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Dual Heuristic Programming Excitation Neurocontrol
for Generators in a Multimachine Power System

Ganesh Kumar Venayagamooril§enior Member, IEEFRonald G. HarleyFellow, IEEE and
Donald C. WunschSenior Member, IEEE

Abstract—The design of nonlinear optimal neurocontrollers power system operating conditions and configurations. Conser-
that replace the conventional automatic voltage regulators for vative designs are, therefore, traditionally used, particularly in
excitation control of turbogenerators in a multimachine power . iimachine systems, to attempt satisfactory control over the
system is presented in this paper. The neurocontroller design . .

entire operating range of the power system.

is based on Dual Heuristic Programming (DHP), a powerful . .
adaptive critic technique. The feedback variables are completely ~ In recent years, renewed interest has been shown in power
based on local measurements from the generators. Simulations systems excitation control using nonlinear control theory, par-
on a three-machine power system demonstrate that DHP-based ticularly to improve system transient stability [1], [2]. Instead
neurocontrol is much more effective than the conventional of using an approximate linear model, nonlinear models are

proportional-integral—derivative control for improving dynamic . . o .
performance and stability of the power grid under small and used and nonlinear feedback linearization techniques are em

large disturbances. This paper also shows how to design optimal Ployed for the generator models, thereby alleviating the oper-
multiple neurocontrollers for nonlinear systems, such as power ating point dependent nature of the linear designs. Using non-
systems, without having to do continually online training of the |inear controllers, generator transient stability can be improved
neural networks, thus avoiding risks of neural network instability. significantly. However, nonlinear controllers have a more com-

Index Terms—Adaptive critics, artificial neural networks
(ANNSs), generators, multimachine power systems, multiple non-
linear optimal neurocontrollers, power system stability, voltage
regulation.

|. INTRODUCTION
OWER SYSTEMS containing

turbogenerators  ar
large-scale nonlinear systems. The traditional excitatio

controllers for the generators are designed by linear contf

theory based on a single-machine infinite-bus (SMIB) pow@ln

plicated structure and are difficult to implement relative to linear
controllers. In addition, feedback linearization methods require
exact system parameters to cancel the inherent system nonlin-
earities, and this contributes further to the complexity of the sta-
bility analysis. However, the use of artificial neural networks
(ANNSs) as neurocontrollers offers a possibility to overcome this
groblem.

Multilayer-perceptron (MLP)-type ANNs are able to iden-
/model time-varying single turbogenerator systems [3]
d, with continually online training, these models can track
g dynamics of the power system, thus yielding adaptive

system model. These SMIB power system mathematical modk
are linearized at specific operating points and then excitati
controllers are designed. The machine parameters change v
loading in a complex manner, resulting in different behavior 4
different operating points and the controller which stabilized
the system under specific operating conditions, may no lon

yield satisfactory results when there is a drastic change in e

yet
Paper MSDAD-A 02-42, presented at the 2001 Industry Applications Socie

ntification. ANN controllers have been successfully imple-
ted on single turbogenerators using ANN identifiers and

irect feedback control [4]. Adaptive critic designs which
eld nonlinear optimal controllers have also been applied
ccessfully to control generators in an SMIB power system
. Moreover, ANN identification of turbogenerators in a

Itimachine power system has also been reported [6], but not
applied to a controller.
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» The design methodology of nonlinear optimal excitation
neurocontrollers based on Dual Heuristic Programming
(DHP) theory (a member of the adaptive critics family)
for multimachine power systems, to replace the traditional
automatic voltage regulators (AVRs) and which includes
the ANN identifier [6].

These nonlinear optimal neurocontrollers can be designed
offline, avoiding the computational load of online learning
and the issues of neural network instability.

The simulation and practical results on a three-machine
power system show that both voltage regulation and
system stability enhancement can be achieved with these

0093-9994/03$17.00 © 2003 IEEE
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Fig. 1. Three-machine (G1, G2, and G3) five-bus power system.
TABLE | AVR
GENERATORSG1 AND G2 PARAMETERS ~ N
Vrel‘
Ta =450 s Xg = 0205 pu Rs = 0.006 pu Vil | AN [Katstparsy)
Tg” =33 ms X¢”=0.164 pu H=568s Frshs U+sTghi+sT,y)
Te”=0.25s Xq=1.98 pu No. of Poles = 4 -
10 .
X¢ = 2.09 pu X¢ = 0.213 pu Input Filter PID Compensaon

proposed neurocontrollers, regardless of the changest& 9
the system operating conditions and configurations.
* Itis possible to design and implement multiple neurocon-

Block diagram of the AVR and exciter combination of G1 and G2.

