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Abstract-Timedomain simulation algorithms are widely used in 
the anaylsis and design of electromagnetic systems. Many of them 
are characterized by high Q's. Thus, the simulations have to 
employ many time steps in order to achieve a complete 
characterization of these systems. This time-consuming 
computational effort can be avoided if the late instants of time 
are extrapolated by applying a parametric estimation algorithm. 
An optimized implementation of a time-domain extrapolation 
method and a stop criterion are discussed in this paper. The 
latter criterion is based upon a normalized squared difference 
between the waveforms extrapolated from two different sets of 
initial data and it will be used as a means to stop the time domain 
simulation algorithm. 

Ke~words-Time-doninin simulntions, exirnpolntion, 
eigenvalues, eigenvectors, stop-criterion. 

I. b4lRODUCllON 

Shortening time-domain simulations enhances the 
efficiency in the analysis of electromagnetic systems. This 
purpose can be achieved by extracting ffequencies and 
damping factors from the data recorded in the early instants of 
time and approximating the system response waveform as a 
linear combination of damped sinusoids. The problem of 
extracting the characteristic pa!ameters of a truncated signal 
has been extensively addressed in the literature and several 
methods have been proposed to solve it. Different procedures 
can be used to extract these parameters, however, the Matrix 
Pencil (MP) method [I-31 is considered to be the most robust 
with respect to noise when compared with the alternatives [2]. 
This method retrieves the damping factors and the frequencies 
from the eigenvalues or poles associated with the solution of a 
pencil matrix. The choice of the number of poles M, and the 
pencil parameter L determines the successful application of this 
method. Therefore, a two-dimensional optimization procedure 
needs to be employed, in order to fmd the most suitable 
parameter values among the possible ones. The implementation 
of the matrix pencil method together with the optimizing 
procedure does not guarantee, if applied once, an accurate 
extrapolation. In fact, a convergence criterion needs to be 
employed as a tinction of the normalized squared difference 
between two extrapolated solutions, which are retrieved &om 
different numbers of data samples. Once this difference drops 
below a certain threshold, the simulation can be terminated, 
since additional data samples do not significantly enhance the 
extrapolated solution. 

11. THE MATRIX PENCIL METHOD 

The Matrix Pencil method was introduced in [l], and the 
underlying assumption is that the response waveforms can be 
reconstructed as a linear combination of damped sinusoids, 
e.g., 

A I  

y [ k ]  = R , z , ~ ~  
/ i l  

where T, indicates the sampling interval, the R,'s represent the 
residues and the I,'S are the complex or real exponentials in the 
Z-transform domain. Particular attention has to be given to the 
equality sign of ( I ) .  In fact, the sampled quantity at the left 
hand side is the original signal in addition to random noise, 
while the right-hand side is the approximation of the original 
signal by means of damped sinusoids. In the current 
application, the noise is the numerical error caused by the finite 
precision of the simulation algorithms. 

The Matrix Pencil problem is posed in the form of a 
generalized eigenvalue problem, by fdling two non-square 
Hankel matrices &om N data samples given by the time 
simulation algorithm, i.e,[2] 

RI-.aYl= 

where the quantity L indicates the pencil parameter. The 
solution to the MP method, as formulated in (2), is obtained by 
fmding the eigenvalues associated to the square matrix [y2] 
ly,] " . Due to the ill-conditioning of this matrix, a prel- 
Singular Value Decomposition (SVD) needs to be performend 
on the matrices PI] and ly4. In fact, only M eigenvalues are 
relevant for the description of the system under consideration 
[2], as indicated in (1). The noise makes the pencil matrix to 
have rank L, however, the additional L-M are redundant and 
create severe instability problems, if the direct solution of the 
matrix lyJ [yl] " is attempted. n e  SVD enforces the rank M, 
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but the initial Hankel struchlre is lost. Now, the solution of the 
new SVD'ed matrix pencil can be found and the M eigenvalues 
with the corresponding eigenvectors calculated [2]. The q's of 
(1) correspond to the eigenvalues of the square matrix [4] 

the M of (1) may lie. It is interesting to observe that as the 
number of data samples N is increased, all these curves tend to 
converge to one, until they overlap, as shown in Fig. 2. 

where vT,] and vT2] are the eigenvectors associated with 
SVD truncated matrices PI] and B2], defined in (2). On the 
other band, the residues R, corresponding to each z, can be 
easily calculated with a least square approximation [2], and all 
these parameters can be used to construcl the closed form 
expression of (l), and the original waveform can be finally 
extrapolated at each instant of time. 

m. %OPTIMIZATION OF THE h@ METHOD 
AND THE STOP CRITERION 

It is shown [2] that the SVD on the following matrix [Yl 

(4) 
.'. "' i 

IAN-L-I1 AN-4 "' AN (,%.L),,L+,) 

... ... 

is equivalent to the SVD on the matrices Pi] and [y:]. 
Athough the matrix M has L+l eigenvalues, only the largest 
M are related to the signal to be extrapolated, while the 
reminders are related to the noise added. Hence, the ratio of 
each eigenvalue to the largest one can be taken, and a criterion 
based on these ratio values can be employed to discard the 
smallest eigenvalues [2]. It is also known that the parameter L 
can span approximately N/6 values in the range between N/3 
and N/2 [3], and approximately N/6 different curves are 
obtained, if the normalized eigenvalues for each (N-1) x &+I) 
M matrix are plotted as a function of L, as in Fig. 1. 

