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Abstract— FACTS devices have been shown to be powerful in 
damping power system oscillations caused by faults; however, in 
the multi machine control using FACTS, the control problem 
involves solving differential-algebraic equations of a power 
network which renders the available control schemes ineffective 
due to heuristic design and lack of know how to incorporate 
FACTS into the network. A method to generate nonlinear 
dynamic representation of a power system consisting of 
differential equations alone with universal power flow controller 
(UPFC) is introduced since differential equations are typically 
preferred for controller development. Subsequently, 
backstepping methodology is utilized to reduce the generator 
oscillations by using a FACTS device after a fault has occurred. 
Finally, we use neural networks to approximate the nonlinear 
network dynamics for controller design.  The net result is a 
representation that could be potentially utilized for studying the 
placement and number of FACTS devices as well as to design a 
better control scheme for FACTS given a power network. 
Simulation results justify theoretical conjectures. 

Keywords – Power System Control. Nonlinear Control, Neural 
Networks, FACTS.

I. INTRODUCTION

he analysis of a power network includes studying transient 
behavior after a fault has occurred, dynamic stability, and 
demonstration of an acceptable performance by a 

controller. In order to analyze the network performance with a 
controller, the power network with several generators is 
normally modeled using a combination of differential and 
algebraic equations. The differential equations represent 
generator angles and speeds whereas algebraic equations 
represent nodal active and reactive power balance 
relationships. Solving the differential-algebraic equations 
becomes extremely difficult during the transient analysis and 
control design particularly when the network is controlled by  
unified power flow control (UPFC) type FACTS devices since 
it is not clearly understood how to develop a representation 
when a power network is embedded with FACTS devices and 
lack of know-how to generate an algebraic free representation. 

1 Contact:sm347@mst.edu 
Research Supported in part by NSF ECCS#0624644. 

On the other hand, controller designs normally require a 
network given in the form of differential equations. 
 Several approaches have been introduced to mitigate this 
problem. Past work [1] has attempted to linearize the 
differential-algebraic equations to solve for the needed 
variables. Then linear control methods can be easily applied to 
the linear power system; however, an assumption is made such 
that the variables are in a neighborhood of an operating point.  
In addition, the placement and number of UPFC devices is 
accomplished heuristically.  In contrast, in other works [2-3], 
an infinite bus is assumed in order to apply nonlinear control 
schemes. However, if all the generators in the power system 
are to be included in the control, this assumption is no longer 
valid since this method assumes that only a small portion of 
power system is affected by disturbance.  

Nonlinear control of a multi-machine power system has 
been proposed using backstepping [4]. However, this approach 
omits FACTS devices and uses standard generator controllers 
such as steam and excitation. In [5-8], power system energy 
functions which include FACTS devices were used whereas 
the calculation of the derivatives of power system nodal 
voltages and phases that are needed for UPFC control is not 
obtained i.e. numerical differentiators or approximations have 
been utilized.  
 In this paper we address the following to overcome the 
above mentioned challenges. First, a new nonlinear dynamical 
representation of a power network with UPFC as a controller  
that is free of algebraic equations is introduced. This 
representation can be utilized to model a nonlinear power 
network with several FACTS devices. Second, the problem of 
multi-machine damping control using UPFC is addressed 
using nonlinear control schemes (i.e the case when the number 
of inputs is less than that of outputs) by utilizing the 
aforementioned dynamical model. Third, neural network 
approximation property is asserted to relax the need for 
knowing the power system topology (i.e Ybus) and to 
calculate the nonlinear uncertainties. 

