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Abstract—This paper presents two optimal control strategies for 
a grid independent photovoltaic system consisting of a PV 
collector array, a storage battery, and loads (critical and non-
critical loads).  The first strategy is based on Action Dependent 
Heuristic Dynamic Programming (ADHDP), a model-free 
adaptive critic design (ACD) technique which optimizes the 
control performance based on a utility function.  ADHDP critic 
network is used in a PV system simulation study to train an 
action neural network (optimal neurocontroller) to provide 
optimal control for varying PV system output energy and 
loadings.  The second optimal control strategy is based on a fuzzy 
logic controller with its membership functions optimized using 
the particle swarm optimization. The emphasis of the optimal 
controllers is primarily to supply the critical base load at all 
times, thus requiring sufficient stored energy during times of less 
or no solar insolation.  Simulation results are presented to 
compare the performance of the proposed optimal controllers 
with the conventional priority control scheme.  Results show that 
the ADHDP based controller performs better than the optimized 
fuzzy controller, and the optimized fuzzy controller performs 
better than the standard PV-priority controller. 

Keywords-adaptive critic designs, battery storage, energy 
dispatch and management, fuzzy logic, neural networks, optimal 
control, particle swarm optimization, photovoltaic system, solar 

I.  INTRODUCTION 
With the continuing rise in the prices of fossil fuels and 

falling costs of alternative energy sources such as solar and 
wind power, alternative energy sources are an intriguing way 
to reduce energy costs for heating, cooling, and meeting the 
general electrical needs of a residence or a facility. Many 
alternative energy sources are available, such as wind, solar 
(both direct heating of water and electrical generation via 
photovoltaic (PV) arrays), and hydroelectric sources.  Of these 
sources, PV arrays are preferred because of low maintenance 
and high availability, as compared to wind or hydroelectric, 
and long life. 

The price of photovoltaic (PV) panels has fallen 
dramatically over the past 30 years [1] as improvements in 
technology and fabrication have been made.  The large 
increase in utility rates over the last few years is making the 
price of alternative energy even more appealing. Despite the 

fall in prices of PV systems, they are still quite expensive.  
The payback time for a typical PV system can be 30 years or 
more, depending on the size of the installation, type of 
equipment used, and the solar radiation available.  Fortunately, 
the life of the PV arrays themselves is around 30 years.  And 
since they have very few or no moving parts, maintenance 
requirements are very low.  

It is possible to reduce the overall costs of the PV system 
with an efficient control scheme determining when and how 
much of the electrical loads are to be supplied.  This will allow 
for more efficient use of the PV system components, and thus 
enable the designer to design a system with smaller and less 
costly PV arrays and batteries while still allowing the PV 
system to provide adequate coverage to the base (or critical) 
load. 

Traditionally, the control scheme that is used for PV 
systems is usually called a “PV-priority” control scheme [2].  
In this control scheme, the controller attempts to power the 
entire load (both critical and non-critical loads).  If there is any 
excess electrical energy, it charges the battery.  When there is 
insufficient PV energy to power the loads, then it will draw 
energy from the battery to meet as much as possible of the 
load demand.  

In order to improve upon the PV-priority scheme, an 
optimal controller can be designed such that the non-critical 
load is only powered when there is a sufficient amount of 
energy from the PV arrays.  In this way, an optimal controller 
can conserve battery energy during times of reduced solar 
radiation so that there will be energy available to power the 
critical load whenever required. An example of a critical load 
would be the refrigeration of vaccines and medication in 
remote locations without access to a reliable electrical grid. 

Alternative approaches to PV controllers using Q-learning, 
dynamic programming and fuzzy logic have been previously 
reported [2, 3, 4].  In this paper, two optimal PV controller 
strategies are presented.  The first uses an Adaptive Critic 
Designs (ACDs) [5] approach, while the second is based on 
fuzzy logic, optimized using Particle Swarm Optimization 
(PSO) [6].  The objectives of optimal control are threefold: 1) 
to maximize or fully dispatch the required energy to the 
critical loads at all times, 2) to dispatch energy to charge the 
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battery to enable it to power the critical load when the 
collector cannot meet the critical load demand, and 3) to 
dispatch energy to the non-critical loads while not 
compromising on the first two objectives. 

Adaptive critic designs are based on the combined concepts 
of approximate dynamic programming and reinforcement 
learning. Neural networks are used to implement adaptive 
critic architectures. The Action Dependent Heuristic Dynamic 
Programming (ADHDP) approach of the ACD family is used 
for the ACD optimal PV controller design [7, 8]. 