Fig. I ,  Normalized eigenvalues of the matrix Y defined in (4) a for small 
value af the told number of samples employed N. 

The various intersections of all the curves with the 
threshold lie, e.g., -30 dB, help to find an initial range where 

I 

Fig 2. Normalized eigenvalues of the matrix Y defined in (4) for a large 
value of the total number of samples employed N 

The N samples employed for plotting the curves in Fig. 2 are 
much more (4 times) than those used in Fig. 1. Hence, the 
computational effort needed to obtain a unique value for M is 
not worth the investment. In fact, valuable information is 
embedded in the range indicated in Fig. 1, by the lowest and 
the largest intersection with the tresbold h e .  

The eigenvalues associated with the squared matrix [SI are 
calculated as a function of the parameter L, still varying in the 
range between N/3 and N/2, and the number M, now spanning 
the range indicated by the outer intersections in Fig. 1. 
Approximately N/6 sets of eigenvalues can be calculated for 
each M in the range specified. Each set corresponds to a 
solution, and it can be labeled unstable, if at least one of the 
eigenvalues is greater tban one [5]; the ratio of the number of 
unstable solntions over the total number can set the criterion to 
uniquely identify M among all the possible values. 

Fig. 3 .  lnstlbilily index as a function of M. 
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The most suitable value for M can be chosen by looking at 
Fig. 3. Different criteria can be employed for this choice, 
however, experience has shown that the largest M which has 
less than 50 % instability is a good value. Usually, more data 
needs to be recorded, if all the solutions found for each M are 
unstable On the other hand, it is possible to extrapolate the 
waveform, if all the solutions are not unstable at least for some 
M, although the reconstructed result may be very distorted. 

Once the number M is uniquely defined, several solutions are 
still available as a function of L. The normalized squared 
difference between each possible solution and the original data 
can be used to find the best among the available solutions, i.e., 

the set, wbicb minimizes the normalized squared difference as 
defined in (S), is chosen as the final solution [6]. 

The MF' method with the optimizing procedure does not 
guarantee, if applied one time, an accurate extrapolation 
according to (1). In fact, a comparison needs to be performed 
between the fmal solutions obtained with different sets of data 
and it needs to be estabilished whether the enhancement in the 
accuracy of the solutions is worth the additional computational 
effort or not. A fiequency-domain normalized squared 
difference between two final solutions obatined with different 
sets of data can be employed as a stop criterion [SI, i.e, 

The time domain algorithm can be stopped as soon as this 
difference drops below a certain threshold. Fig. 4 shows the 
implementation of this criterion as function of the data samples 
employed. 

-490 25 30 35 40 45 50 
kSamples 

Fig. 4. me stop criterion defined m (6) as a funnon ofthe number of samples 
employed. 

The practical application of this optimized method does not 
necessarily require the employment of all the samples given by 
the simulation, and usually some sort of decimation scheme 
can be applied. In fact, the inherent requirements of the 
simulation algorithms usually force the sampling interval At to 
be much smaller than the limit provided by the Nyquist 
theorem. In the FDTD algorithms, for example, the time 
interval is related to the cell size through the Courant stability 
condition; therefore, the presence of small features in the 
geometry under consideration always determines the time 
interval. The implementation of a decimation scheme allows 
the representation of the same temporal interval with less 
samples, as long as the new At meets the Nyquist theorem. 

m. APPLlCATlON OF THE OPTIMIZED M P  METHOD 
The employment of the MP method is very suitable for 

parameter extraction and time domain extrapolation of those 
systems characterized by long time responses, e.g., resonant 
metal enclosures with one or multiple slots, EM fields induced 
between the different ground and power planes in printed 
circuit boards due to currents injected along the vias, and EM 
fields induced by narrowband antennas,e.g., patch antennas. 

Fig. 5 shows a model under test, which is a 22 cm x 14 cm 
x 22 cm enclosure, with two longitudinal slots along the z 
direction, the geometry is fed through a SO R semirigid coaxial 
cable terminated on the interior of the cavity with a resistor. 
The geometry was thoroughly investigated in 171. The electric 
field measured at a location 3 meters away fiom the enclosure 
has a long time response due to the energy bouncing back and 
forth inside the cavity, and slowly radiated fiom the two slots. 

Fig. 5. Enclosure with hvo parallel slots. 

The time domain extrapolation is applied to several sets of 
data given by the simulation algorithm. The number of samples 
indicated correspond to the data effectively employed in the 
M P  method, in fact, a decimation factor of 6 is used. The 
application of the stop criterion shows that the the time- 
domain simulation can be terminated after 840 samples 
(6*140), because the gain in accuracy is very small. The 
comparison between the extrapolated wavefom and the 
simulated one given in Fig. 7 shows that the parameters 
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The implementaton of the stop criterion shows that the 
parameters extracted from the 250 decimated samples are 
sufficient to reconstroct the simulated wavefom, as shown in 
Fig. 11. 

V. CONCLUSION 
A method for terminating time domain simulations bas 

been presented in this paper. The method is based upon an 
optimization of the well known Matrix Pencil method and the 
implementation of a stop criterion based upon the normalized 
squared difference between two waveform extrapolated from 
different sets of data. Several criteria based upon experience 
have been proposed, however these criteria need to be 
thoroughly investigated, in order to establish geneml rules to be 
applied when dealing with different classes of problems. 
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