Here we have obtained a nonlinear state space 
representation of power network dynamics which is useful for 
power network transient analysis as well as control design. 
Our approach contains obtaining a set of nonlinear dynamical 
representation using the swing and nodal power balance 
equations. The advantage of this approach is that no algebraic 
equations are involved in the control design while retaining 
nonlinear behavior. In this approach, we use the power system 
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classical model where generators’ internal voltages are 
constant; whereas, the rotor angels are time varying variables. 
The state variables in the differential equations are the 
generator angles and speeds as well as the nodal voltages and 
phase angles of the power network. Then, a nonlinear control 
scheme is developed to stabilize and control the power 
network subject to a disturbance. Finally, we have deployed 
universal approximation property of neural networks to 
approximate the power system uncertainties and relaxed the 
need for complex calculations and a prori knowledge of the 
uncertainties. 
 This paper is organized as follows. First the power system 
differential-algebraic equations are reviewed in Section II. 
Then in Section III and IV power system dynamic equations 
are derived. Control strategy is introduced in Section V and 
finally neural network implementation is shown in Section VI. 

II. POWER SYSTEM DIFFERENTIAL-ALGEBRAIC MODEL

The classical generator representation has been found to be 
sufficient for stability analysis. The advantage of this model is 
that the mechanical rotor angle deviation with respect to the 
synchronous reference frame is directly equivalent to the 
electrical angle and yields the equivalent circuit known as the 
voltage behind the transient reactance model [5]. Also, for 
simplicity of development, the resistance of power network 
lines is ignored. By ignoring friction term, a set of dynamic 
equations for describing rotor motion in a multi machine 
power system is described by 

niVEBPM niiniginiimiii
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+++ ψδω
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where iδ  is the rotor angle of the i th machine, iω  is the 

angular speed, 0ω  is the synchronous angular speed, B
represents the admittance matrix, giE  is the i th machine  
internal voltage, n  is the number of generators in the power 
system, 0/2 ωHMi = is the i th machine inertia, miP is the 

mechanical power, and niV +  and ni+ψ  are the generator bus 
voltage and phase angle, respectively, according to Fig. 1. 
Also, we define N to be the number of non-generator buses in 
the power system. 

For stability analysis, it is more convenient to represent the 
dynamical equations (1) in the Center of Inertia (COI) 
coordinates, which yield the following   
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LiP being the active load at each bus. 

Fig.1-Power System
The nodal voltages and phase angles of all the power 

system buses are constrained by the following set of algebraic 
equations. 
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where LiP  and LiQ are the active and reactive loads on the 
i th bus. Also, we define niii ≤≤= 1;δψ

III. NEW DYNAMIC REPRESENTATION OF POWER NETWORKS

Equation (2) together with (3) is referred to as the power 
system equations which typically are differential-algebraic set 
of equations. Usually, a controller design in a differential-
algebraic environment is difficult to attempt, thus we need to 
substitute the set of equations (3) with a more appropriate one. 
One way to have a pure dynamical system is to take derivative 
of equations (3) to obtain iV  and iψ  terms. Thus, we have 
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Solving equations (4) and (5) for iV  and iψ , we obtain a new 
set of dynamic equations as  
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where  
[ ]TNnnn VVVV +++= 21 , [ ]TNnnn +++= ψψψψ 21

, and 
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LiP and LiQ to be constant, we obtain  
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IV. UPFC AS A NONLINEAR CONTROLLER

In the proposed effort, the UPFC is connected between two 
power system buses to reduce the system oscillations after a 
fault occurs.  As illustrated in Fig. 2a, the UPFC shunt 
transformer is connected to bus nt +  and the series 
transformer is connected between buses nt + and nh + . The 
effect of the UPFC on the power system can be represented as 
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injected powers to the connecting buses [9] as shown in Fig. 
2b. 

a.            b. 
Fig.2  a)UPFC connected between two network nodes; b) Injected powers 

to the connected buses 
The injected active and reactive powers are in turn equal to 
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where )( θψ +∠= +ntbb VV  is the voltage produced by the 
series transformer and can be assumed to be a function of 
time.  Thus, the power flow equation at buses nt +  and 

nh + can be represented by (8) as 
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where θγ cosbV= , θμ sinbV= , and OLDP  and OLDQ
represent the left hand side of equations (3) i.e. ii SP POLD =
and ii SQ QOLD = for nti += and nhi += .

