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Extended Operation of Flying
Capacitor Multilevel Inverters

Jing Huang, Student Member, IEEE, and Keith A. Corzine, Member, IEEE

Abstract—Recent research in flying capacitor multilevel in-
verters (FCMIs) has shown that the number of voltage levels can
be extended by changing the ratio of the capacitor voltages. For
the three-cell FCMI, four levels of operation are expected if the
traditional ratio of the capacitor voltages is 1:2:3. However, by
altering the ratio, the inverter can operate as a five-, six-, seven-, or
eight-level inverter. According to previous research, the eight-level
case is referred to as maximally distended (or full binary combina-
tion schema) since it utilizes all possible transistor switching states.
However, this case does not have enough per-phase redundancy to
ensure capacitor voltage balancing under all modes of operation.
In this paper, redundancy involving all phases is used along with
per-phase redundancy to improve capacitor voltage balancing.
It is shown that the four- and five-level cases are suitable for
motor drive operation and can maintain capacitor voltage balance
under a wide range of power factors and modulation indices.
The six-, seven-, and eight-level cases are suitable for reactive
power transfer in applications such as static var compensation.
Simulation and laboratory measurements verify the proposed
joint-phase redundancy control.

Index Terms—Converter, flying capacitor, inverter, multilevel,
rectifier, voltage balancing.

1. INTRODUCTION

N RECENT years, there has been considerable development

in multilevel power conversion, especially for application
to medium-voltage drives. The flying capacitor multilevel in-
verter (FCMI) topology [1]-[6] is relatively new compared to
the diode-clamped [7]-[9] and series H-bridge [10], [11] in-
verters. Although the FCMI is not as common, it has some dis-
tinct advantages over the diode-clamped topology including the
absence of clamping diodes and the ability to regulate the flying
capacitor voltages through redundant state selection even if the
number of voltage levels is greater than three [5]. Unlike the se-
ries H-bridge inverter, isolated voltage sources are not required.
Considering these advantages, the FCMI is finding many prac-
tical applications in industry [2].

The reason that capacitor voltage balancing is not an issue
in the FCMI is that there are several conduction paths within
each phase that can produce the same voltage levels. This
per-phase redundancy can be used to choose the path with
the best balancing characteristics at any point in time. It is
possible to change the ratio of capacitor voltages and sacrifice
this redundancy in order to improve the power quality by in-
creasing the number of voltage levels [3]. However, some of the

Manuscript received July 14, 2004; revised April 4, 2005. This paper was
presented at the IEEE Industry Applications Society Conference (IAS), Seattle,
WA, October 3-7, 2004. Recommended by Associate Editor P. M. Barbosa.

The authors are with the Department of Electrical Engineering, University of
Missouri, Rolla, MO 65409-0040 USA (e-mail: keith@corzine.net).

Digital Object Identifier 10.1109/TPEL.2005.861108

c2a

a

Ve

)1
1
<

Tu3-l

Fig. 1. Three-cell FCMI inverter topology (a-phase).

redundant states are then not available for capacitor balancing.
Therefore, a tradeoff between power quality and capacitor
voltage balancing can be established. In this paper, a three-cell
flying capacitor inverter is used to exemplify this tradeoff. The
typical four-level performance is extended to five-, six-, seven-,
and eight-level. The loss in capacitor voltage balancing control
is compensated by using joint redundancy involving all phases
(in effect adjusting the common-mode line-to-ground voltage).
It is shown that five-level operation can be used for motor drive
applications, while six-, seven- and eight-level operation can be
used for applications involving reactive power compensation.

