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Dual Heuristic Programming Excitation Neurocontrol
for Generators in a Multimachine Power System

Ganesh Kumar Venayagamoorthy, Senior Member, IEEE, Ronald G. Harley, Fellow, IEEE, and
Donald C. Wunsch, Senior Member, IEEE

Abstract—The design of nonlinear optimal neurocontrollers
that replace the conventional automatic voltage regulators for
excitation control of turbogenerators in a multimachine power
system is presented in this paper. The neurocontroller design
is based on Dual Heuristic Programming (DHP), a powerful
adaptive critic technique. The feedback variables are completely
based on local measurements from the generators. Simulations
on a three-machine power system demonstrate that DHP-based
neurocontrol is much more effective than the conventional
proportional–integral–derivative control for improving dynamic
performance and stability of the power grid under small and
large disturbances. This paper also shows how to design optimal
multiple neurocontrollers for nonlinear systems, such as power
systems, without having to do continually online training of the
neural networks, thus avoiding risks of neural network instability.

Index Terms—Adaptive critics, artificial neural networks
(ANNs), generators, multimachine power systems, multiple non-
linear optimal neurocontrollers, power system stability, voltage
regulation.

I. INTRODUCTION

POWER SYSTEMS containing turbogenerators are
large-scale nonlinear systems. The traditional excitation

controllers for the generators are designed by linear control
theory based on a single-machine infinite-bus (SMIB) power
system model. These SMIB power system mathematical models
are linearized at specific operating points and then excitation
controllers are designed. The machine parameters change with
loading in a complex manner, resulting in different behavior at
different operating points and the controller which stabilizes
the system under specific operating conditions, may no longer
yield satisfactory results when there is a drastic change in the
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power system operating conditions and configurations. Conser-
vative designs are, therefore, traditionally used, particularly in
multimachine systems, to attempt satisfactory control over the
entire operating range of the power system.

In recent years, renewed interest has been shown in power
systems excitation control using nonlinear control theory, par-
ticularly to improve system transient stability [1], [2]. Instead
of using an approximate linear model, nonlinear models are
used and nonlinear feedback linearization techniques are em-
ployed for the generator models, thereby alleviating the oper-
ating point dependent nature of the linear designs. Using non-
linear controllers, generator transient stability can be improved
significantly. However, nonlinear controllers have a more com-
plicated structure and are difficult to implement relative to linear
controllers. In addition, feedback linearization methods require
exact system parameters to cancel the inherent system nonlin-
earities, and this contributes further to the complexity of the sta-
bility analysis. However, the use of artificial neural networks
(ANNs) as neurocontrollers offers a possibility to overcome this
problem.

Multilayer-perceptron (MLP)-type ANNs are able to iden-
tify/model time-varying single turbogenerator systems [3]
and, with continually online training, these models can track
the dynamics of the power system, thus yielding adaptive
identification. ANN controllers have been successfully imple-
mented on single turbogenerators using ANN identifiers and
indirect feedback control [4]. Adaptive critic designs which
yield nonlinear optimal controllers have also been applied
successfully to control generators in an SMIB power system
[5]. Moreover, ANN identification of turbogenerators in a
multimachine power system has also been reported [6], but not
yet applied to a controller.

This paper extends previous work by the authors and shows
the following.

• The design methodology of nonlinear optimal excitation
neurocontrollers based on Dual Heuristic Programming
(DHP) theory (a member of the adaptive critics family)
for multimachine power systems, to replace the traditional
automatic voltage regulators (AVRs) and which includes
the ANN identifier [6].

• These nonlinear optimal neurocontrollers can be designed
offline, avoiding the computational load of online learning
and the issues of neural network instability.

• The simulation and practical results on a three-machine
power system show that both voltage regulation and
system stability enhancement can be achieved with these

0093-9994/03$17.00 © 2003 IEEE
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Fig. 1. Three-machine (G1, G2, and G3) five-bus power system.

TABLE I
GENERATORSG1 AND G2 PARAMETERS

proposed neurocontrollers, regardless of the changes in
the system operating conditions and configurations.

• It is possible to design and implement multiple neurocon-
trollers controlling multiple generators simultaneously.