By taking derivative of (8) certain new terms such as (9a) 
and (9b) will be added to the left hand side of (4), on the buses 

nt +  and nh + .
At bus nt + , we get 
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At bus nh + , we get 
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Similarly, terms are added to the left hand side of (5) at buses  

nt +  and nh + .
At bus nt + , we get  
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At bus nh + , we get 

))](cos()sin([
)]sin()cos([

,

,

nhntnhntnhntnhnhnt

nhnhntnhntnhnt

VB
VB

+++++++++

+++++++

−−−−−−
−−−−

ψψψψμψψγ
ψψμψψγ

)]sin()cos([, nhntnhntnhnhnt VB +++++++ −−−− ψψμψψγ    (10b) 
Following the same procedure as in the previous section 
reveals that with changing some of the entries of 
matrices A , B , D , and E due to the addition of terms, new 

matrices A , B , D , and E are obtained; whereas, matrices C
and F remain unchanged. Consequently, (6) is changed as  
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where TT
Sxx ],,[ μγ= and vector G represents additional 

terms in (9) and (10) which are dependent on γ and μ . We 

define λ=1u  and μ=2u  and obtain the entries of vector 
NRG 2∈ as (12).  
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By solving (12) for V  andψ , we obtain the set of nonlinear 
equations  
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Equation (13) provides a nonlinear affine differential equation 
in terms of control inputs 1u and 2u . Once the control inputs 
are defined, we can easily obtain the UPFC control parameters 
γ and μ  by taking integral of the inputs. Including the swing 
equations (2), we obtain the total system dynamic equations as  
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Remark 1. In the case that multiple UPFCs are inserted as 
controllers in the network, equations (7) through (12) are 
repeated for each pair of UPFC buses jt and jh for all 

kj ≤≤1 , where k is the total number of UPFCs. 
Accordingly, the corresponding entries of matrices A , B , D ,
and E change following the same logic described for equation 
(11). Moreover, vector G has entries corresponding to each 
UPFC. Consequently, the resulting differential equation is 
affine in terms of all UPFC control inputs as shown next  
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where k is the number of UPFCs and 
T

kk
T
ST xx ],,,,,[ 11 μγμγ= . Also, we have 

N
jjjjTT Rggggff ∈432121 ,,,,, .
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V. CONTROLLER DESIGN

The conventional approach in damping oscillations in an 
interconnected power system deals with mitigating the inter 
area oscillation modes. Usually, the linear control approaches 
are utilized to achieve this goal [10]. In contrast, we target the 
generators’ stability in a nonlinear sense by defining an 
appropriate Lyapunov function.  

A close look at equation (14) reveals that back stepping 
method could be utilized to control the generators angles and 
speeds.  We restrict our design to the case with constant loads.  
Also, we assume that the mechanical power miP is a slow 
changing function of time compared to the other control 
variables; thus, 0≈miP . For the purpose of convenience we 
define the new state variables as  
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where 0iδ is the generator angle before fault occurs. Defining 
T

jjj uuu ][ 21= and using (15), we obtain ix3 as (17) for 
the case of multiple UPFCs. 
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where iTf 1 , iTf 2 , ijg1 , ijg2 , ijg3 , and ijg4 are the i th elements 

of 1Tf , 2Tf , jg1 , jg2 , jg3 , and jg4 , respectively. Also, k is 

the total number of UPFCs and j is the UPFC number. 
Single generator control. Here for simplicity and without 
loss of generality we design a stable controller for a one-
UPFC power system using back stepping design method. The 
design can be generalized to the case of multiple UPFC. From 
(2), (16) and (17) we construct the new set of state equations 
as
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where )(f)(f TTii xx = , )(a)(a 11 Tiji xx = , and )(a)(a 22 Tiji xx =
from (17) when there is only one UPFC in the power network.  
Introducing iK and iKZ1  as design constants, we have 
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Defining the following Lyapunov function 
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with iKatten  being a design constant, we can easily show that  

