyapunov analysis, equation (A.7) and 
(A.8) implies that 0LΔ ≤  as long as the conditions (32) – 
(35) are satisfied and following holds 
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According to the Lyapunov extension theorem [13], the 
analysis above demonstrates that the tracking error ( )e k  

and the weights of the estimation errors are UUB. Further, 
the boundedness of ( )a kζ  and ( )c kζ  implies that the 

weight estimations ˆ ( )aw k  and ˆ ( )cw k  are also bounded. 
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