TABLE 1l

trollers controlling multiple generators simultaneously. AVR AND EXCITER TIME CONSTANTS OFG1 AND G2
[l. MULTIMACHINE POWER SYSTEM T 06165 Tus 0.0235 s
Ty 2.266 s Te 0.47 s
The three-machine five-bus power system in Fig. 1 is chosen, Ty 0.189s Ko 0.003
to illustrate the effectiveness of adaptive critic-based neurocon- Tu 0.039s

trollers. This system is simulated because the controllers de-

S|gnefj n th|s_ paper will be |mplemen_ted at the Un|ver5|ty_ qfig. 2, and the time constants are given in Table II. The exciter

Natal’'s machines research Iaboratory in Durban, South Afr'cgaﬁuration factos, is given by
The laboratory power system consists of two generators, eac

3 kW, 220V, designed to have all their per-unit parameters, ex- Se = 0.6093 exp(0.2165V4). (1)

cept the field-winding resistance, the same as those normally

expected of a 1000-MW generator. The third machine is the ih;, 7,2, 7,3, andT,, are the time constants of the propor-

finite bus. The multimachine laboratory power system in Fig. tlonal-integral—derivative (PID) voltage regulator compensator;

is simulated in the MATLAB/SIMULINK environment using 7,5 is the input filter time constanff; is the exciter time con-

the Power System Blockset (PSB) [7]. Generators 1 and 2 atant; K, is the AVR gain;V;q,, is the exciter ceiling; and,

each represented by a seventh-order model. There are three dgjls andV,,,; are the AVR maximum and minimum ceilings.

on thed -axis and two coils on the axis and the stator tran- A separately excited 5.6-kW dc motor is used as a prime

sient terms are not neglected. The parameters of the generatmeyer, called the microturbine, to drive each of the generators.

determined by the IEEE standards are given in Table | [8]. Bhe torque—speed characteristic of the dc motor is controlled to

time-constant regulator is used on each generator to insert néfigiew a family of rectangular hyperbola for different positions

tive resistance in series with the field-winding circuit, in order tof the steam valve, as would occur in a real typical high-pres-

reduce the actual field-winding resistance to the correct per-usitre (HP) turbine cylinder. The three low-pressure (LP) cylin-

value. ders’ inertia are represented by appropriately scaled flywheels.
The conventional AVR and exciter combination transfer fundhe microturbine and the governor transfer function block dia-

tion block diagram is similar for both generators and is shown gram is shown in Fig. 3, wherE,.; is the turbine input power
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Micro tubin: inputs of the network. However, backpropagation can be linked
Govemor Pﬁf il ™ to reinforcement learning via a network called @@sgtic net-
+  stumlion SIVOMDOT oeam reheater Work_, WhiCh has certain desirable attribute_s.
Ao | KfitsTy) | AP - P, Critic based methods remove the learning process one step
—] g | _1 > 1 (s >

from the control network (traditionally called théttion net-
work” or “actor” in ACD literature), so the desired trajectory or
Fig. 3. Block diagram of the microturbine and governor combination of GgontrOI action information is not necessary. The Critic network

and G2. learns to approximate the cost-to-go or strategic utility func-
tion, and uses the output of an Action network as one of its in-
TABLE Il puts directly or indirectly. When the Critic network learns, back-
MICROTURBINE AND GOVERNORTIME CONSTANTS OFGLAND G2 propagation of error signals is possible along its input pathway
Phase advance compensation, Ta 0364 s fr(_)m_ the Action network._To _the backpropagatiqn algorithm,
Phase advance compensation, Tg; 0.0264 s this input pathway looks like just another synaptic connection
Servo time constant, T3 0.15s that needs weight adjustment. Thus, no desired signal is needed.
Entrained steam delay, Ty 0.59 s All that is required is a desired cost functidngiven in (2)
2 shaft oot ahsad of ehemar T (XN =
T — IO =Y U+ @
k=0
where~ is a discount factor for finite horizon problenig@ <
TABLE IV X . . .
OPERATING POINTS OF G1 AND G2 v < 1), andU(.) is the utility function or local cost. Section IV
describes how to obtain the utility function for the excitation
Condition  one Condition  two neurocontroller design.
Gl G2 Gl G2 The Critic and Action networks, can be connected together di-
Pe (pu) 02000 02000 _ 03000 __ 0.3000 rectly (Action-dependent designs) or through an identification
3‘((‘1’)‘:)) '0'01200 '0'01200 '0'01400 '0'0]400 model of a plant (Model-dependent designs). There are three

classes of implementations of ACDs called Heuristic Dynamic
Programming (HDP), DHP, and Globalized Dual Heuristic Dy-
set point valuepP,, is the turbine output power, anlw is the namic Programming (GDHP), listed in order of increasing com-
speed deviation. The turbine and governor time constants atexity and power [11]. This paper presents the DHP, model-de-
given in Table Il pendent design, and compares its performance against the re-

The AVR and governor parameters, namely, the gain and tirmelts obtained using conventional PID controllers. The DHP
constant§ K .., To1, Loz, Tp3, Tva, K4, Ty1, andTy,), are fine  Critic and Action neural networks are described below.
tuned for the first operating condition given in Table IV [9]. N

B. DHP Critic Neural Network
lll. DERIVATIVE ADAPTIVE-CRITICS-BASED The Critic network is trained forward in time, which is of
EXCITATION CONTROLLER great importance for real-time optimal control/operation. The
ability to foresee future cost and take preventive action ahead

