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Abstract— Power System Stabilizers (PSSs) provide stabilizing 
control signals to excitation systems to damp out inter-area and 
intra-area oscillations. The PSS must be optimally tuned to 
accommodate the variations in the system dynamics. Designing 
multiple optimal PSSs is a challenging task for researchers. This 
paper presents the comparison between two bio-inspired 
algorithms: a Small Population based Particle Swarm 
Optimization (SPPSO) and the Bacterial Foraging Algorithm 
(BFA) for the simultaneous tuning of a number of PSSs in a 
multi-machine power system. The cost function to be optimized 
by both algorithms takes into consideration the time domain 
transient responses. The effectiveness of the algorithms is 
evaluated and compared for damping the system oscillations 
during small and large disturbances.  The robustness of the 
optimized PSSs in terms of damping is shown using the Matrix 
Pencil analysis. 

Keywords – bacteria foraging, matrix pencil analysis, multi-
machine power system, particle swarm optimization, PSCAD, power 
system stabilizers, regeneration, small population. 

I.  INTRODUCTION  
Low frequency oscillations after a disturbance in a power 

system if not sufficiently damped, can drive the system to 
instability [1, 2]. The PSSs are used to damp out the system 
oscillations in the range of 0.2 Hz to 2.5 Hz by providing 
auxiliary feedback signals to the excitation system of the 
generators. These oscillations come into existence when rotors 
of the generators oscillate with respect to each other using 
transmission line between them to exchange power. These 
oscillations are usually inter-area and intra-area modes. 
Depending on their location in the system, some generators 
participate in only one oscillation mode, while others 
participate in more than one mode. 

The widely used conventional PSSs (CPSSs) are designed 
using theory of phase compensation in the frequency domain 
and are introduced as lead-lag compensators [2]. The power 
system being non-linear, fixed setting of the PSS degrades its 
performance. To have CPSS provide good damping over a   
wide range of operating range, its parameters need to be fine 
tuned in response to the oscillations to fit the system 
requirements to various modes oscillations. Several PSS design 
techniques have been reported in literature [3]-[9]. Local 
optimization techniques like gradient descent method [7], 
genetic algorithms [8], tabu search [9] and simulated annealing 

[10] are proposed to eliminate the drawbacks of conventional 
approach. These approaches failed to provide good 
optimization results when the function to be optimized is 
epistatic and the number of parameters involved is many. 
Efforts have also been taken to design an optimal neural 
network based PSS [11] but the computations involved in the 
adaptive critic design are intensive. 

To make the PSS design approach immune to the 
drawbacks mentioned above, two bio-inspired algorithms are 
presented, a Small Population based Particle Swarm 
Optimization (SPPSO) and the Bacterial Foraging Algorithm 
(BFA) [12]. These algorithms take into consideration the time 
domain transient responses in formulating the cost function to 
be optimized for the simultaneous multiple PSS design. The 
SPPSO and BFA algorithms based multiple optimal PSS 
designs are evaluated and compared on a two-area benchmark 
system in this paper [2].  The optimal PSSs are further 
compared in terms of the damping ratios for different frequency 
modes using the Matrix Pencil method. 

This paper is organized as follows: Section II presents the 
power system considered in this study; Section III describes the 
bio-inspired algorithms used; Section IV explains how the 
optimal parameters are determined by formulating the cost 
function; Section V discusses some of the simulation results 
obtained; Section VI highlights the benefits of the SPPSO over 
the BFA. Finally conclusions and future work are given in 
Section VII. 

II.   TWO AREA MULTIMACHINE POWER SYSTEM    
The two area power systems used in this study is simulated 

in the PSCAD/EMTDC environment which allows detailed 
representation of the power system dynamics. The two area 
power system shown in Fig. 1, consists of two fully 
symmetrically areas linked together by two transmission lines. 
Each area is equipped with two identical synchronous 
generators rated 20kV/900 MVA. All generators are equipped 
with identical speed governors and turbines, exciters and AVRs 
and PSSs. The loads in the two areas are such that Area 1 is 
exporting 413 MW to Area 2. This power network is 
specifically designed to study low frequency electromechanical 
oscillations in large interconnected power systems [2].  

 

The support from the National Science Foundation under the grant 
CAREER ECS #0348221 is gratefully acknowledged by the authors. 

 

1-4244-0365-0/06/$20.00 (c) 2006 IEEE

635



. 