II. EXTENDED FLYING CAPACITOR INVERTER

Fig. 1 shows one phase of the three-cell flying-capacitor in-
verter topology. For this inverter, each capacitor is charged to a
different voltage and by changing the transistor switching states,
the capacitors and dc source are connected in different ways and
produce various line-to-ground output voltages. For the analysis
presented herein, the line-to-ground voltage and capacitor cur-
rents are of interest. From the topology KVL and KCL equa-
tions, these quantities can be expressed as

Vag = (TaS)'Udc + (Ta2 _Ta3)vc2a + (Tal - TaZ)Ucla (l)
Z'cla = (Ta2 - Tal)ias (2)
Z'c2a = (Ta3 - TaZ)ias~ (3)

Based on these fundamental equations, the line-to-ground
voltage and capacitor currents can be determined for all combi-
nations of transistor signals as shown in Table 1.

0885-8993/$20.00 © 2006 IEEE
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TABLE 1
THREE-CELL FCMI OUTPUT VOLTAGES
Tar | Taz | Tus Vag icla Ic2a
01010 0 0 0
0 0 1 Vdc- Ve2a 0 ias
0 1 0 Ve2a- Vela Ias - lgs
0 1 1 Vdc-Vela ias 0
1 0 0 Vela - las 0
1 0 1 Vde- Ve2at Vela - lgs las
1 1 0 Ve2a 0 - las
1 1 1 Vde 0 0
TABLE 1I
THREE-CELL FCMI OUTPUT VOLTAGES WITH DIFFERENT RATIOS
Tot | Ty | T3 | E:2E:3E | E:2E:AE | E:3E:5E | E:3E:6E | E:3E:7E
0 |0 |0 0 0 0 0 0
0 |0 [1 E 2FE 2E 3E 4E
0 |1 |0 E E 2E 2E 2E
0 |1 |1 2E 3E 4E SE 6E
1 [0 |O E E E E E
1 [0 |1 2E 3E 3E 4E SE
1 1 |0 2E 2FE 3E 3E 3E
1 1 |1 3E 4E SE 6E 7E
four- five- SiX- seven- eight-
level level level level level

As with other inverter topologies, the three-phase implemen-
tation involves three branches of the structure shown in Fig. 1
connected in parallel on the dc side and typically connected to a
wye-configured load on the ac side. Since the load neutral may
not be accessible, the line-to-line voltages may be of interest and
can be expressed in terms of the line-to-ground voltage by [3]

Vab 1 -1 0 Vag
Vbe = 0 1 -1 Ubg | - (4)
Vca -1 0 1 Ueg

The load’s line-to-neutral voltages can also be determined di-
rectly from the line-to-ground voltages using [3]

Vas 2 -1 -1 Vag
Vps = 5 -1 2 -1 Ubg . (5)
Ves -1 -1 2 Veg

From Table I, it can be seen that the line-to-ground voltage de-
pends on the values of V.14, Vc2q, and vq.. By changing the ratio
of these voltages, it is possible to alter the number of voltage
levels that the inverter can produce. This concept was previously
introduced for the FCMI topology as well as combinational “hy-
brid” topologies [12], [13]. Table II shows the line-to-ground
voltage for several different dc voltage ratios. Therein, each
column represents a different ratio listed as (ve14 : Ve2q @ Vde)s
and examples of four-, five-, six-, seven-, and eight-level cases
are shown. It should be pointed out that these are only a small
collection of voltage ratios and other ratios exist which will yield
four-, five-, six-, seven-, and eight-level operation. A computer
simulation was performed considering every possible voltage
ratio in order to determine which ratios are best in terms of ca-
pacitor voltage ripple and switching loss. Table II contains the
set of ratios which had the best performance for the specific
number of voltage levels.

From Table II, it can be seen that there is considerable re-
dundancy for the four-level case; having three possibilities for

A
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Fig. 2. Five-level triangle modulation.
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both intermediate levels £ and 2E. Although the redundant
states have the same output voltages, they have different effects
in terms of the capacitor currents. Therefore, a straightforward
choice can be made which will improve the capacitor balance
situation when the F or 2F level is required. For the five-level
case, there is redundancy for all intermediate levels. However,
it turns out that there is not enough redundancy to regulate the
capacitor voltages. This problem will be solved by considering
joint redundancy among all phases in a later section. As the
number of voltage levels increases, the amount of redundancy
goes down. For the eight-level case, each switching state has a
unique voltage level and so there is no per-phase redundancy
available.