) - ) _of time is important in optimal controller designs. DHP has a
Adaptive critic designs (ACDs) are neural network designsiic network which estimates the derivativesbivith respect

capable of optimization over time under conditions of noise ang 5 vector of observables of the platy’ . The Critic network
uncertainty. A family of ACDs was proposed by Werbos [10] 8 5ms minimization of the following error measure over time:
a new optimization technique combining concepts of reinforce-

ment learning and approximate dynamic programming. For a 1B =" EE(H)Eo(t) 3)
given series of control actions, that must be taken in sequence, t
and not knowing the quality of these actions until the end of thvehere

A. Background

sequence, it is impossible to design an optimal controller using o7 AV (1 0i AV (41

traditional supervised ANN learning. Folt) = [ - (’)] oy [ (t+ )] _OUTAY (1)]
Dynamic programming prescribes a search which tracks back- DAY (t) JAY (1) JAY (1)

ward from the final step, rejecting all suboptimal paths from any 4)

given point to the finish, but retains all other possible trajecto-

ries in memory until the starting pointis reached. However, mahered(.)/0AY (t)) is a vector containing partial derivatives of
paths which may be unimportant are nevertheless also retaitieei scalag.) with respect to the components of the veatdr .

until the search is complete. The result is that the procedureTide partial derivatives can be obtained for example by back-
too computationally demanding for most real problems. In spropagating through a neural network as described in Fig. 4.
pervised learning, an ANN training algorithm utilizes a desire@HP has an important advantage over HDP since its critic neural
output and, comparing it to the actual output, generates an emetwork builds a representation for the derivatived afirectly
term to allow learning. For an MLP-type ANN the backpropagdy being explicitly trained on them throughU (¢)/9[AY (¢)]

tion algorithmis typically used to get the necessary derivativesafdoU (t) /0 A(t). For instance, in the area of model-based con-
the error term with respect to the training parameters and/or tinel, as in the case of this paper, a pretrained Model neural
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Fig. 4. DHP Critic network training. This diagram shows the implementation of (6). The same Critic network is shown for two consecutivantitned . First

and second backpropagation paths are shown by dashed lines and dashed—dotted lines, respectively. The output of the Criti¢ #ietwabackpropagated
through the Model from its outputs to its inputs, yielding the first term of (5) @i¢t + 1)/dA(t). The latter is backpropagated through the Action from its
output to its input forming the second term of (5). Backpropagation of the ve€t6t) /9 A(t) through the Action results in a vector with components computed
as the last term of (6). The summation produces the error vé&t@r) for Critic network training.

network and well-definedU (¢)/0[AY (t)] anddU (t)/0A(t) 1) Path 1 represents the outputs of the plant fed into the

exist. To adapt the Action neural network, only the derivatives Model neural network #2. These outputs ax& (¢),

dJ(t)/O[AY (t)] or 0.J(t)/OA(t) are required, rather than the AY(t — 1) andAY (¢t — 2).

J function itself. However, the approximation of these deriva- 2) Path 2 represents the outputs of the Action neural net-

tives is already a direct output of the DHP Critic. work fed into the Model neural network #2. These out-
The DHP Critic network’s training is more complicated than puts areA(t), A(t — 1), andA(t — 2).

that of the HDP Critic since there is a need to take into accountall 3) Path 3 represents the outputs of the plant fed into the Ac-
relevant pathways of backpropagation as shown in Fig. 4, where  tion neural network. These outputs &x& (¢), AY (¢t —

the paths of derivatives and training of the Critic are depicted by 1), andAY (¢t — 2).

dashed lines. Details on the HDP Critic training are givenin [5]. 4) Path 4 represents a backpropagated signal of the output

In DHP, application of the chain rule for derivatives of thk of the Critic neural network #2 through the Model neural
output yields network with respect to path 1 inputs. The backpropa-
o gated signal on path 4 is
8J |AY (t+1) no o
[ ]:Z/\i(t+1)aAY'(t+l) Z;\ t+18AY(t-|- 1)
9 AYj(t) P d AY;(t) £ d AY;(t)
LA DAY (t+1) 9Ak(D) in (5).
Z Ai(t+1) AL(t)  9AY;(t) ®) 5) Path 5 represents a backpropagated signal of the output
k=1 =1 of the Critic neural network #2 through the Model neural
where); (t+1) = dJ[AY (t+1)]/0 AY;(t+1)), andn, m are network_ with respect to path 2 inputs. The backpropa-
the numbers of outputs of the Model and the Action networks, gated signal on path 3 is
respectively. By exploiting (5), each af components of the dAY; (t +1)
vector E¢ (t) from (4) is determined for thgth output by (6) Z Ai(t+1) oA
aJ [AY(t)} a.J [m?(t + 1)] in (5).
Ec;(t) = dAV-(D T OAY. 0 6) Path 6 represents a backpropagation output of path 5
i(t) I signal iv) above) with respect to path 3. The signal on
_OU[AY ()] AY z’”: oU(t) dA(t) ) path 6 is
0 AY;(t 8Ak ) OAY;(t) . aAﬁ(tH)
Z i —
— 0AL(t)