~ ~

~ ~

1 5 6 7 8 9 10 11 3

2 4

G1 G3

G4G2

AREA 1 AREA 2

~ ~

~~ ~~

1 5 6 7 8 9 10 11 3

2 4

G1 G3

G4G2

AREA 1 AREA 2  
Figure 1. Two-area multi-machine power system. 

The PSSs provide additional input signal (Vpss) to the 
voltage regulators/excitation systems to damp out the power 
oscillations. Some commonly used input signals are rotor speed 
deviation (∆ωr), accelerating power and frequency. A typical 
PSS block diagram is shown in Fig. 2. It consists of an 
amplifier block of gain constant K, a block having a washout 
time constant Tw and two lead-lag compensators with time 
constants T1  to T4. The gain and the four lead-lag compensator 
time constants are to be selected for optimal performance over 
a wide range of operating conditions.  

 

 
 

 

Figure 2. Block diagram of power system stabilizer. 

III. BIO-INSPIRED ALGORITHMS 
The beauty of PSO lies in its ability to explore and exploit 

the search space by varying the parameters of the PSO. BFA 
due to its unique elimination-dispersal events can find 
favorable regions when the population involved is small. 
These unique features of the algorithms overcome the 
premature convergence problem and enhance the search 
capability. Hence, are suitable optimization tools for PSS 
design.  The two bio-inspired algorithms used in the multiple 
optimal PSS design are described below. 

A. Small Population based Particle Swarm 
Optimization(SPPSO) algorithms 
The SPPSO algorithm is derived from the Particle Swarm 

Optimization (PSO) algorithm. Particle swarm optimization is 
a form of evolutionary computation technique (a search 
method based on natural systems) developed by Kennedy and 
Eberhart [13]-[14]. PSO like GA is a population (swarm) 
based optimization tool. However, unlike in GA, individuals 
are not eliminated from the population from one generation to 
the next. One major difference between particle swarm and 
traditional evolutionary computation methods is that particles’ 
velocities are adjusted, while evolutionary individuals’ 
positions are acted upon; it is as if the “fate” is altered rather 
than the “state” of the particle swarm individuals [15]. 

The system initially has a population of random solutions. 

Each potential solution, called particle, is given a random 
velocity and is flown through the problem space. The particles 
have memory and each particle keeps track of previous best 
position and corresponding fitness. The previous best value is 
called the pbest of the particle and represented as pid. Thus, pid 
is related only to a particular particle i. The best value of all 
the particles’ pbests in the swarm is called the gbest and is 
represented as pgd. The basic concept of PSO technique lies in 
accelerating each particle towards its pid and the pgd locations 
at each time step. The amount of acceleration with respect to 
both pid and pgd locations is given random weighting.   

Fig. 3 illustrates briefly the concept of PSO, where xi 
 is 

current position, xi+1 is modified position, vini is initial 
velocity, vmod is modified velocity, vpid is velocity considering 
pid and vpgd is velocity considering pgd. The following steps 
explain the procedure in the standard PSO algorithm. 

(i) Initialize a population of particles with random positions 
and velocities in d dimensions of the problem space. 

(ii) For each particle, evaluate the desired optimization 
fitness function. 

(iii) Compare every particle’s fitness evaluation with its 
pbest value, pid. If current value is better than pid, then set pid 
value equal to the current value and the pid location equal to 
the current location in d-dimensional space. 

(iv) Compare the updated pbest values with the population’s 
previous gbest value. If any of pbest values is better than pgd, 
then update pgd and its parameters. 

(v) Compute the new velocities and positions of the particles 
according to (3) and (4) respectively. vid and xid represent the 
velocity and position of ith particle in dth dimension 
respectively and, rand1 and rand2 are two uniform random 
functions. 

 
      1 1 2 2( ) ( )id id id id gd idv w v c rand p x c rand p x= × + × − + × × −        (3) 

                              id id idx v x= +                                        (4) 
 

(vi) Repeat from step (ii) until a specified terminal condition 
is met, usually a sufficiently good fitness or a maximum 
number of iterations. 
 

Y
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Figure 3.  Movement of a PSO particle in two dimensions from one instant i to 

another instant i+1. 
 

The PSO parameters in (3) are: w is called the inertia 
weight, which controls the exploration and exploitation of the 
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search space. Local minima are avoided by small local 
neighborhood, but faster convergence is obtained by larger 
global neighborhood and in general, global neighborhood is 
preferred. Synchronous updates are more costly than the 
asynchronous updates.  