II. M ULTIMACHINE POWER SYSTEM

The three-machine five-bus power system in Fig. 1 is chosen,
to illustrate the effectiveness of adaptive critic-based neurocon-
trollers. This system is simulated because the controllers de-
signed in this paper will be implemented at the University of
Natal’s machines research laboratory in Durban, South Africa.

The laboratory power system consists of two generators, each
3 kW, 220 V, designed to have all their per-unit parameters, ex-
cept the field-winding resistance, the same as those normally
expected of a 1000-MW generator. The third machine is the in-
finite bus. The multimachine laboratory power system in Fig. 1
is simulated in the MATLAB/SIMULINK environment using
the Power System Blockset (PSB) [7]. Generators 1 and 2 are
each represented by a seventh-order model. There are three coils
on the -axis and two coils on the axis and the stator tran-
sient terms are not neglected. The parameters of the generators,
determined by the IEEE standards are given in Table I [8]. A
time-constant regulator is used on each generator to insert nega-
tive resistance in series with the field-winding circuit, in order to
reduce the actual field-winding resistance to the correct per-unit
value.

The conventional AVR and exciter combination transfer func-
tion block diagram is similar for both generators and is shown in

Fig. 2. Block diagram of the AVR and exciter combination of G1 and G2.

TABLE II
AVR AND EXCITER TIME CONSTANTS OFG1 AND G2

Fig. 2, and the time constants are given in Table II. The exciter
saturation factor is given by

(1)

, , , and are the time constants of the propor-
tional–integral–derivative (PID) voltage regulator compensator;

is the input filter time constant; is the exciter time con-
stant; is the AVR gain; is the exciter ceiling; and,

and are the AVR maximum and minimum ceilings.
A separately excited 5.6-kW dc motor is used as a prime

mover, called the microturbine, to drive each of the generators.
The torque–speed characteristic of the dc motor is controlled to
follow a family of rectangular hyperbola for different positions
of the steam valve, as would occur in a real typical high-pres-
sure (HP) turbine cylinder. The three low-pressure (LP) cylin-
ders’ inertia are represented by appropriately scaled flywheels.
The microturbine and the governor transfer function block dia-
gram is shown in Fig. 3, where is the turbine input power
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Fig. 3. Block diagram of the microturbine and governor combination of G1
and G2.

TABLE III
MICROTURBINE AND GOVERNORTIME CONSTANTS OFG1 AND G2

TABLE IV
OPERATING POINTS OFG1 AND G2

set point value, is the turbine output power, and is the
speed deviation. The turbine and governor time constants are
given in Table III.

The AVR and governor parameters, namely, the gain and time
constants , , , , , , , and , are fine
tuned for the first operating condition given in Table IV [9].

III. D ERIVATIVE ADAPTIVE-CRITICS-BASED

EXCITATION CONTROLLER

A. Background

Adaptive critic designs (ACDs) are neural network designs
capable of optimization over time under conditions of noise and
uncertainty. A family of ACDs was proposed by Werbos [10] as
a new optimization technique combining concepts of reinforce-
ment learning and approximate dynamic programming. For a
given series of control actions, that must be taken in sequence,
and not knowing the quality of these actions until the end of the
sequence, it is impossible to design an optimal controller using
traditional supervised ANN learning.

Dynamic programming prescribesa searchwhich tracksback-
ward from the final step, rejecting all suboptimal paths from any
given point to the finish, but retains all other possible trajecto-
ries in memory until the starting point is reached. However, many
paths which may be unimportant are nevertheless also retained
until the search is complete. The result is that the procedure is
too computationally demanding for most real problems. In su-
pervised learning, an ANN training algorithm utilizes a desired
output and, comparing it to the actual output, generates an error
term to allow learning. For an MLP-type ANN the backpropaga-
tion algorithm is typically used to get the necessary derivatives of
the error term with respect to the training parameters and/or the

inputs of the network. However, backpropagation can be linked
to reinforcement learning via a network called theCritic net-
work, which has certain desirable attributes.

Critic based methods remove the learning process one step
from the control network (traditionally called the “Action net-
work” or “actor” in ACD literature), so the desired trajectory or
control action information is not necessary. The Critic network
learns to approximate the cost-to-go or strategic utility func-
tion, and uses the output of an Action network as one of its in-
puts directly or indirectly. When the Critic network learns, back-
propagation of error signals is possible along its input pathway
from the Action network. To the backpropagation algorithm,
this input pathway looks like just another synaptic connection
that needs weight adjustment. Thus, no desired signal is needed.
All that is required is a desired cost functiongiven in (2)

(2)

where is a discount factor for finite horizon problems
, and is the utility function or local cost. Section IV

describes how to obtain the utility function for the excitation
neurocontroller design.