The signals in Fig. 4, labeled with a path number, represent
the following. in (5).
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ou(z) where o is a positive learning rate and’4 are weights of
o4, (t) ‘"'""M‘aﬁﬁ"; the DHP Action neural network. The word “Dual” is used to
Neural Heq----- U describe the fact that the target outputs for the DHP Critic
ou@) P Network | training are calculated using backpropagation in a generalized
04Y(¥) sense; more precisely, it does use dual subroutines (states and
co-states) to backpropagate derivatives through the Model
Fig. 5. Backpropagation df (¢) through the Model neural network. and Action neural networks, as shown in Fig. 4. The dual

subroutines and more explanations are found in [10] and [12].
7) Path 7is the sum of the path 4 and path 6 signals resulting
in 0J[AY (t 4+ 1)]/0 AY;(t), given in (5). IV. DERIVATION OF UTILITY FUNCTION
8) Path 8 is the backpropagated signal of the term

DU (1) /A(t) (Fig. 2) with respect to path 3 and is The utility functionU (¢) in (2) is designed based on a desired

response predictor which has the following characteristics.

TLOU(t) 9AR(D) 1) It must be flexible enough to modify the performance of
Z AL (1) m the turbogenerator.
k=1 ! 2) The desired response signal must ensure that the turbo-
in (6). generator is inherently stable at all times. In other words,
9) Path 9 is a product of the discount factoand the path the predictor must be stable. _
7 signal, resulting in termaf[Af/(t—k 1)]/0 AY;(t) in 3) The desired response signal must incorporate the effects
(6). of a power system stabilizer.
10) Path 10 represents the output of the Critic neural network | "€ OPtimal predictor is designed on the basis of guiding the
#1 BJ[AY/(t)]/a AY(t). disturbed output variables, in this case the terminal voltage and

11) Path 11 represents the tediti(¢)/d AY (t) (Fig. 2). speed, of the turbogenerator to a desired steady operating point

12) Path 12 represenfsc;(t) given 1 in (6) and is as fol- O set point, in a step-by-step fashion. In other words, a desired
lows: trace of outputs front; to ¢;,1 can be predicted, based on the

present and past-time values of the outputs. Optimal here refers
Path12 = Ec;(t) = path10-path9—path11—path8. to predictions of the desired response for the turbogenerator and
ensuring its stability over a wide range of operating conditions.
The partial derivatives of the utility functionl/(t) The prediction equation of the optimal predictor is given in (10).
with respect to Ax(t), and AY(t), oU(t)/0Ak(t) and
dU(t)/d AY (), respectively, are obtained by backpropagatingX (k+1) = BoX (k)+B1 X (k—1)+---+By X (k—N). (10)
the utility function,U (¢) through the Model network as shown

in Fig. 5. B;(i = 0,1,...,N) are chosen so that any disturbed output
variable always transfers toward the desired steady operating
C. DHP Action Neural Network point, that is, the optimal predictor is always globally asymp-

. . - totically stable X is the value predicted for the next immediate
The Action network is adapted in Fig. 6 by propagathig-+ jme step andX can be either the terminal voltage deviation

1) back through the Model to the Action. The goal of sucaivt or speed deviatiosw,

training is to minimize the sum of the derivatives of the loc In (10), it is assumed that each output variable of the optimal
tcrf)eSEAUciitgnaggt\tA?oerI:Zt(?; Cxﬁ?éﬁ)cgghb;ezfegstgeg]ﬁ o(u7t)p ut of predictor,is a linear combination of thg independently pregicted
i P y output variables of the dynamic system. The magnitude of the
AT coefficients, A;, determines the magnitude of the error signal
U [AY(¢)] + 07 [AY(t + 1)} -0 Vi @ between the identifier output and the desired response signal (or
OA(t) K OA(t) N ' predictor) and, therefore, the magnitude of the error backprop-

. ) L agated to the controller to adapt its weights.
The error signal for the Action network training is, therefore, If the outputX (¢) is bounded fop < ¢ < o and

given as follows:

N [A?(t + 1)} Him (X (t)-X (t)) =0 (11)
Ea(t) = : . (8)
4 DAt T A i | |
(t) (t) then a predictor can be designed which forces the turbogener-
tor, by means of the ANN controller, back to desired set points

The weights’ update expression [11], when applying backprop- ) . .
agation, is as follows: 3]. The magnitude of the forcing signal depends on the coef-

ficients A4;.
AT a T The conditions defined by (11) are necessary because it is
AW = —a OU [AY (t)] n a.J [AY(t + 1)] 0A(t)  not possible to damp the turbogenerator to take up the required
A= DA(t) v DA(t) OW 4 setpoints if its outputs are unbounded. If (11) does not hold,

then the outputs of the turbogenerator will not return to their set
(9) points after a disturbance. The fundamental assumption made
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Fig. 6. DHP Action network training. Backpropagation paths shown with dashed lines. The output of th&(€+tit) at time(¢ + 1) is backpropagated through
the Model from its outputs to its inputs, and the resulting vector is multiplied by discount faetwd added t&@U (t)/dA(t). Then, an incremental update of the
Action network weights is carried out in accordance with (9).

in this design is that it is possible for a controller to return wherea,; ( = 0, 1, 2) can be obtained by
turbogenerator to its set points after a disturbance.