The fuzzy logic PV controller presented in this paper is the 
Mamdani fuzzy logic controller.  This type of controller 
contains a fuzzification phase, an inference engine, and a 
defuzzification phase.  The PSO algorithm is used to optimize 
the membership functions of the fuzzy logic controller so that 
its performance increased. 

Section II of this paper presents the PV model studied in 
this paper. Section III describes the standard PV-priority 
controller. Section IV describes the ADHDP optimal controller 
design. Section V presents the optimized fuzzy logic controller.  
Section VI presents the evaluation and comparison of the 
standard PV-priority controller, ADHDP optimal PV controller 
and the optimal fuzzy controller.  These controllers are 
compared against each other using Typical Meteorological 
Year (TMY) data from Caribou, Maine [9]. Finally, the 
conclusion is given in Section VII. 

II. PHOTOVOLTAIC  SYSTEM MODEL 
A PV system is simulated for this study.  For this 

simulation, a model of each component of the PV system is 
designed and built in Matlab.  The complete PV system 
consists of the PV array (solar cells), maximum power point 
tracker, battery, critical and non-critical loads, battery charge 
controller, inverter, and controller.  Since the emphasis is on 
optimizing the controller performance, it is assumed that the 
efficiency of some of the components (inverter, battery charge 
controller, and maximum power point tracker) is 100%.  The 
critical load consists of loads that should never be dropped 
(such as refrigeration and/or radio communication), and the 
non-critical load contains items which are non-essential (e.g. 
television). 

The solar cells are simulated with 11% efficiency.  
Normally, the efficiency of PV panels range from 6% to up to 
30% (with the high efficiency panels being used primarily in 
space applications because of their light weight and their 
ability to operate in higher radiation environments).  A rough 
equivalent to the PV arrays simulated in this paper is an array 
of 8 Kyocera KC200GT panels.  These panels are over 16% 
efficient and each panel outputs 200W during optimal 
conditions [10]. The minimum charge for the battery is taken 
to be 30% (this is consistent with standard deep cycle lead-
acid batteries). 

The PV system arrangement is shown in Fig. 1.  In this 
diagram, energy flow is in the direction of the arrows.  During 
this simulation, if the energy from the PV array is ever greater 
than the sum of the loads (both critical and non-critical) and 
there is enough energy to completely charge the battery, then 

optimal control is not used.  Instead, all loads are powered and 
the battery is completely charged.  This case occurs 
infrequently. 
 

Figure. 1.  PV system model (energy flow shown by arrow direction), shown 
with optimal controller bypass (for cases with over abundance of energy).   

III. PV-PRIORITY CONTROLLER 
The standard controller called the “PV-Priority” controller 

is a simple controller which always tries to meet the load 
demand (the critical and then the non-critical) before charging 
the battery.  At any one time, if there is not enough energy 
from the PV array to supply the loads, then the balance is 
drawn from the battery.  If instead there is an excess, then 
whatever is left over after supplying the loads is dispatched to 
the battery.  In this way, the controller will attempt to power 
all loads and charge the battery as best it can, without any 
considerations given to the time varying states of the system. 

This controller works well when there is sufficient PV 
energy.  However, when there is not sufficient PV energy, 
then the battery will not be fully recharged and the loads will 
be dropped. The weather and user loads are stochastic in 
nature; therefore there is no one definitive model at all times. 
Thus, it makes sense to look at intelligent model-free learning 
methods of controlling such a system. 

IV. ADHDP OPTIMAL CONTROLLER 
Intelligent controllers based on adaptive critic design can be 

well suited to areas without abundant sunlight.  Adaptive critic 
designs (ACDs) utilize neural networks and are capable of 
optimization over time in conditions of noise and uncertainty. 
A family of ACDs was proposed by Werbos [5] as a new 
optimization technique, combining the concepts of 
reinforcement learning and approximate dynamic 
programming.  With ACDs, for a given series of control 
actions that must be taken sequentially (and not knowing the 
effect of these actions until the end of the sequence), it is 
possible to design an optimal controller using the traditional 
supervised learning neural network.  
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The adaptive critic method determines an optimal control 
policy for a system by adapting two neural networks: an action 
network and a critic network.  The action network is 
responsible for controlling the system actions, while the critic 
network is responsible for critiquing the action network over 
time to optimize it.  The critic network learns to optimize the 
action network by approximating the Hamilton-Jacobi-
Bellman equation associated with optimal control theory. 