0L2 <i  provided that iiz ν=2  is chosen to be as (24).  
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Equation (21) along with iiz ν=2  and (24) provides a linear 

relationship between the inputs 1u , 2u , and nonlinear 
functions of states as 
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Remark 2. Equation (25) renders a relationship between 

1u and 2u . In order to identify these, we have to use another 
relationship between the mentioned inputs from other control 
requirements. For our simulations we have considered them 
equal, i.e. 21 uu = .
Multiple generator control. Due to the inconsistency that 
occurs in the calculation of the control inputs 1u and 2u for 
different generators, the scheme deployed for single generator 
control cannot be repeated for multiple generators to be 
controlled. Thus, for the case of multiple generator control, we 
propose the Lyapunov function in previous section as 

2
1

1
2

1

1
atten )(

2
1LL

−

=

−

=

+=
n

i
i

n

i
ii zK 1

             (26) 

where 1−n generators are chosen to be controlled. Since the 
n  generators are located in one interconnected power network 
the last one is normally forced to be controlled if the 
remaining 1−n are controlled. Taking derivative of (26), we 
have  
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Using the following equation 
−

=

−

=

=
1

1
i

1

1
2

n

i

n

i
iz ν                    (28) 

causes the second term in (27) to be as (29)  
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This in turn causes the Lyapunov function’s derivative (27) to 
become as (30) by choosing Z2Z2 KK i =  and 
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The derivative of the Lyapunov function can be made negative 
by choosing large Z2K and small attenK . This will lead to 
bounded stability of the power network with the bound shown 
below. 
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In order to obtain 1u and 2u in the case of multiple generator 
control equation (21) is changed as (32) by using (28) 
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VI. NN CONTROL

Although equation (32) provides the UPFC control inputs, 
finding the analytical and/or numerical nonlinear control 
inputs in practice (for fast computing) is an issue especially 
for large power systems. Moreover, in order to implement the 
control law, a complete knowledge of the total power system 
topology (i.e. Ybus.) is needed. However, by using neural 
network approximation property for nonlinear functions, we 
are able to approximate the nonlinear terms involved in the 
system dynamics, here known as unknown dynamics, thus 
relax the need for system description as well as burdensome 
function calculation. 
Without loss of generality we assume 21 uu = . Starting with 
set of equations (19), (20), and (21) for the i th generator in a 
single-UPFC power system, we have  
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where x  is the vector of the global parameters as defined 
earlier.
Assumption 1. Here we assume that )(2 xg i  is positive and 
bounded away from zero which is a valid practical 
assumption. This claim is supported by the fact that if 

)(a)(a)( 212 xxxg iii +=  changes sign, due to its continuity, it 
must pass through the origin for which case equation (25) 
encounters singularity tending to make T][ μγ infinitely 
large. By selecting a proper place for UPFC and setting 
appropriate design gains, we can avoid large control inputs. 
Multiple generator control. The entire Lyapunov function 
in this case is proposed as 
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which leads to the energy function derivative (35) 
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Here we define the control input 1u as
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where the second term is approximated by the neural network 
as εφ +)( xVW TT with Mεε ≤ being the approximation error. 

The weight matrix iV is randomly chosen and fixed during the 

entire control time and iW is the unknown ideal weight matrix 
to be determined [11]. Since the ideal weights are not known, 

the estimated weight matrix iŴ is utilized to approximate  1u .
Implementing (36) into (35), using (24), and assuming 

Z2Z2 KK i =  for 11 −≤≤ ni , we obtain the Lyapunov function’s 

derivative L  to be 
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Now we define the weight estimation matrix update law as 
(38) [11] resulting in the energy function derivative as (39). 
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The Lyapunov function derivative (39) can be made negative 
by choosing a large Z2K and small attenK .