Equation (10) can be rewritten in the following way: 73 —a102% — a1 Z — ayy = (2% — S11)(Z — S12). (A7)

X(k+1) = agir(k+1)+Bid2(k+1)+- - +yidi(k+1) (12) Sy, and Sy, are real and inside a unit circley; (i = 0, 1, 2)

can be obtained in the same way (; < 1.

In (16), 1(k + 1) andia(k + 1) refer to the predicted ter-
minal voltage and speed deviation, respectively. The predicted
terminal voltage deviation depends on both the terminal voltage

where

.’f,}(k' + 1) :quj()xqj(k) + aﬂa;i(k — 1) + -+ aiNa:,,;(k - N),

1=1,2, ..., h. (13) and speed deviation signals. The weighting of the speed devia-
tion on the predicted terminal voltage deviation depends on the
The eigenfunction polynomial of (5) is value off3;. The inclusion of the speed deviation signal for pre-
dicting the terminal voltage deviation brings in the effects of
Z—ap—anZ ' —apZ?—- —anZ N =0 (14) power system stabilizers.
or To find suitable values for the coefficients in (17), several
INTL 002N —an 2NN~ i simulations are carried out starting with small valuesSgrand

S12 and the response of the controller (to disturbances such as
=(Z - Si)(Z - Si1)---(Z—-Siny)=0. (15) step changes in terminal voltage, and three-phase short circuits)
is evaluated. Small values 6f; andS:2 give better damped

If Sio, Si1, ..., Sin (i =1, 2, ..., h) are chosen inside a unitresponses in turbogenerator speed and voltage. The V&jues
circle, then eq. (12) will be globally asymptotically stable. IandS;, are increased in steps until acceptable voltage and speed
should be pointed out that;, 3;, ..., v (¢ = 1,2, ..., h)in responses are achieved. If too large valuesgfands;, are

(12) are the qualitative coefficients, and are not relevant to theed, then the voltage and speed of the turbogenerator overshoot
stability of the dynamic system. These coefficients describe ttieeir set points.

relationship between the desired outputs of the optimal predictorThe effect of3; = 0.01 in (16) is to improve the damping of

and the outputs of the dynamic system, and may be chosente-rotor swings especially after three-phase short circuits but is
cording to the qualitative requirements of the controlled turberot too critical if set to zero. The predicted terminal voltage and

generator system. speed deviation are given by (18)
An optimal predictor for the turbogenerator is designed as
follows [13]: Z1(k+1)
2 2 =4AV (k) +4AV(k—1)+ 16 AV(k —2) +0.01
g1k +1) =" awi(k— i)+ B {Z az;x2(k — L)}
i=0 i=0 {04 Aw(k) + 0.4 Aw(k — 1) + 0.16 Aw(k — 2)}
2 Zo(k+1)
ok +1) =) agiwa(k — i) (16)

P =04Aw(k)+0.4Aw(k —1)+0.16 Aw(k — 2). (18)
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It can be seen from (18) that the coefficients (4, 4, and VW+4V() A B [Ao(), AV(1)]
16) used for the terminal voltage deviation fall outside the p_ () TP (0 Turbogenerator
unit circle. Nevertheless, the results for the controller in the
Section VI show that the large values of the coefficients used AV,
for voltage deviatior{a,) do not cause instability. The reasons AP, (1)

for this are as follows.

1) The limit in (11) applies to the terminal voltage devia-
tions. The ANN controller creates a damping signal only
when there is a difference between the turbogenerator’s
set-point terminal voltage and the instantaneous terminal
voltage. The controller ensures that this difference be-
comes zero over a period of time and the output of (18)g. 7. Neural network modeling of the plant in Fig. 1, using the back-
will then be zero, even with large coefficier(ig;; > 1) propagation algorithm.
for the voltage deviation terms.

2) The turbogenerator used in this study has an open-lo
frequency response of about 0.3 Hz to changes in termir
voltage set points, which is considered to be slow. Ther: ja”:zjj
fore, the damping signal mentioned in 1) does not cau:  4,4.;)
any oscillation about the set point. v 1-2)

The utility functionU (k) is taken to be the sum of squares of Aﬁ:;((';_jf)

Z1(k + 1) (with 81 = 0) andz(k + 1) as shown in (19). The  4p,,-2)

squares are taken to ensure a positive cost when deviations e Asr;f(("f))
ot

9 4V (+-2)

U(]C) = [4 AV(k) + 4AV(1€ — 1) + 16 AV(k — 2)] AV (1-3)

+[0.4 Aw(k) + 0.4 Aw(k — 1) + 0.16 Aw(k — 2)]* . (19)

do(t-1)

Fig. 8. Model neural network with 12 inputs, 14 sigmoidal hidden layer

neurons, and two linear output neurons.
V. TRAINING OF MODEL, CRITIC, AND ACTION P