III. MULTILEVEL VOLTAGE-SOURCE MODULATION

Voltage-source modulation can be accomplished in a multi-
level inverter system using the sine-triangle method [7]. The first
step is to define duty cycles for each phase as [14], [15]

1

d, = 3 [1 + mcos(f.) — % COS(3HC):| 6)
1 27 m

dp = 3 [1 + mcos <Hc — ?> -5 cos(390)] @)

1 2
d, = 3 [1 + mcos <Hc + %) — %cos(%c)] ®)
where 6. is the electrical angle which could be related to com-
manded frequency f* by

t

Q:/%Fﬁ ©)

0

and m represents the modulation index which has a range from 0
to 1.15 [14], [15]. The three duty cycles are compared to a set of
triangle waveforms to produce commanded switching states for
each phase. As an example, Fig. 2 demonstrates the generation
of the switching state for the a-phase. Therein, the a-phase com-
manded switching state s}, is the number of triangle waveforms
that the duty cycle is above. Incidentally, in a digital signal pro-
cessor (DSP) implementation, there is an alternate method of
producing the switching states which uses state machine timers
instead of triangle waveforms [15]. The output of the modulator
is input to a capacitor balancing control described in the fol-
lowing sections.
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IV. CAPACITOR VOLTAGE BALANCING METHOD

In order to obtain reasonable distinct multilevel output
voltage results, the voltages on all six capacitors (two per
phase) must be maintained at constant values. However, the
load currents have different effects on the charging and dis-
charging of the capacitors and will tend to unbalance the
capacitor voltages. In this case, the redundant switching states
become the key component for balancing the capacitor voltages.

Since there are several conduction paths within each phase
which can produce the same voltage levels while having dif-
ferent capacitor charging characteristics, per-phase redundancy
can be used to choose the path with the best balancing per-
formance. However, according to Table II, as the number of
achieved voltage levels increases, the number of available per-
phase redundant states decreases. In this case, incrementing or
decrementing the switching states of all three phases s7;, s; and
s% can also be used to balance capacitor voltages since this re-
sults in changes in the zero-sequence line-to-ground voltage,
which does not affect the load voltages according to (4) and (5).
The concept behind this joint-phase redundant state selection
(JRSS) method is that the line-to-ground voltages (vq g, Vig, Veg)
of all phases may be changed simultaneously without affecting
the load voltages since the terms that are common in all phases
will cancel when looking at the line-to-neutral voltages (v,s,
Ups, Ves ) OF line-to-line voltages (v, Vpe, Veq ). For example, the
state involving (v,y =0, vpy = F, v,y = F) could be changed
10 (Vag = E, vpg = 2F, veg = 2E) or (vqg = 2F, vy = 3E,
Vog = 3E) or (Vg = 3E, vpg = 4F, v,y = 4F). Because
the corresponding load voltages are the same for each of these
cases, the selection of the appropriate joint state can improve
the capacitor balancing situation. In this paper, two joint-phase
redundant state selection algorithms are introduced as described
in the following sections.

A. On-Line Joint-Phase RSS

In general, this JRSS algorithm works as follows. For any de-
sired three phase switching states s, s; and s, all available re-
dundant states, which can produce the same load voltages are
evaluated and compared. These states include joint-phase re-
dundant states and per-phase redundant states. The number of
joint-phase redundant states Njgrss can be expressed by

Nigrss =n — [MAX (s%, sp,s%) — MIN (s, s5,s5)]  (10)
where 7 is the number of voltage levels. The first joint-phase
redundant state to be considered can be obtained from

S*Jx = S: _MIN(SZ‘SZS;) (1)
where x is the phase (a, b, or ¢). The other states are obtained
by adding 1 to all three phases until all redundant states are
evaluated. The number of per-phase redundant states Nprss.
is related to the ratio of the capacitor voltages. Table III shows
an example in a five-level inverter when the capacitor voltage
ratio is set to 1:2:4.