This process starts with a non-optimal or sub-optimal, 
arbitrarily chosen control by the action network.  The critic 
network then guides the action network toward an optimal 
solution at each successive adaptation. During the adaptations, 
neither of the networks needs any “information” of an optimal 
trajectory, only the desired cost needs to be known. 
Furthermore, this method determines optimal control policy 
for the entire range of initial conditions.  Unlike other neural-
controllers, it needs no external training [7]. 

The design ladder of ACDs includes three basic 
implementations, in the order of increasing power and 
complexity. These include: Heuristic Dynamic Programming 
(HDP), Dual Heuristic Programming (DHP) and Globalized 
Dual Heuristic Programming (GDHP).  The interrelationships 
between members of the ACD family have been generalized 
and explained in [8].  In this paper, an Action Dependent HDP 
(ADHDP) approach is chosen for the design of a PV optimal 
controller.  Action dependent adaptive critic designs do not 
need system models to develop the optimal control policy 
(action network output).  A block diagram of the ADHDP PV 
controller (action network) is shown below in Fig. 2. 
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Figure 2.  Structure of the ADHDP based optimal PV controller design. 

For this controller design, the utility function U(t) in Fig. 2 
is used to guide the critic network in training the action 
network and is given in (1). 

 

   
U( t ) ( 30 / 23 )* abs(1 ( ECL / CL ))
(15 / 23 )* abs( 1 ( EB /(( MBC CBC ) M * MBC )))
(13 / 23 )* abs(1 ( ENCL /( NCL M * MNCL )))

= − +
− − + +
− +

  (1) 

Where: 
ECL = Energy dispatched to the critical load 
CL = Critical load 
EB = Energy dispatched to the battery 
MBC = Maximum battery charge 
CBC = Current battery charge 
ENCL = Energy dispatched to the non-critical load 
NCL = Non critical load 

MNCL = Maximum non-critical load 
M = Multiplier (used to ensure divisor is non-zero; for this 
experiment, a value of 0.1 was used) 
 

In this case, the optimal ADHDP PV controller is 
developed to optimally supply energy to certain loads and/or 
charge the battery [11].  In this way, if there is a lack of solar 
energy available later on, then the battery charge can be used 
to power the loads later. 

The ADHDP controller takes as inputs the following 
signals: 
 Solar energy from the PV array as a fraction of total 

possible energy from the PV array 
 Critical load as a fraction of maximum critical load 
 Non-critical load as a fraction of maximum non-critical 

load 
 Current battery charge as a fraction of total charge. 

 
The ADHDP controller outputs are the following: 

 Energy dispatched to the critical load 
 Energy dispatched to the non-critical load 
 Energy dispatched to the battery (which can be positive or 

negative, depending on whether the battery is being 
charged or being used as a source) 

 
Additionally, the action network’s outputs are checked to 
ensure that no more energy is dispatched than is available at 
the inputs.  This is accomplished by performing the following 
series of actions immediately after obtaining the outputs from 
the action network: 
 
• Verify that the energy dispatched to each of the loads 

does not exceed the load demand and isn’t negative.  Also 
ensure that the energy to the battery is not higher than the 
energy collected by the PV arrays. 

• Verify that the battery is not being overcharged or over 
depleted. 

• The outputs, including the energy dispatched to the 
battery if it is being charged, are scaled by the ratio of 
energy inputs to outputs. 

• Another round of checks is made on the outputs in order 
to be certain that they are not greater than the load or less 
than zero. 

 
Finally, any difference in energy inputs and outputs is added 
to the energy dispatched to the battery, in case this balance is 
changed with the scaling or previous boundary checks.  Also 
during this step, the energy to the battery is checked to make 
sure that the battery is not overcharged. More details on the 
ADHDP PV controller are provided in [11]. 

V. OPTIMAL FUZZY LOGIC CONTROLLER 
The second optimal PV controller studied is a Mamdani 

type fuzzy controller.  The inputs and outputs of this controller 
are very similar to the ADHDP controller discussed earlier.   

Fuzzy controller inputs are the following: 
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 Solar energy from the PV array as a fraction of total 
possible energy from the PV array 

 Current battery charge as a fraction of total charge 
 Combined load as a fraction of maximum total load. 

 
The fuzzy controller outputs are identical to the ADHDP 

PV controller outputs. 