NEURAL NETWORKS The Model network outputs are the one-step-ahestinated

The training procedure for the Critic and Action networks igerminal voltage deviatio\V;, and estimatedspeed deviation
similar to adaptive critic designs for SMIB [5]. It consists ofA of the turbogenerator.
two separate training cycles: one for the Critié{) and the  Pseudorandom binary signals (PRBS) are applied to the ex-
other for the Action {V.4). The Critic’s training is done ini- citer and the microturbine of the plant with the switches S1 and
tially with a pretrained Action network [4], [14], to ensure tha2 in position 1 in Fig. 1, in order to train the Model/Identi-
the whole system, consisting of the neurocontrol and the powgsr network, for a period of time at different operating condi-
system, remains stable. The Action network is pretrained onians until satisfactory identification results are obtained. The
linearized model of the generator. The Action is trained fufnput and output weights/,,, of the Model network are then
ther while keeping the Critic network parameters fixed. Thiixed during the further development of the Critic and the Action
process of training the Critic and the Action one after the othaeural networks. The backpropagation algorithm [12] is used for

is repeated until an acceptable performance is achieved. ThglatingV,, in the Model network based on the eregg(¢) at
ANN Model parameters are assumed to have converged globailyin Fig. 7 given in (20)

during its offline training without any neurocontrollers (briefly .
described below) [6] and, it is not adapted concurrently with the ear () = { [AVt(t) - A‘/t(t):| , [Aw(t) — Aw(t)] } . (20)

Critic and Action networks. o ) o _
The training is carried out to minimize (20). The change in

A. Model Neural Network the weights is calculated using the backpropagation algorithm

Fig. 7 illustrates how the Model/ldentifier network is traineé)asecj on agrgd@nt-c}escgnt method. The Model network weight
update equation is given in (21) [12]

to identify the dynamics of the plant. The Model network struc-
ture is a three layer feedforward neural network with 12 inputs, Eyn(t) =3 els(t) (21)
a single hidden layer with 14 sigmoidal neurons, and two linear Z
output neurons as shown in Fig. 8. Dens (1)
The inputs are thactualdeviation in the input to the exciter AWy = —men(t) 811/; .
AV,, theactualdeviation in the input to the turbin& P,.¢, the M
actualterminal voltage deviatiolV; and theactualspeed de-  The flowchart for the Model network training appears in
viation of the generatoAw. These four inputs are time delayed-ig. 9. Fig. 10 shows the PRBS signal applied to the turbine of
by a sample period of 10 ms and together with the eight pregenerator G2 operating & = 0.1 pu and unity power factor.
ously delayed values form the 12 inputs to the Model networR. similar signal is also applied to the exciter. The training

(22)
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4
x 10
@ 3 T T
o T = = Model network #2 |
T Generator G2
Sample the terminal voltage V,, the speed deviation A, the voltage to the
exciter Vi and the micro-turbine input power P, of the plant at 100 Hz 3
l £
Calculate the terminal voltage deviation AV,, the exciter input deviation AV, and the §
micro-turbine input power deviation AP, from their reference values %
* i
Delay the sampled inputs by one, two and three sample intervals and store I &
B
Input the required signals to the Plant at A (Fig. 7) and the delayed signals to the
neuroidentifier at C and D (Fig. 7)
Compare the outputs of the Plant at B and the neuroidentifier at E and s
find the difference or error at F (Fig. 7) Time in seconds
Use signal at F (Fig. 7) to update the weights of the neuroidentifier using Fig. 11. Speed deviation of generator G2 and the Model network.
the backpropagation algorithm
| Go to step 1 and repeat X1 03
20 T j
3 == = Model network #2
‘; =T Generator G2 |
£ !
Fig. 9. Flowchart for the Model neural network training. %
3
©
0.025 %
= _ -
& 002 s
e g
2 0.015 E
o . - n - L [
3 o001 = J . I
2 L |-l [ !
< 0.005 '
-] 5 L
B 0 5 o 10 15
= 0 ] — : — Time in seconds
= ] L
2 -0.005 . . -
% Fig. 12. Terminal voltage deviation of generator G2 and the Model network.
2 .0.01
]
-0.015
002 ¢ o 10 15 Adxt)
Time in seconds A
Aw(t-1)
) o . ) Ad(t-2)
Fig. 10. PRBS training signal applied to the turbine of generator G2. n
A

of the Model networks for generators G1 and G2 in Fig. 1 35‘23
I3

carried out separately first and then simultaneous training
carried out applying PRBS signals to both generators. T
speed and terminal voltage deviations of generator G2 appear
in Figs. 11 and 12. The training of Model networks are carriggly. 13, DHP Critic neural network structure with six inputs, ten sigmoidal
out for different operating conditions of the multimachindidden layer neurons, and two linear neurons.

power system until the weights of the Model networks have

converged for all these operating conditions. The Critic aigur previously delayed values, form the six inputs for the Critic
Action training use the globally converged Model networks taetwork. The outputs of the Critic are the derivatives of fhe
calculate the derivatives with no further training on the Modelinction with respect to the output states of the generators.
concurrently. The Model network can be further trained later |n the Critic’s training cycle, an incremental optimization of
to improve the performance of the Action network. More tes{g), is carried out using a suitable optimization technique such

and results on the Model network can be found in [6]. as backpropagation. The flowchart for the Critic neural network
. training is given in Fig. 14. The function&: (AY (¢, t—1, t—
B. Critic Neural Network 2), We), fa (AY(t, £ — 1,1 = 2), Wa), and far (AY (¢, ¢ —