Each combination of redundant states will be evaluated in the
following way. First, assuming that phase currents do not change
during one DSP switching period T (which is valid when the
switching frequency is high), each switching period can be split

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 1, JANUARY 2006

TABLE III
NUMBER OF PER-PHASE REDUNDANT STATES
IN A FIVE-LEVEL INVERTER (1:2:4)

*

Sa | Nprssa (Tey Ta2 Ta3)
0 1 000
1 2 (010),(100)
2 2 001),(110)
3 2 011,101
4 1 a1l

into four windows [15]. The predicated capacitor voltage change
during one window time can be calculated as

leya ° twindow

C

Y

AVyz = (12)
where x is the phase (a, b, or ¢), y is the capacitor (1 or 2),
twindow 1S the time for one window. The capacitor currents 4.y,
are determined from phase current sensors and the inverter
switching path according to (2) and (3). The predicted capacitor

voltages for the next window are determined as
13)

Veyx = Veyx + A’Ucy$~

The square error for each potential state is evaluated by com-
parison to ideal voltages as

c 2 )
€= Z Z (fu’c‘fw — ﬁcyw)

r=ay=1

(14)

and the state with the least error is chosen. This process is
repeated and (12)—(14) are evaluated every time when the com-
manded switching states are changed. Fig. 3 shows the detailed
flow chart of implementation. This algorithm minimizes the
error between capacitor voltages and their ideal values, and thus
gives the best possible choice to improve the overall balancing
of voltages of the six capacitors.

B. Look-Up Table Joint-Phase RSS

This algorithm follows multilevel modulation by a redundant
state selection table for capacitor voltage balancing. The proce-
dure of how to form this table is similar with the on-line JRSS
method except the evaluation part.

The inputs (address) of the table are the commanded
switching states from the modulator as well as digital flags
representing the state of the system. This method requires
that the direction of the three-phase load currents be known.
Then the direction of capacitor currents can be determined
considering transistor switching state according to (2) and (3).
Let F;,, represent the capacitor current direction flag, which
equals to 1 for positive current and O for negative current. These
flags are used to determine whether a choice is improving or
impairing the capacitor balancing situation. Let F),,, represent
the capacitor voltage flag, which is defined as

*
cyx

*
Veyz < Voya

1, veye 2

Frpo = {07 >

to show if the capacitor is overcharged or undercharged.

Since there are two capacitors in one phase, for each
switching state, its overall effect on six capacitors should be
considered. To take into account different balancing effects on

15)
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Fig. 3. Flow chart of on-line joint-phase RSS method.

all the capacitors, four more flags are used. The same-phase ca-
pacitor priority flag F'A.,. tells which one of the two capacitors
in the same phase need to be balanced first defined as

ABS(veia _”:lz) >

Veiz Veaz
ABS(vpc1—vi, 1) < ABS(Ve2z—v2,,)
v* v* .

ABS(ve2a—v),,)

FA., = (16)

clz c2z

Herein, relative deviations were used because the goal of the
capacitor voltage balancing was to keep the capacitor voltages
close to their nominal values. However, absolute deviations can
also be used where the capacitors are treated equally for the
same amount of voltage deviations. The all-phase capacitor pri-
ority flag IndA. tells which capacitor in six capacitors should
be balanced first, and is determined by choosing the one capac-
itor with the maximum voltage deviation.

With the desired switching states and all the above flags avail-
able, a balancing performance priority is chosen to describe the
capacitor charging and discharging characteristics of each state.
The following principles are employed.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
037
0.2
0.1
0.0

N

S AN\
EANNN

6
n
Fig. 4. Maximum power factor versus number of levels.

« If the capacitor current direction is positive (out of ca-
pacitor) and the capacitor is overcharged, this redundant
state will help regulate the capacitor voltage. Similarly, if
the current direction is negative and the capacitor is un-
dercharged, the redundant state will also help regulate the
capacitor voltage. These redundant states will be given a
high priority Pj,.

e When the capacitor current tends to unbalance the capac-
itor voltages, a low priority of P, = 0 will be provided.