The velocity is restricted to a certain dynamic range. vmax is 
the maximum allowable velocity for the particles i.e. in case 
the velocity of the particle exceeds vmax then it is reduced to 
vmax. Thus, resolution and fitness of search depends on vmax. If 
vmax is too high, then particles will move beyond good solution 
and if vmax is too low, then particles will be trapped in local 
minima. c1 and c2 termed as cognition and social components 
respectively are the acceleration constants which changes the 
velocity of a particle towards pid and pgd (generally somewhere 
between pid and pgd). Velocity determines the tension in the 
system. A swarm of particles can be used locally or globally in 
a search space.  In the local version of the PSO, the pid  is 
replaced by the lid and the entire procedure is same. 

 The SPPSO is an enhanced version of the classical PSO.      
This algorithm introduces the concept of regeneration to give 
particles the ability to keep carrying out the search despite a 
small population. The particles are regenerated after every N 
iterations retaining their previous gbest (pgd) and pbest (pid) fitness 
values. Randomizing the position and velocities of each 
particle every N iteration aids the particle in avoiding local 
minima and find global minimum. The regeneration concept 
reduces the number of evaluations and each evaluation is less 
computational intensive compared to the standard PSO 
algorithm. 

B. Bacterial Foraging Algorithm (BFA) 
Natural selection tends to eliminate animals with poor 

foraging strategies (methods for locating, handling and 
ingesting food) and favor the propagation of genes of those 
animals that have successful foraging strategies. Species who 
have better food searching ability are capable of enjoying 
reproductive success and the ones with poor search ability are 
either eliminated or reshaped. The proposed algorithm mimics 
the foraging behavior of E. coli present in our intestines. It is 
categorized into four processes: Chemotaxis, Swarming, 
Reproduction and Elimination [12]. 

a) Chemotaxis: In this process the bacteria climbs the 
nutrient concentration, avoid noxious substances, and search 
for way out of neutral media. The bacterium usually takes a 
tumble followed by a tumble or a tumble followed by a run. For 
Nc number of chemotactic steps the direction of movement after 
a tumble is given by: 

             )()(),,(),,1( jiClkjlkji φθθ ×+=+                    (5) 

where 

C(i) is the step size taken in direction of the tumble. 

j is the index for the chemotactic step taken. 

k is the index for the number of reproduction step. 

l is the index for the number of elimination-dispersal event. 

)( jφ  is the unit length random direction taken at each step.  

     If the cost at θi(j+1,k,l) is better than the cost at θi(j,k,l)  then 
the bacterium takes another step of size C(i) in that direction. 
This process will be continued until the number of steps taken 
is not greater than Ns.   

b) Swarming: The bacteria in times of stresses release 
attractants to signal bacteria to swarm together. It however also 
releases a repellant to signal others to be at a minimum distance 
from it.  Thus all of them will have a cell to cell attraction via 
attractant and cell to cell repulsion via repellant.  The equation 
involved in the process is: 

∑ ∑

∑ ∑

∑

= =

= =

=

−−+

−−−=

=

S

i

p

m

i
mmrepellantrepellant

S

i

p

m

i
mmattractattract

S

i

ii
cccc

wh

wd

lkjJlkjPJ

1 1

2

1 1

2

1

)])(exp([

]))(exp([

)),,(,()),,(,(

θθ

θθ

θθθ

          (6) 

where 

dattarct= depth of the attractant . 

wattract=measure of the width of the attractant. 

hrepellant= dattract = height of the repellant effect. 

wrepellant=measure of the width of the repellant. 

p=Number of parameters to be optimized. 

S= Number of bacteria. 

The bacteria climbing on the nutrient hill can be represented 
by: 

                     ( , , , ) ( , )ccJ i j k l J Pθ+                                    (7) 

where J(i,j,k,l) is the cost function.  

c) Reproduction: After all the Nc chemotactic steps have been 
covered, a reproduction step takes place. The fitness 
(accumulated cost) of the bacteria are sorted in ascending 
order. Sr (Sr=S/2) bacteria having higher fitness die and the 
remaining Sr are allowed to split into two thus keeping the 
population size constant.  

d) Elimination-Dispersal: For each elimination-dispersal event 
each bacterium is eliminated with a probability of ped. A low 
value of Ned dictates that the algorithm will not rely on random 
elimination-dispersal events to try to find favorable regions. A 
high value increases computational complexity but allows 
bacteria to find favorable regions. The ped should not be large 
either or else it should lead to an exhaustive search. 