The Critic network in Fig. 4 is also a three-layer feedforwardl, ¢t — 2), A(¢, ¢ — 1, ¢ — 2), Wa) represent the Critic, the
network with six inputs, 13 hidden neurons, and two outpu#sction, and the Model neural networks with their weights,
(Fig. 13). The inputs to the Critic network are the spdedia- respectively.
tion Aw and terminal voltageleviationAV;. These inputs are  The Critic neural network’s error and weight update equa-
time delayed by a sample period of 10 ms, and together with tiens are given in (23) and (24) with a discount factoiof
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No Training for Aa(t-1)
he first time?2 Ao(t-2)
Aw(t-3)

Update Critic neural Initialize: 1. Critic neural network weights to | 4V(t-1) 4V (1)
network weights from their small random numbers, 2. Action neural | AV(t-2)
previous training. Use weights network weights with the pretrained weights | 4/ 4.3)

from Section V-A for the and 3. Load Model neural network weights !
Model neural network with weights obtained in Section V-A.

!

A
| Compute the output of the Critic network at time ¢, A1) = f,(4Y(t),W) I

L

I Compute the output of the Action network at time ¢, A(t) = f,(AY(1),W ) |

}

Predict the output of the Plant using the Model network at time 1+/,

Y(t+1) = fL(AY(), 44(1), W)

Fig. 15. DHP Action neural network structure with six inputs, ten sigmoidal
hidden layer neurons, and one linear output neuron.

Training for
he first time?

| Predict the output of the Critic network at time 7+1, ﬁ(t+l) = fc(A)/;(HI )W) J

l

| Compute the Critic network error at time ¢, E (1) from eq. (23)

l

I Update the Critic weights using the backpropagation algorithm in eq. (24) I

No

At the next time step

repeat the Critic training

Critic network
Qutput converged?

Fig. 14. Flowchart for the DHP Critic neural network training.

0.5, learning ratev

= 0.03, and the utility function given in
(22). The Critic training is carried out faN¢ cycles until the

Load Critic and Action rieural 1. Load the Critic neural network weights
net\j/OI'kS \n{e{ghts from 'lfe“ from its previous training, 2. Load Action
previous training. Use weights neural network weights with the pretrained
from Section V-A for the Weights and load 3. Model neural network
Model neural network weights with weights obtained in Section V-A.

| I

Backpropagate A(t+1) through the Model neural network to get dIA(HI )/2A(t) and
multiply with the discount factor 0.5 (to obtain say X)

l

I Compute the Action network error at time ¢, e (1) by adding X above to SU(1)/A(1) I

|

I Update the Action weights using the backpropagation algorithm in eq. (25) J

No

Action network
yeights converged?

At next time step (1+1)
repeat the Action neural
network training

weights of the network haye c_onvergdd’c I'S.Inltlahzed to Fig. 16. Flowchart for the DHP Action neural network training.
small random values at beginning of the training

a.J [Af/(t + 1)]

(23)

(24)

0 [AY ()]
Ee®) ==gavm ~ DAY (1)
PO
OAY ()
_ or(av() 0T [AVE+D)
AWe =-0.03 OAY(t) OAY(t)
U (1)
DAY (1)
o (oravay 90 [AV(E+)]
“owe \ oav(@) PINGO)
U (t)
 OAY (1)

C. Action Neural Network

The Action network (DHP neurocontroller) in Figs. 4 and 6 is
also a three-layer feedforward network with six inputs, a single
hidden layer with ten neurons, and a single output (Fig. 15).
The inputs are the generatodstualspeed an@ctualterminal
voltage deviationsAw andAV;, respectively. Each of these in-
puts is time delayed by 10 ms and, together with four previously
delayed values, form the six inputs. The output of the Action net-
work (DHP neurocontroller)4(t) = [AV,.(¢)], thedeviationin
the field voltage, which augments the input to the generator’s
exciter.

The Action neural network weights’ update expression, when
applying backpropagation, is as follows:

a T
oU(t) _OJ(t+1) | 0A(t)

AW,4 = —0.03 9A() +0.5 DA(D) oW (25)
where 0.03 is the learning rate, aid, contains the weights of
the Action neural network in the DHP scheme. The flowchart
for the training of the DHP Action neural network is shown in
Fig. 16. The Action training is carried out fé¥ 4 cycles until




VENAYAGAMOORTHY et al. DUAL HEURISTIC PROGRAMMING EXCITATION NEUROCONTROL 391
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2 103f-
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exciter voltage impedance and three which the Action nepral network was = X X . . — AVR
and turbine power short circuits pretrained 099 F - 4o -l Ll __L____tL____]
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l l 1 -7: 3 O A S S
Train the Critic neural network with the Action and Model neural networks l I I ) | | :
having fixed weights 0.97 X H ! ! ! ! !
1 2 3 4 5 6 7 8
Time in seconds
Train the Action neural network with the Critic and Model neural networks
having fixed weights Fig. 19. Terminal voltage of generator G1 for a 3% step change in its desired
terminal voltage.
No ritic network output
and Action networks
At the next cycle weights converged?
repeat the training

Fig. 17. Overall training steps for the DHP Critic and Action neural network:

Speed deviation of G1 in pu
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Fig. 20. Speed deviations of generator G1 for a 3% step change in its desired

terminal voltage.