The Critic and Action networks, can be connected together di-
rectly (Action-dependent designs) or through an identification
model of a plant (Model-dependent designs). There are three
classes of implementations of ACDs called Heuristic Dynamic
Programming (HDP), DHP, and Globalized Dual Heuristic Dy-
namic Programming (GDHP), listed in order of increasing com-
plexity and power [11]. This paper presents the DHP, model-de-
pendent design, and compares its performance against the re-
sults obtained using conventional PID controllers. The DHP
Critic and Action neural networks are described below.

B. DHP Critic Neural Network

The Critic network is trained forward in time, which is of
great importance for real-time optimal control/operation. The
ability to foresee future cost and take preventive action ahead
of time is important in optimal controller designs. DHP has a
critic network which estimates the derivatives ofwith respect
to a vector of observables of the plant, . The Critic network
learns minimization of the following error measure over time:

(3)

where

(4)

where is a vector containing partial derivatives of
the scalar with respect to the components of the vector .
The partial derivatives can be obtained for example by back-
propagating through a neural network as described in Fig. 4.
DHP has an important advantage over HDP since its critic neural
network builds a representation for the derivatives ofdirectly
by being explicitly trained on them through
and . For instance, in the area of model-based con-
trol, as in the case of this paper, a pretrained Model neural
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Fig. 4. DHP Critic network training. This diagram shows the implementation of (6). The same Critic network is shown for two consecutive timest andt+1. First
and second backpropagation paths are shown by dashed lines and dashed–dotted lines, respectively. The output of the Critic network�(t+ 1) is backpropagated
through the Model from its outputs to its inputs, yielding the first term of (5) and@J(t + 1)=@A(t). The latter is backpropagated through the Action from its
output to its input forming the second term of (5). Backpropagation of the vector@U(t)=@A(t) through the Action results in a vector with components computed
as the last term of (6). The summation produces the error vectorE (t) for Critic network training.

network and well-defined and
exist. To adapt the Action neural network, only the derivatives

or are required, rather than the
function itself. However, the approximation of these deriva-

tives is already a direct output of the DHP Critic.
The DHP Critic network’s training is more complicated than

that of the HDP Critic since there is a need to take into account all
relevant pathways of backpropagation as shown in Fig. 4, where
the paths of derivatives and training of the Critic are depicted by
dashed lines. Details on the HDP Critic training are given in [5].

In DHP, application of the chain rule for derivatives of theth
output yields

(5)

where , and , are
the numbers of outputs of the Model and the Action networks,
respectively. By exploiting (5), each of components of the
vector from (4) is determined for theth output by (6)

(6)

The signals in Fig. 4, labeled with a path number, represent
the following.

1) Path 1 represents the outputs of the plant fed into the
Model neural network #2. These outputs are ,

and .
2) Path 2 represents the outputs of the Action neural net-

work fed into the Model neural network #2. These out-
puts are , , and .

3) Path 3 represents the outputs of the plant fed into the Ac-
tion neural network. These outputs are ,

, and .
4) Path 4 represents a backpropagated signal of the output

of the Critic neural network #2 through the Model neural
network with respect to path 1 inputs. The backpropa-
gated signal on path 4 is

in (5).
5) Path 5 represents a backpropagated signal of the output

of the Critic neural network #2 through the Model neural
network with respect to path 2 inputs. The backpropa-
gated signal on path 3 is

in (5).
6) Path 6 represents a backpropagation output of path 5

signal iv) above) with respect to path 3. The signal on
path 6 is

in (5).
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Fig. 5. Backpropagation ofU(t) through the Model neural network.

7) Path 7 is the sum of the path 4 and path 6 signals resulting
in , given in (5).

8) Path 8 is the backpropagated signal of the term
(Fig. 2) with respect to path 3 and is

in (6).
9) Path 9 is a product of the discount factorand the path

7 signal, resulting in term in
(6).

10) Path 10 represents the output of the Critic neural network
#1, .