A. Fuzzy Logic Controller 
In any fuzzy logic system, the system takes a value and first 

passes it through a fuzzification process.  Then it is processed 
by an inference engine (or fuzzy rule set).  Finally, it goes 
through a defuzzification process.  This process is described in 
more detail in the following subsections, and an overall block 
diagram for the fuzzy logic controller is shown below in Fig. 
3. 

 
Figure 3.  Figure showing the fuzzy logic controller process. 

 
1) Fuzzification 

Fuzzification is a process that takes a real-world value and 
maps it to a fuzzy set based on a membership function.  The 
membership functions in this case are composed of many 
triangles but can be represented using other functions as well.  
An example of a membership function is below: 

 
Figure 4.  Membership functions example (for the “Load” input).  The 

highlighted function is responsible for assigning the membership to the “M” 
fuzzy value (“M” represents “medium”). 

 
When an input is being mapped to a fuzzy value, it is 

assigned a degree of membership (usually denoted by µ) for 
each membership function.  For example, using the 
membership function from the previous figure (Fig. 4), the 
value of “Load” may take on fuzzy values “Z”, “VS”, “S”, 
“M”, “L”,  and “VL” (each value representing “Zero”, “Very 
Small”, “Small”, “Medium”, “Large”, and “Very Large”, 
respectively).  In this case, if the load is 0.75, then the degrees 
of membership for each fuzzy value for the load are: 

 
µ(z)=0.0,  µ(vs)=0.0,  µ(s)=0.0,  µ(m)=0.25,  µ(l)=0.75,  
µ(vl)=0.0 
 

In the design of the PV controller, 3 input variables are 
used: PV Energy, Battery Charge, and Load (the sum of both 
the critical and non-critical load).  All three variables can take 
on the above listed values. 

2) Inference engine 
Once the degrees of membership are determined for a given 

input using the membership functions, these values are used to 
fire any number of the rules from the fuzzy rule set. The 
inference engine (or fuzzy rules set) is just a set of rules which 
maps input fuzzy values to output fuzzy values.  Given an 
input value (or values), the fuzzy rule returns an output value 
for the specified values.  For example, if the rule has a rule 
that says “If Load is Large, then set the Energy to Critical 
Load to Large”, then the output fuzzy variable “Energy to 
Critical Load” is set to “Large” if the input value “Load” is 
“Large”.  For this simulation, 216 rules are used.  This set of 
rules cover all possibilities of inputs and outputs. 

3) Defuzzification 
Defuzzification is a process that takes a fuzzy value and 

maps it to a real-world value.  Once an input value is fuzzified 
and passes through the inference engine, its real world output 
is found by using this defuzzification process.  In this case, 3 
output variables are used: Energy to Critical Load, Energy to 
Non-Critical Load, and Energy to the Battery.  In the first two 
cases, the variables can take on the following fuzzy values: 
“Z”, “VS”, “S”,  “M”, “L”, “VL” (each was described earlier);  
for the last case, it can take on fuzzy values “LD”, “SD”, “Z”, 
“SC, “LC” (meaning “Large Discharge”, “Small Discharge”, 
“Zero”, “Small Charge”, and “Large Charge”). 

In order to do this, all of the values obtained from the fuzzy 
rule set outputs are weighted according to the weights of their 
corresponding inputs.  Once these values are found, there are a 
variety of methods for resolving ambiguities among output 
values.  For this controller, the centroid method is used.  This 
method finds the center of mass of the weighted outputs from 
the fuzzy rule set and returns this position as the real world 
output.  Normally (as in this case), this value is multiplied by 
some value, as it is a normalized output.  

B. Particle Swarm Optimization 
In order to optimize the performance of this fuzzy 

controller, the membership functions are optimized using 
particle swarm optimization (PSO).  PSO is an optimization 
algorithm which uses properties of a swarm (such as a flock of 
birds, school of fish, or colony of ants) to find an optimal 
solution [6].  In this case, the swarm is represented by 30 
individuals (or particles) whose values change at each 
iteration.  The performance of each particle is measured at 
each position using a “fitness” function.  This function 
increases as the optimality of the solution increases; in this 
way, a particle with a higher fitness is considered to be a better 
fit than one with a lower fitness.  Also, a record of the best 
position (pbest) for each particle is kept, as well as the best 
overall position (gbest) for all particles.  The entire swarm 

Real World Inputs Real World Outputs 

Fuzzification Defuzzification Inference 
Engine 

Rule Base 

Fuzzy Logic Controller 

PV System 
System States X(t) Controller Actions A(t)
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then searches around the gbest solution and each of the pbest 
solutions, all the while trying to find even better solutions. 