Fig. 18. Multimachine power system with trained DHP excitation neuro-

controllers connected to generators G1 and G2 VI. SIMULATION AND EXPERIMENTAL RESULTSPERFORMANCE
WITH THE DHP CONTROLLERS

the weights of the network have converged. During the Action

hetwork training, the weights of the Critic network are fixed. disturbances, the transient performance of the DHP neurocon-

The overall training procgdure of the DHP C.“F'C and ACt'O'?r llers is compared with that of the conventional automatic
neural networks under the different types of training (forced an ltage regulators (whose parameters are carefully tuned for

natural) are shown in the flowchartin Fig. 17. The training ofthﬁ:‘]e first set of operating condition given in Table IV [9]).
Critic and Action neural networks are alternated until both net-

works have attained training convergence over a wide range of _,
system operating conditions and configurations. It is importaﬁt Si
that the whole system consisting of the neurocontroller and tK@“
system remains stable while both of the Critic and Action net- At the first operating condition (Table 1V), a 3% step increase
works undergo training. Once the Critic network’s and Actiooccurs in the desired terminal voltage of G1. Figs. 19 and 20
network’s weights have converged, the Action network (neurshow that the DHP neurocontrollers ensure no overshoot on the
controller) is connected to the generator G1 to replace the AM&minal voltage and provide superior speed deviation damping
(Fig. 18). A similar procedure is carried out in developing G2'anlike the AVRs, not withstanding the fact that the AVRs have
DHP neurocontroller to replace its AVR. been fine tuned at this operating condition.

At two different operating conditions and three different

mulation Study: 3% Step Changéin..r (Fig. 18) and
(Fig. 1) at First Operating Condition
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5 7 8 All these results show that at operating conditions different
Time in seconds from the one at which the AVRs were tuned, their performance

) - . has degraded. On the other hand, the DHP neurocontrollers

Fig. 22. Speed deviation of generator G2 for a 5% step change in its de3|hed : I f d Il th diti

terminal voltage. ave given excellent performance under all the conditions

tested. Many other tests, both small and large disturbances,

) ) ] were carried out at different power levels and power factors to
B. Simulation Study: 5% Step ChangéVin..¢ (Fig. 18) and . ynfirm this.

Vier1 (Fig. 1) at Second Operating Point

At the secondoperating condition (Table V), a 5% step in-D. Experimental Study: Increase in Transmission Line
crease occurs in the desired terminal voltage of G2. Figs. 21 dntbedance
22 shpw that.the DHP neurocontrollers again provide the beStThe micromachine laboratory at the University of Natal,
damping, which prove that the neurocontrollers have leamggl o, ~ south Africa, has two micro-alternators, and each
and adapted themselves to the new operating condition. In fagte renresents both the electrical and mechanical aspects of a
Fig. 22 shows signs of an inter-area mode oscillations startlng%icm 1000-MW alternator. All the per-unit parameters are
at about 4.3 s, and the neurocontrollers are far more succesgﬁglsame as those normally expected for 1000-MW alternators
in damping this, than the conventional AVRs which were nGthe machine parameters have been determined by the standard

fine tuned for this operating condition. IEEE methods and are given for micro-alternators in [8]. A
, ) _ L practical laboratory three-machine power system is set up by
C. Simulation Study: Three Phase Short Circuit using the two micro-alternators/turbogenerators and the infinite

At the second operating condition (Table IV), a 100—ms shdstus as the third machine.
circuit occurs halfway between buses 3 and 4 (Fig. 18). Figs. 23At operating conditiong® = 0.2 pu and@ = 0 pu for gen-
and 24 show that the DHP neurocontrollers again have a betteators G1 and G2, the series transmission line impedance is
damping on the speed deviation and terminal voltage of Ghcreased at time= 10 s fromZ = 0.0022 + j0.75 (900 km)
Although not shown, this is seen also in the speed deviation gnalto Z = 0.0044 + ;1.50 pu (1800 km) by opening switch
the terminal voltage of G2. S3 (Figs. 1 and 18). Figs. 25 and 26 show the rotor/load angle
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Fig. 25. Load angle response of generator G1 for increase in transmission line
impedance between buses 3 and 4.
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Fig. 26. Load angle response of generator G2 for increase in transmission lirfé4]
impedance between buses 4 and 5.

responses of generators for this test. Clearly, the DHP neurocon-
trollers again exhibit superior damping over the performance of
the conventional controllers.

VII. CONCLUSIONS

A new design method for nonlinear optimal controller:
based on derivative adaptive critics for voltage/excitatic
control of generators in a three-machine power system he
been presented. All control variables are based on lo
measurements, thus, the control is decentralized. Simulati®
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