11) Path 11 represents the term (Fig. 2).
12) Path 12 represents given 1 in (6) and is as fol-

lows:

Path path –path –path –path

The partial derivatives of the utility function
with respect to , and , and

, respectively, are obtained by backpropagating
the utility function, through the Model network as shown
in Fig. 5.

C. DHP Action Neural Network

The Action network is adapted in Fig. 6 by propagating
back through the Model to the Action. The goal of such

training is to minimize the sum of the derivatives of the local
cost and the total cost with respect to the output of
the Action network , which can be expressed by (7)

(7)

The error signal for the Action network training is, therefore,
given as follows:

(8)

The weights’ update expression [11], when applying backprop-
agation, is as follows:

(9)

where is a positive learning rate and are weights of
the DHP Action neural network. The word “Dual” is used to
describe the fact that the target outputs for the DHP Critic
training are calculated using backpropagation in a generalized
sense; more precisely, it does use dual subroutines (states and
co-states) to backpropagate derivatives through the Model
and Action neural networks, as shown in Fig. 4. The dual
subroutines and more explanations are found in [10] and [12].

IV. DERIVATION OF UTILITY FUNCTION

The utility function in (2) is designed based on a desired
response predictor which has the following characteristics.

1) It must be flexible enough to modify the performance of
the turbogenerator.

2) The desired response signal must ensure that the turbo-
generator is inherently stable at all times. In other words,
the predictor must be stable.

3) The desired response signal must incorporate the effects
of a power system stabilizer.

The optimal predictor is designed on the basis of guiding the
disturbed output variables, in this case the terminal voltage and
speed, of the turbogenerator to a desired steady operating point
or set point, in a step-by-step fashion. In other words, a desired
trace of outputs from to can be predicted, based on the
present and past-time values of the outputs. Optimal here refers
to predictions of the desired response for the turbogenerator and
ensuring its stability over a wide range of operating conditions.
The prediction equation of the optimal predictor is given in (10).

(10)

are chosen so that any disturbed output
variable always transfers toward the desired steady operating
point, that is, the optimal predictor is always globally asymp-
totically stable. is the value predicted for the next immediate
time step and can be either the terminal voltage deviation

or speed deviation .
In (10), it is assumed that each output variable of the optimal

predictor is a linear combination of the independently predicted
output variables of the dynamic system. The magnitude of the
coefficients, , determines the magnitude of the error signal
between the identifier output and the desired response signal (or
predictor) and, therefore, the magnitude of the error backprop-
agated to the controller to adapt its weights.

If the output is bounded for and

(11)

then a predictor can be designed which forces the turbogener-
ator, by means of the ANN controller, back to desired set points
[13]. The magnitude of the forcing signal depends on the coef-
ficients .

The conditions defined by (11) are necessary because it is
not possible to damp the turbogenerator to take up the required
setpoints if its outputs are unbounded. If (11) does not hold,
then the outputs of the turbogenerator will not return to their set
points after a disturbance. The fundamental assumption made
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Fig. 6. DHP Action network training. Backpropagation paths shown with dashed lines. The output of the Critic�(t+1) at time(t+1) is backpropagated through
the Model from its outputs to its inputs, and the resulting vector is multiplied by discount factor and added to@U(t)=@A(t). Then, an incremental update of the
Action network weights is carried out in accordance with (9).

in this design is that it is possible for a controller to return a
turbogenerator to its set points after a disturbance.

Equation (10) can be rewritten in the following way:

(12)

where

(13)

The eigenfunction polynomial of (5) is

(14)

or

(15)

If are chosen inside a unit
circle, then eq. (12) will be globally asymptotically stable. It
should be pointed out that , in
(12) are the qualitative coefficients, and are not relevant to the
stability of the dynamic system. These coefficients describe the
relationship between the desired outputs of the optimal predictor
and the outputs of the dynamic system, and may be chosen ac-
cording to the qualitative requirements of the controlled turbo-
generator system.

An optimal predictor for the turbogenerator is designed as
follows [13]:

(16)

where can be obtained by

(17)

and are real and inside a unit circle.
can be obtained in the same way, .

In (16), and refer to the predicted ter-
minal voltage and speed deviation, respectively. The predicted
terminal voltage deviation depends on both the terminal voltage
and speed deviation signals. The weighting of the speed devia-
tion on the predicted terminal voltage deviation depends on the
value of . The inclusion of the speed deviation signal for pre-
dicting the terminal voltage deviation brings in the effects of
power system stabilizers.