¢ When the capacitor current is zero, a medium priority P,
is given.

In order to reduce the size of the table and simplify imple-
mentation, the algorithm can be divided into two steps. The first
step focuses on the capacitor which should be balanced first
of all six capacitors, with the current direction flag and capac-
itor voltage flag of this capacitor. From all possible redundant
states considering joint-phase redundant states, the one which
can help balancing best by the above principle is chosen. If there
are two possibilities with the same effect on balancing, the one
which can help the other capacitor in the same phase is chosen.
After obtaining the redundant states for this phase, the redun-
dant states for the other two phases are easy to find.

With the updated switching states, the conduction paths for
transistor can be determined by considering only per-phase re-
dundant states. The flag F'A., tells which one of the two ca-
pacitors in each phase has a higher priority. Different values of
Py, and P,, are assigned to capacitors of high and low priorities.
For high priority capacitors, P, = 6 and P,,, = 3, while for low
priority capacitors, P, = 2 and P,, = 1. The value of P, is al-
ways 0.

The performance index for each per-phase redundant state
can then be calculated as the sum of priority indices (P, Py,
or P}) of the two capacitors in the same phase. The switching
state with the highest performance priority is then selected. The
performance indices for each switching state in all possible sit-
uations are pre-calculated and compared so that the best state
can be obtained directly from a table based on the digital flags.

C. Operating Modes of the Distended FCMI

The proposed algorithms were evaluated through detailed
simulation. The JRSS method works better for lower modula-
tion indices since that leads to more available joint states. As a
worst-case analysis, consider the results of Fig. 4. Therein, the
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modulation index is set to a maximum and the maximum power
factor (without loosing capacitor voltage balance) is shown for
the various numbers of levels for the three-cell FCMI. From
Fig. 4, it can be seen that the four-level case will maintain
balance under all circumstances. The five-level will work for
power factors up to 0.89 lagging. This makes the five-level
suitable for motor drives where the power factor is typically
below 0.8 lagging at full modulation index. For six- seven- and
eight-level operation, capacitor voltage balance is only possible
for lower power factors. In this case, this performance is only
achievable for reactive power applications such as static var
compensation.

V. PROPOSED INVERTER PERFORMANCE

In this section, the extended FCMI inverter operation is com-
pared to the traditional FCMI operation in terms of switching
losses, commanded common-mode voltage, and capacitor size.
Advantages and limitations of the proposed scheme are evalu-
ated using detailed computer simulation.

A. Switching Losses

The traditional flying-capacitor multilevel inverter employs
three cells to produce four output voltage levels. With the same
number of cells, the proposed control can extend the operation
to produce five, six, seven, and even eight levels, while keeping
the capacitor voltages balanced. With more voltage levels, the
system total harmonic distortion (THD) and output filter size
can be greatly reduced, which results in more compact system
design and lower costs. The number of levels is extended by
changing the voltage ratio which means that the device voltage
pairs will have different voltages (whereas all devices block
the same voltage when the traditional voltage ratio is used).
Besides the different voltage ratings, the proposed control uses
joint-phase RSS instead as well as per-phase RSS (whereas
the traditional control uses only per-phase RSS). The use
of per-phase and joint-phase redundant state selections for
capacitor balancing makes the commutations between adjacent
levels require more than one single device pair so the switching
pattern is not optimized for minimal switching losses. To
compare the switching losses of the proposed control to the tra-
ditional method five-level inverter system was used in the base
simulation. The inverter was simulated using 1200-V, 50-A
IBGT/diode dual modules which have the properties Ve sat =
33V, Visar =30V, E,, =694 ml], E,g = 872 m], and
FE,.. = 3.33 mJ, and 600-V, 50-A IBGT/diode dual modules
which have the properties Vee sat = 2.8 V, Vi gar = 3.0V,
E,, =136 mJ], E;g = 3.14 mJ, and FE,,, = 0.429 mJ. The dc
voltage was set to 1200-V and the PWM clock frequency was
setto 5 kHz. An R—L load was placed on the inverter operating
with 40-kVA, 32-kW, and 60-Hz. Both the traditional four-cell
FCMI and the proposed three-cell FCMI with voltage ratio of
1:2:4 simulated. The results showed that the switching losses
increase from 83-W to 113-W when using the proposed con-
trol. It can be seen that a small amount of switching losses are
sacrificed in order to balance the flying capacitors. However,
due to the absence of one pair of transistors, the conduction
losses decreased from 435-W to 309-W. Overall the efficiency
of proposed method is slightly higher that the efficiency of
traditional method.