This algorithm is ideal because of the nature of the 
structures being optimized.  Each membership function is 
made up of a pair of values, usually from 0 to 1.  These 
specify the width of the membership function.  The height is 
set to 1, and its corresponding value along the x axis is taken 
as the midpoint of the span. Particle swarm optimization has 
been used previously by one of the authors in conjunction with 
fuzzy logic controllers [12]. 

The fitness function used in the optimization of the 
membership functions is listed below as (2).  The weights used 
in this fitness function are based on the utility function 
developed for the ADHDP controller. 

 

)NCLS)23/13((

)ABC)23/15(()CLS)23/30((Fitness

∗+

∗+∗=
         (2) 

 
Where: 
CLS = Percentage of critical load satisfied 
ABC = Average battery charge 
NCLS = Percentage of non-critical load satisfied 
 
One major requirement of this algorithm is that the fitness 

function be somewhat smooth and continuous over the 
acceptable range of input vectors.  If this is not the case, then 
the swarm may not be able to find an optimal solution easily.  
In this investigation, the process is allowed to run until a 
suitable solution is found. 

VI. RESULTS 
After the PSO algorithm is done optimizing, a one year 

simulation of the PV system is carried out for the Caribou, 
Maine area.  These simulations use data from the TMY2 
database [9].  The solar profile (or global horizontal radiation) 
for a typical year for this region is illustrated in Fig. 5, while 
Fig. 6 shows the electrical energy collected from the PV array 
for a short time at the start of the year.  Fig. 7 shows the 
updated membership function for the “Load” input after 
undergoing PSO optimization. 

The PV energy produced by the solar array is then used to 
optimally power all (or part) of the loads, both critical and 
non-critical.  The sum of the loads is shown in Fig. 8, which 
shows how the controllers performed during the simulation for 
the Caribou area during the first 250 hours of the year.  It can 
be observed from this graph that the optimal controllers 
attempt to power the critical load at the expense of the non-
critical load.  Because of this, more of the critical load is met 
than the non-critical load.  The results of this simulation are 
listed in Table I.  In addition, a row called “Total Score” is 
added to Table I so that an objective comparison can made 
between the controllers.  This “Total Score” value is found by 
calculating the weighted sum of the results of each controller 
test.  These weights are derived from the corresponding 
coefficients in the utility function (1).  This result is identical 
to the value of the fitness function (2) evaluated for each 

solution.  Also, the non-optimized fuzzy controller results are 
included in this figure for reference purposes. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hrs)

G
lo

ba
l H

or
iz

on
ta

l R
ad

ia
tio

n 
(k

W
/m

2 )

Figure 5.  Solar profile for Caribou, Maine. 
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Figure 6.  PV generated electricity for Caribou, Maine during early January. 

 
Figure 7.  Optimized membership functions for the “Load” input.  All 

membership functions not shown have been optimized to be a very small 
triangle near zero. 
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Figure 8.  Sum of both critical and non-critical loads (solid black line) being 
satisfied by the PV-priority controller (dashed black line), the ADHDP based 
optimal controller (dashed red line), and the fuzzy optimal controller (dashed 

green line). 

TABLE I.  RESULTS OF ALL CONTROL STRATEGIES 

City: Caribou, Maine 
Controller: PV- 

Priority 
ADHDP Non-

optimized 
Fuzzy 
Logic 

Optimized 
Fuzzy 
Logic 

Critical 
Load 

Satisfied: 

84.22% 96.54% 93.04% 92.97% 

Non-
Critical 
Load 

Satisfied: 

77.21% 61.87% 32.16% 56.07% 

Average 
Battery 
Charge: 

63.87% 74.35% 76.58% 80.21% 

Total 
Score: 