To find suitable values for the coefficients in (17), several
simulations are carried out starting with small values forand

and the response of the controller (to disturbances such as
step changes in terminal voltage, and three-phase short circuits)
is evaluated. Small values of and give better damped
responses in turbogenerator speed and voltage. The values
and are increased in steps until acceptable voltage and speed
responses are achieved. If too large values ofand are
used, then the voltage and speed of the turbogenerator overshoot
their set points.

The effect of in (16) is to improve the damping of
the rotor swings especially after three-phase short circuits but is
not too critical if set to zero. The predicted terminal voltage and
speed deviation are given by (18)

(18)
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It can be seen from (18) that the coefficients (4, 4, and
16) used for the terminal voltage deviation fall outside the
unit circle. Nevertheless, the results for the controller in the
Section VI show that the large values of the coefficients used
for voltage deviation do not cause instability. The reasons
for this are as follows.

1) The limit in (11) applies to the terminal voltage devia-
tions. The ANN controller creates a damping signal only
when there is a difference between the turbogenerator’s
set-point terminal voltage and the instantaneous terminal
voltage. The controller ensures that this difference be-
comes zero over a period of time and the output of (18)
will then be zero, even with large coefficients
for the voltage deviation terms.

2) The turbogenerator used in this study has an open-loop
frequency response of about 0.3 Hz to changes in terminal
voltage set points, which is considered to be slow. There-
fore, the damping signal mentioned in 1) does not cause
any oscillation about the set point.

The utility function is taken to be the sum of squares of
(with ) and as shown in (19). The

squares are taken to ensure a positive cost when deviations exist

(19)

V. TRAINING OF MODEL, CRITIC, AND ACTION

NEURAL NETWORKS

The training procedure for the Critic and Action networks is
similar to adaptive critic designs for SMIB [5]. It consists of
two separate training cycles: one for the Critic ( and the
other for the Action ( . The Critic’s training is done ini-
tially with a pretrained Action network [4], [14], to ensure that
the whole system, consisting of the neurocontrol and the power
system, remains stable. The Action network is pretrained on a
linearized model of the generator. The Action is trained fur-
ther while keeping the Critic network parameters fixed. This
process of training the Critic and the Action one after the other
is repeated until an acceptable performance is achieved. The
ANN Model parameters are assumed to have converged globally
during its offline training without any neurocontrollers (briefly
described below) [6] and, it is not adapted concurrently with the
Critic and Action networks.

A. Model Neural Network

Fig. 7 illustrates how the Model/Identifier network is trained
to identify the dynamics of the plant. The Model network struc-
ture is a three layer feedforward neural network with 12 inputs,
a single hidden layer with 14 sigmoidal neurons, and two linear
output neurons as shown in Fig. 8.

The inputs are theactualdeviation in the input to the exciter
, theactualdeviation in the input to the turbine , the

actual terminal voltage deviation and theactualspeed de-
viation of the generator . These four inputs are time delayed
by a sample period of 10 ms and together with the eight previ-
ously delayed values form the 12 inputs to the Model network.

Fig. 7. Neural network modeling of the plant in Fig. 1, using the back-
propagation algorithm.

Fig. 8. Model neural network with 12 inputs, 14 sigmoidal hidden layer
neurons, and two linear output neurons.

The Model network outputs are the one-step-aheadestimated
terminal voltage deviation andestimatedspeed deviation

of the turbogenerator.
Pseudorandom binary signals (PRBS) are applied to the ex-

citer and the microturbine of the plant with the switches S1 and
S2 in position 1 in Fig. 1, in order to train the Model/Identi-
fier network, for a period of time at different operating condi-
tions until satisfactory identification results are obtained. The
input and output weights , of the Model network are then
fixed during the further development of the Critic and the Action
neural networks. The backpropagation algorithm [12] is used for
updating in the Model network based on the error at

in Fig. 7 given in (20)

(20)

The training is carried out to minimize (20). The change in
the weights is calculated using the backpropagation algorithm
based on a gradient-descent method. The Model network weight
update equation is given in (21) [12]

(21)

(22)

The flowchart for the Model network training appears in
Fig. 9. Fig. 10 shows the PRBS signal applied to the turbine of
generator G2 operating at pu and unity power factor.
A similar signal is also applied to the exciter. The training
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Fig. 9. Flowchart for the Model neural network training.