IV. OPTIMAL PSS DESIGN COST FUNCTION  
This section describes how the algorithms are used to 

determine the parameters of the PSSs of the four generating 
units in Fig. 1. For each of the PSS, the optimal parameters are 
determined by the SPPSO and the BFA, i.e. 20 parameters in 
total for the two area power system. The objective of the 
algorithms implemented is to maximize damping; this means 

637



minimize the overshoots and settling time in system 
oscillations. The time response of the four generators under 
transient conditions is minimized by the algorithms.  

The time response of the generators is used as the fitness 
function which is to be optimized by the bio-inspired 
algorithms so as to improve the performance of the system 
under transient conditions. The optimization is carried by 
subjecting the system to a 200ms short circuit and a 200ms line 
outage.   

The PSS parameters are determined by optimizing a multi-
objective objective function given by (8)  

        ∑∑
=

=
N

n

m

G
G

t

n

n
JJ

1

                         (8) 

where 

( ) ( )
2

0

/

0
1

( ) ( )
n

t tN P

G
j t t

J t A t t tω
∆

= =
= ∆ × × − × ∆∑ ∑                 (9) 

where  

NP is the number of operating points for which optimization is 
carried out . 

N is the number of faults for which the optimization is carried 
out.. 

A is the weighing factor  

m is the number of generators in the system 

∆ωGn is the speed deviation of the generator Gn. 

t0 is the time the fault is cleared . 

t2- t0  is the transient period considered for area calculation.  

∆t is the speed signal sampling period.  

t  is the simulation time in seconds. 

V. SIMULATION RESULTS 
The entire simulation is carried out in PSCAD/EMTDC 

/FORTRAN environment. The challenging task of tuning 
multiple PSSs using the bio-inspired algorithms in PSCAD is 
reported in this paper for the first time to the knowledge of the 
authors. The number of particles used in SPPSO is five and the 
number of bacteria in BFA is four.  

The performance of the PSS optimized by the bio-inspired 
algorithms is tested under small and large disturbances. Results 
are presented for four cases as described below. 

Case 1 
In this case there are no PSSs connected to the system.  

Case 2 
The PSSs parameters in this case are the Kundur’s 

parameters [16]. These parameters are as follows: K= 20.0, 
T1=0.05, T2=0.02s, T3=3.0s and T4=5.4s respectively. 

Case 3 
The PSSs parameters used in this case are the BFA 

optimized parameters. 

Case 4 
The parameters used in this case are the parameters 

optimized by using the SPPSO algorithm. 
 
The three tests are carried out and the responses are studied 

for the above mentioned cases in the two area power system 

A. Test 1 
A three phase short circuit test of 200ms duration is applied 

at bus 8 in Fig.1. The speed responses of the generators for 
Cases 1-4 are shown in Figs. 4 and 5.  

B. Test 2 
A 200ms line outage is applied between buses 8 and 9 of 

Fig.1. The speed responses of the generators for Cases 1-4 are 
shown in Figs. 6 and 7.  

C. Test 3 
A 100ms short circuit at bus 8 immediately followed by a 

100ms line outage between buses 8 and 9 in Fig.1.  The speed 
responses of the generators for Cases 1-4 are shown in Figs. 8 
and 9.  
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Figure 4.  Speed response of generator G1 for a 3 phase 200ms short circuit at 

applied at bus 8. 
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Figure 5.  Speed response of generator G3 for a 3 phase 200ms short circuit at 

applied at bus 8. 
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Figure 6.  Speed response of generator G2 for a 200ms line outage applied 

between buses 8 and 9. 
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Figure 7. Speed response of generator G3 for a 200ms line outage applied 

between buses 8 and 9. 
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Figure 8.  Speed response of G1 for 3 phase 100ms short circuit applied at bus 
8, followed by immediate 100ms line outage between buses 8 and 9. 
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Figure 9. Speed response of G1 for 3 phase 100ms short circuit applied at bus 8, 

followed by immediate 100ms line outage between buses 8 and 9. 

VI. EVALUATIONS OF DAMPING PERFORMANCE 
The number of fitness evaluations in case of BFA is more 

than that of SPPSO. In BFA, for each particle the fitness is 
evaluated a number of times. The number of processes 
involved makes the algorithm computationally intensive. In 
BFA, a fitness evaluation is done after all the chemotactic 
steps are covered, hence for each fitness evaluation S×Nc 
evaluations are needed. In the case of SPPSO, a single fitness 
evaluation is carried out after covering S particles. The number 
of factors involved in BFA makes it more dependent. These 
factors need to be properly chosen for the algorithm to perform 
better. This can be a serious handicap of the algorithm. The 
fitness of the best particle with the number of iterations is 
shown in Fig. 10.  It shows that the fitness of SPPSO 
converges faster and to a lower value compared to BFA.  
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Figure 10. Fitness of the best particle/bacteria. 