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 21, NO. 1, JANUARY 2006

TABLE IV
INDUCTION MACHINE RATINGS AND PARAMETERS
poles =4 phases =3
V[,I,,r'alud =230V l[,,r'uu'd =125A
ﬁ‘ated =60Hz Pfruwd =0.75
Praed=3.7TkW Oy rared = 183.2 rad/s
rs=021Q Lis=1.43 mH
7' =0.113Q Ly'=2.58 mH
M =36 mH

B. Commanded Common-Mode Voltage

The traditional FCMI control utilizes per-phase RSS for
capacitor voltage balancing and is therefore invariant to the
commanded common-mode line-to-ground voltage. For the
simulation and lab experiments in the sections below, a third
harmonic commanded voltage is used, as per (6)—(8), so that the
maximum modulation index may be commanded in the mod-
ulator. However, the JRSS method alters the common-mode
line-to-ground and it ultimately depends on the capacitor
voltage balancing. This brings up the question of whether
the commanded common-mode voltage will affect the states
which are selected by the JRSS method and in turn affect
the capacitor voltage balancing. To investigate this possibility
several common-mode voltages were simulated in the modu-
lator including continuous SPWM method and discontinuous
DPWMI1, DPWM2, DPWM3, DPWMMIN, DPWMMAX
methods [16]. Through these detailed simulations, it was found
that there was no significant differences in capacitor voltage
balancing, capacitor voltage ripple, or switching losses using
various common-mode voltages.

C. Capacitor Size

A detailed simulation was used to compare the capacitor size
of the proposed inverter with that of a traditional FCMI. For
a base comparison, the five-level case was chosen. The tradi-
tional solution uses a four-cell FCMI structure with dc voltage
ratios of (1:2:3:4) whereas the extended FCMI uses a three-
cell structure with a dc voltage ratio of (1:2:4). In this study,
the total dc voltage was set to 600-V and the dc link capacitor
was set to 750 pF (a typical size considering the ac load cur-
rent). By selecting standard sizes, the traditional method uses
1000-pF 150-V, 470-F 300-V, and 330-uF 450-V capacitors
per phase in order to ensure each capacitor has a voltage ripple of
less than 2%. The proposed method requires a 1000-uF 150-V
and a 1500-uF 300-V capacitor in each phase to ensure the
same voltage ripple. According to the datasheets, the traditional
method requires flying capacitors that have a volume of 97.1%
of the dc link capacitance whereas the proposed method uses
flying capacitors with a volume of 171.9% of the dc link capac-
itor. This increase in capacitor volume comes from an increase
in the rms current due to the JRSS switching. Another aspect to
consider is that the proposed method uses six IGBTs instead of
eight. When the volume of the added IGBTs is considered, the
proposed method has a slightly smaller volume and the overall
cost is roughly the same. Furthermore, the added IGBTSs in the
traditional method will also require added heat sinks and added
gate drive circuitry.
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Fig. 5. Five-level steady-state operation.

VI. COMPUTER SIMULATION RESULTS
A. Steady-State Study

A computer simulation has been created to verify the pro-
posed method. In this simulation, a three-phase induction motor
with parameters [17] showed in Table IV is connected to the in-
verter as a load. The dc voltage is set to vg. = 200 V. The ca-
pacitance values of the capacitors are C1, = Cy, = 3300 uF
and the commanded fundamental frequency f* is 60 Hz.