Fig. 10. PRBS training signal applied to the turbine of generator G2.

of the Model networks for generators G1 and G2 in Fig. 1 is
carried out separately first and then simultaneous training is
carried out applying PRBS signals to both generators. The
speed and terminal voltage deviations of generator G2 appear
in Figs. 11 and 12. The training of Model networks are carried
out for different operating conditions of the multimachine
power system until the weights of the Model networks have
converged for all these operating conditions. The Critic and
Action training use the globally converged Model networks to
calculate the derivatives with no further training on the Model
concurrently. The Model network can be further trained later
to improve the performance of the Action network. More tests
and results on the Model network can be found in [6].

B. Critic Neural Network

The Critic network in Fig. 4 is also a three-layer feedforward
network with six inputs, 13 hidden neurons, and two outputs
(Fig. 13). The inputs to the Critic network are the speeddevia-
tion and terminal voltagedeviation . These inputs are
time delayed by a sample period of 10 ms, and together with the

Fig. 11. Speed deviation of generator G2 and the Model network.

Fig. 12. Terminal voltage deviation of generator G2 and the Model network.

Fig. 13. DHP Critic neural network structure with six inputs, ten sigmoidal
hidden layer neurons, and two linear neurons.

four previously delayed values, form the six inputs for the Critic
network. The outputs of the Critic are the derivatives of the
function with respect to the output states of the generators.

In the Critic’s training cycle, an incremental optimization of
(3), is carried out using a suitable optimization technique such
as backpropagation. The flowchart for the Critic neural network
training is given in Fig. 14. The functions

, , , , and
, , represent the Critic, the

Action, and the Model neural networks with their weights,
respectively.

The Critic neural network’s error and weight update equa-
tions are given in (23) and (24) with a discount factorof
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Fig. 14. Flowchart for the DHP Critic neural network training.

0.5, learning rate , and the utility function given in
(22). The Critic training is carried out for cycles until the
weights of the network have converged. is initialized to
small random values at beginning of the training

(23)

(24)

Fig. 15. DHP Action neural network structure with six inputs, ten sigmoidal
hidden layer neurons, and one linear output neuron.

Fig. 16. Flowchart for the DHP Action neural network training.

C. Action Neural Network

The Action network (DHP neurocontroller) in Figs. 4 and 6 is
also a three-layer feedforward network with six inputs, a single
hidden layer with ten neurons, and a single output (Fig. 15).
The inputs are the generator’sactualspeed andactualterminal
voltage deviations, and , respectively. Each of these in-
puts is time delayed by 10 ms and, together with four previously
delayed values, form the six inputs. The output of the Action net-
work (DHP neurocontroller), , thedeviationin
the field voltage, which augments the input to the generator’s
exciter.

The Action neural network weights’ update expression, when
applying backpropagation, is as follows:

(25)

where 0.03 is the learning rate, and contains the weights of
the Action neural network in the DHP scheme. The flowchart
for the training of the DHP Action neural network is shown in
Fig. 16. The Action training is carried out for cycles until



VENAYAGAMOORTHY et al.: DUAL HEURISTIC PROGRAMMING EXCITATION NEUROCONTROL 391

Fig. 17. Overall training steps for the DHP Critic and Action neural networks.

Fig. 18. Multimachine power system with trained DHP excitation neuro-
controllers connected to generators G1 and G2

the weights of the network have converged. During the Action
network training, the weights of the Critic network are fixed.

The overall training procedure of the DHP Critic and Action
neural networks under the different types of training (forced and
natural) are shown in the flowchart in Fig. 17. The training of the
Critic and Action neural networks are alternated until both net-
works have attained training convergence over a wide range of
system operating conditions and configurations. It is important
that the whole system consisting of the neurocontroller and the
system remains stable while both of the Critic and Action net-
works undergo training. Once the Critic network’s and Action
network’s weights have converged, the Action network (neuro-
controller) is connected to the generator G1 to replace the AVR
(Fig. 18). A similar procedure is carried out in developing G2’s
DHP neurocontroller to replace its AVR.

Fig. 19. Terminal voltage of generator G1 for a 3% step change in its desired
terminal voltage.

Fig. 20. Speed deviations of generator G1 for a 3% step change in its desired
terminal voltage.