1.951 2.094 1.895 2.053 

 
Fig. 9 shows the battery state of charge for Caribou, Maine 

for the period of late fall and early winter using the PV-
priority, ADHDP based, and optimized fuzzy logic controllers.  
This time period is shown because it is the most demanding 
situation of the year.  Fig. 10 shows the state of charge of the 
battery for the entire year using the same controllers.  Fig. 11 
shows the differences in battery charge for the optimized and 
non-optimized fuzzy logic controllers over the entire 
simulated year. 
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Figure 9.  State of charge of the battery using the PV-priority controller (black 
line), the ADHDP based optimal controller (red line), and the fuzzy optimal 

controller (green line) during the late fall and early winter. 
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Figure 10.  State of charge (for the entire year) of the battery using the PV-
priority controller (black line), the ADHDP based optimal controller (red 

line), and the fuzzy optimal controller (green line). 
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Figure 11.  State of charge (for the entire year) of the battery using both the 
optimized (green line) and non-optimized (blue line) fuzzy logic controllers. 
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These results show that the optimized fuzzy logic controller 

keeps a higher average battery charge than the non-optimized 
fuzzy logic controller, which also kept a higher average 
battery charge than the ADHDP controller.  However, the 
ADHDP controller is able to satisfy more of the critical and 
non-critical loads than both of the fuzzy logic controllers.  
This is evident in Table I, which summarizes the performance 
of each controller. 

For reference, the non-optimized and optimized 
membership functions are included below in Figs. 12 to 20.  If 
a membership function is not shown in the figure, then it has 
been optimized to the point of being a very small triangle 
(with nearly zero area) near one extreme of the figure.  Larger 
memberships will be on the right end while smaller ones will 
be on the left end. 

 

 
Figure 12.  Non-optimized membership functions for the 3 fuzzy inputs: “PV 

Energy”, “Battery State of Charge”, and “Load”. 
 

 
Figure. 13.  Non-optimized membership functions for the first 2 fuzzy outputs: 

“Energy to Critical Load” and “Energy to Non-Critical Load”. 
 

 
Figure. 14.  Non-optimized membership functions for the last fuzzy output: 

“Energy to the Battery”. 

 

 
Figure. 15.  Optimized membership functions for the first fuzzy input: “PV 

Energy”. 
 

 
Figure. 16.  Optimized membership functions for the second fuzzy input: 

“Battery State of Charge”. 
 

 
Figure. 17.  Optimized membership functions for the third fuzzy input: 

“Load”. 
 

 
Figure. 18.  Optimized membership functions for the first fuzzy output: 

“Energy to Critical Load”. 
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Figure. 19.  Optimized membership functions for the second fuzzy output: 

“Energy to Non-Critical Load”. 
 

 
Figure. 20.  Optimized membership functions for the third fuzzy output: 

“Energy to the Battery”. 
 

VII. CONCLUSIONS 
A new optimal controller utilizing fuzzy logic is designed 

and compared against the standard PV-priority controller as 
well as an ADHDP based optimal controller.  The results show 
that both optimal controllers are able to power the critical 
loads for a much longer time than the standard PV-priority 
controller, as well as keep the battery charged to a higher 
average charge than the PV-priority controller.   

The ADHDP controller is most likely able to satisfy more 
of the loads because of its ability to discount actions into the 
future, whereas the fuzzy logic controller does not.  This 
property gives the ADHDP controller the ability to keep the 
average battery charge higher than the PV-priority controller 
(to be available for use in times of lesser available PV energy 
in some possible future state), but still allows it to power much 
more of the critical load and to a lesser extent the non-critical 
load.  Not keeping the batteries fully charged at all times also 
allows the controller to capture more energy during the day in 
the summer months when the PV generated energy is higher, 
while still satisfying the non-critical loads.  As the winter 
months approach, it lessens the time that the non-critical load 
is powered so that it can conserve battery charge during times 
of lower available solar energy.  The optimized fuzzy 
controller does not act as dynamically and cannot maintain the 
loads for as long as the ADHDP controller, although it is much 
better than the PV-priority controller. 

Even while able to power the critical loads for a much 
longer time than the standard PV-priority controller and keep 
the battery charged to a higher average charge than the PV-
priority controller, the optimal controllers did fall short of the 
PV-priority controller when it came to powering the non-

critical loads.  In this case, the PV-priority controller was able 
to power more of the non-critical load, especially when 
comparing against the fuzzy based controller.  This is expected 
since both optimal controllers place a higher priority on 
powering the critical loads and keeping the battery charge 
higher.  In addition to being available for potentially powering 
the critical load at a later date, a battery which is not depleted 
as often will have a longer life span and lead to a lower total 
cost of ownership for the owner of the PV system. 

Future work will involve investigations to try to further 
optimize the optimal controllers to provide better performance.  
Specifically, the fuzzy controller will also have its rule set 
optimized for better control. 
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