 
A brief comparison of the two algorithms based on the 

transient energy calculations is shown in Tables I- III. The 
transient energy of each of the generator for the first 5 seconds 
of the fault has been calculated using equation (10) 

     ∫
+

∆=
5 2

2
1 flt

flt
ii

t

t
iGenGen dtHTE ω                                   (10) 

where i is the generator number and tflt is the time the fault 
is triggered. Tables I, II and III present the normalized 
transient energies of generators G1, G2, G3 and G4 due to 
short circuit of 200ms at bus 8, line outage of 200ms between 
buses 8 and 9 and a short circuit and line outage combined 
respectively. The results show that the normalized transient 
energy is the least in Case 4 which are obtained when the 
system has SPPSO optimized PSSs. This corroborates the 
superiority of the SPPSO algorithm over the BFA for same 
operating conditions. Table IV shows the best parameters 
obtained by  the BFA and SPPSO algorithms over 10 trials.  
 

TABLE I.  NORMALIZED TRANSIENT ENERGY  DURING SHORT CIRCUIT 

Generator Case 1 Case 2 Case 3 Case 4 

G1 1.0 
 

0.6243 0.5279 0.5111 

G2 
 

1.0 0.6206 0.5247 0.5081 

G3 1.0 0.6073 0.5135 0.4972 

G4 1.0 0.6147 0.5198 0.5032 

 

 

 

TABLE II.  NORMALIZED TRANSIENT ENERGY DURING  LINE OUTAGE 

Generator Case 1 Case 2 Case 3 Case 4 

G1 1.0 
 

0.2588 0.2082 0.1792 

G2 
 

1.0 0.4451 0.3588 0.3083 

G3 1.0 0.0810 0.06519 0.0561 

G4 1.0 0.0969 0.0780 0.0671 

TABLE III.  NORMALIZED TRANSIENT ENERGY  DURING SHORT CIRCUIT AND 
LINE OUTAGE 

Generator Case 1 Case 2 Case 3 Case 4 

G1 1.0 
 

0.6363 0.5176 0.5061 

G2 
 

1.0 0.6472 0.5264 0.5148 

G3 1.0 0.677 0.5507 0.5385 

G4 1.0 0.6945 0.5650 0.5525 

 

TABLE IV.  TWO AREA POWER SYSTEM PSS PARAMETERS 

Generator BFA optimized 
parameters 

SPPSO optimized 
parameters  

G1 K = 30.0, T1 = 0.5, T2 

= 0.5, T3 = 10.0, T4 = 
13.61 

K = 30.0, T1 = 2.0, T2 = 
0.7097, T3 = 3.5332, T4  = 
13.995 

G2 K = 30.0, T1 = 0.5, T2 

= 0.5, T3 = 10.0, T4 = 
13.506 

K =23.4297, T1 = 2.0, T2 = 
0.398, T3 =  3.947, T4 =15.0 

G3 K = 30.0, T1 =  0.5, T2 

= 0.5, T3 = 10.0, T4 = 
13.7. 

K = 9.604, T1 = 0.9955, T2 =  
0.9711, T3 = 10.0, T4 = 
4.9313 

G4 K = 29.881, T1 =  0.5, 
T2 =  0.5, T3 =  10.0, T4 
= 15.0 

K = 30.0, T1 =  .2447, T2 =  
0.7836, T3 = 3.58, T4 = 
13.785 

VII. CONCLUSION  
The successful implementation of the two bio-inspired 

algorithms for simultaneous tuning of the multiple PSSs has 
been presented in this paper. Both of the algorithms give 
robust damping performance for various operating conditions 
and severity of disturbances. The SPPSO owing to its 
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regeneration concept is shown to have faster convergence and 
requires less number of fitness evaluations than the standard 
PSO. BFA owing to its unique processes involved can find the 
good optimal solutions. The SPPSO however is found to be 
superior to the BFA both in number of fitness evaluations, the 
convergence speed and damping performances.  

The paper has presented these algorithms as an optimization 
tool in the PSCAD/EMTDC environment. This is a first step 
towards online optimization and future work can involve 
developing these algorithms further for real-time optimization 
in power systems. 
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