Remark 3. Equation (34) needs the term −

=

1

1
2

n

i
ig to be bounded 

away from zero. If it is not zero, based on Assumption 1, this 
can be easily achieved when each iz2 is replaced with 

ii zK 2MZ2 in the energy function (34) where iKMZ2 is a proper 

modification factor. In our design we assume 1MZ2 =iK
for 11 −≤≤ ni .
Remark 4. We can see from (36) and (38) that the control and 
update laws are only functions of power system states, 
generators data, and loads. Although for the controller design 

0iδ is needed, this parameter can be achieved by knowing the 
present generator working conditions.  Thus, we relax the need 
for obtaining Ybus by using the neural network controller. 
This in turn relaxes a priori knowledge about network 
topology if the topology after the fault is cleared is same as 
that of the case prior to the fault. 

VII. SIMULATION RESULTS

For simulation, a 14-bus, 5-generator system is selected as 
shown in Fig. 3. The generator classical model is applied for 
simulating. All the generators have turbine speed controllers 
and the UPFC controller is implemented by means of UPFC 
active and reactive power injections at the UPFC terminals. 
The power system loads are all constant. The control objective 
is to damp the generators oscillations after the fault is cleared. 
In the system of Fig. 3 the UPFC is installed on bus 6 between 
buses 6 and 9.   
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Fig.3-The IEEE 14-bus, 5-generator power system
The line resistances are not ignored in this simulation. A three 
phase short circuit fault is occurred on bus 6 at 0=t and lasts 
for 0.2 seconds. The UPFC is activated after the fault is 
cleared and parameters γ and μ are initially set to zero. Here 
generators1 through 4 are chosen to be controlled and as a 
result fifth one is forced to be controlled automatically. The 
generators data is given as 
follows. ;5;5;1;1;5;51;006.0 54321 =====≤≤=′ HHHHHixdi

The simulations are accomplished as in the following cases.  
Case 1. All power system dynamics assumed to be available 
for the control design and equation (33) along with the 
assumption 21 uu =  are used to design the controller. The 

design gains are chosen as follows. attenK =0.0001, 1δK =.1, 

2δK =.2, 3δK =.1, 4δK =.1, 1Z1K through Z14K =.1, Z2K =500 
Case 2. Power system dynamics are assumed unavailable.  
Ten neurons are selected for the NN hidden layer and design 
gains are chosen as follows. attenK =1e-4, 1δK =.1, 2δK =.2, 

3δK & 4δK =.1, 1Z1K thru Z14K =.1, Z2K =500,α =1e-4, Γ =5e5
The simulations results show significant oscillation damping 
can be achieved for medium size power networks by using a 
single UPFC as a damping controller. The generator speeds 
decay; however, the generator angles as well as UPFC control 
parametersγ and μ do not go back to pre fault situations as the 
size of the power system increases. This can be explained by 
the fact that the total system has bounded stability. The 
simulations with the neural network controller show almost 
the same significance in damping the oscillations. Although 
the UPFC injected powers are a little larger in the case of 
neural network controller, they are in an acceptable range.   

VIII. CONCLUSIONS

We have introduced a general nonlinear dynamical model for 
power systems with UPFC as stabilizing controller using 
power system classical model. This model is free of algebraic 
equations, thus conventional nonlinear control strategies are 
applicable to stabilize the power system after fault occurrence. 
We have addressed a multi machine control scheme in which 
the number of control inputs is less than the number of 
outputs.  Furthermore, we have utilized neural networks 
approximation property to relax burdensome nonlinear 
function calculation and a priori knowledge about the power 
system topology needed for control design. Our analytical 
approach as well as our simulation results shows the 
effectiveness of our approach.  
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Fig.4-Generator speeds as compared to the case with turbine control only; 
Case 1 

Fig.5-Active power flow from bus 6 to 9; Case 1 

Fig.6-Generator speeds; Case 2 

Fig.7-Active power flow from bus 6 to 9; Case 2
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