VI. SIMULATION AND EXPERIMENTAL RESULTSPERFORMANCE

WITH THE DHP CONTROLLERS

At two different operating conditions and three different
disturbances, the transient performance of the DHP neurocon-
trollers is compared with that of the conventional automatic
voltage regulators (whose parameters are carefully tuned for
the first set of operating condition given in Table IV [9]).

A. Simulation Study: 3% Step Change in (Fig. 18) and
(Fig. 1) at First Operating Condition

At the first operating condition (Table IV), a 3% step increase
occurs in the desired terminal voltage of G1. Figs. 19 and 20
show that the DHP neurocontrollers ensure no overshoot on the
terminal voltage and provide superior speed deviation damping
unlike the AVRs, not withstanding the fact that the AVRs have
been fine tuned at this operating condition.
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Fig. 21. Terminal voltage of generator G2 for a 5% step change in its desired
terminal voltage.

Fig. 22. Speed deviation of generator G2 for a 5% step change in its desired
terminal voltage.

B. Simulation Study: 5% Step Change in (Fig. 18) and
(Fig. 1) at Second Operating Point

At the secondoperating condition (Table IV), a 5% step in-
crease occurs in the desired terminal voltage of G2. Figs. 21 and
22 show that the DHP neurocontrollers again provide the best
damping, which prove that the neurocontrollers have learned
and adapted themselves to the new operating condition. In fact,
Fig. 22 shows signs of an inter-area mode oscillations starting up
at about 4.3 s, and the neurocontrollers are far more successful
in damping this, than the conventional AVRs which were not
fine tuned for this operating condition.

C. Simulation Study: Three Phase Short Circuit

At the second operating condition (Table IV), a 100–ms short
circuit occurs halfway between buses 3 and 4 (Fig. 18). Figs. 23
and 24 show that the DHP neurocontrollers again have a better
damping on the speed deviation and terminal voltage of G1.
Although not shown, this is seen also in the speed deviation and
the terminal voltage of G2.

Fig. 23. Speed deviation of generator G1 for a 100-ms three-phase short circuit
between buses 3 and 4.

Fig. 24. Terminal voltage of generator G1 for a 100-ms three-phase short
circuit between buses 3 and 4.

All these results show that at operating conditions different
from the one at which the AVRs were tuned, their performance
has degraded. On the other hand, the DHP neurocontrollers
have given excellent performance under all the conditions
tested. Many other tests, both small and large disturbances,
were carried out at different power levels and power factors to
confirm this.

D. Experimental Study: Increase in Transmission Line
Impedance

The micromachine laboratory at the University of Natal,
Durban, South Africa, has two micro-alternators, and each
one represents both the electrical and mechanical aspects of a
typical 1000-MW alternator. All the per-unit parameters are
the same as those normally expected for 1000-MW alternators.
The machine parameters have been determined by the standard
IEEE methods and are given for micro-alternators in [8]. A
practical laboratory three-machine power system is set up by
using the two micro-alternators/turbogenerators and the infinite
bus as the third machine.

At operating conditions pu and pu for gen-
erators G1 and G2, the series transmission line impedance is
increased at time s from (900 km)
pu to pu (1800 km) by opening switch
S3 (Figs. 1 and 18). Figs. 25 and 26 show the rotor/load angle
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Fig. 25. Load angle response of generator G1 for increase in transmission line
impedance between buses 3 and 4.

Fig. 26. Load angle response of generator G2 for increase in transmission line
impedance between buses 4 and 5.

responses of generators for this test. Clearly, the DHP neurocon-
trollers again exhibit superior damping over the performance of
the conventional controllers.

VII. CONCLUSIONS

A new design method for nonlinear optimal controllers
based on derivative adaptive critics for voltage/excitation
control of generators in a three-machine power system have
been presented. All control variables are based on local
measurements, thus, the control is decentralized. Simulations
show that dynamic response of the DHP-based neurocontrolled
generators are superior to the response of the conventionally
controlled generators with AVRs, particularly so when oper-
ating conditions change and large disturbances are experienced.
Furthermore, it has been shown both by simulation and prac-
tical implementation that it is possible to have multiple optimal
neurocontrollers on a power system with no requirement for
continual online training, thus avoiding the risk of system
instability with neurocontrollers.
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