For the first study, the ratio of capacitor voltages is set to 1:2:4
to obtain five level steady-state operation. The modulation index
is near maximum value 1.14. The motor runs with commanded
rotor speed of 186.6 rad/s and a load torque of 8 N - m. Fig. 5
shows the capacitor voltage deviations, capacitor voltages v¢.1q,
Ue2q, G-phase line-to-ground voltage v,g4, line-to-line voltage
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Fig. 6. Eight-level steady-state operation.

vap and motor current 7,5, AS can be seen, capacitor voltages
are maintained at a fairly constant level with v.1, = 50 V and
ve2q = 100 V, which satisfies the ratio requirement. The ca-
pacitor voltage deviations jump around 0 V, the voltage ripple
for each capacitor is around 2%. The capacitor voltage balance
can also be seen in that the line-to-ground voltage has five dis-
tinct levels. The effect of JRSS is seen in the bus clamping of
the line-to-ground voltage v, to the highest and lowest levels.
However, since the line-to-ground voltages of the other phases
are also changed at the same time, the line-to-line voltages are
not affected. From the line-to-line voltages, the effective nine-
level waveform can be seen (four positive levels, four negative
levels, and one zero-level). Also, the resulting sinusoidal cur-
rent lags the output voltage by 41° making the power factor
pf = 0.75. The last traces in Fig. 5 are the common-mode (line
to dc link midpoint) voltages for the extend FCMI and a tra-
ditional FCMI operating under the same conditions. By com-
parison, it can be seen that the extended FCMI has the same
common-mode voltage level steps, but at a higher frequency due
to JRSS capacitor voltage balancing. This is a drawback of the
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Fig. 7. Five-level dynamic motor drive operation.

proposed method since higher frequency common-mode volt-
ages could lead to higher frequency common-mode currents.

Fig. 6 shows eight-level operation with the same variables
as the five-level operation study. In this case, the ratio of ca-
pacitor voltage is set to 1:3:7, which corresponds the capacitor
voltage v.1, = 28.6 Vand v.o, = 85.7 V shown in the figure. To
lower the power factor, the induction motor speed was set to the
no-load value of 188.5 rad/s. Again, capacitor balance is evident
considering the even levels of v,4 and v,y. The line-to-ground
voltage v,4 demonstrate the effectiveness of the redundant state
selection. The line-to-line voltage v,;, waveform exhibits high
power quality with fifteen voltage levels. The current lags the
output voltage by approximately 90° since the slip is set close
to 0.

B. Dynamic Studies

Motor drive operation performance is shown in Fig. 7.
Therein, the three-cell FCMI inverter with a 1:2:4 voltage ratio
drives an induction motor with vector control and an outer speed
loop [18]. At the beginning of this dynamic study, the motor
speed and load torque are set to zero. Two seconds later, after
the machine flux has built up, the speed command is ramped
up to 186.6 rad/s. A step change in load from 0 to 8 N-m is
applied at 4.5 s, and then the commanded speed is lowered
to zero with the load on the motor. All the other operating
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Fig. 8. Five-level inverter implementation.

conditions are the same as in the steady-state operation study.
In this study, capacitor voltages v.1q, Ue2q4, torque 7., motor
speed wy,, current 2,5, and modulation index m are shown.
As can be seen, the redundant state selection regulates the
capacitor voltages. The motor speed w.,,, waveform follows the
commanded speed. The torque, speed, and capacitor voltages
all indicate good balance throughout this dynamic study as the
modulation index and power factor change over a wide range.

VII. LABORATORY VALIDATION

In order to validate the proposed concept, a three-cell five-
level FCMI inverter was constructed in the laboratory. Fig. 8
shows a block diagram of how the balancing algorithm was im-
plemented. The modulation is programmed in a DSP which gen-
erates the desired switching states, as described above, which
are labeled s, sy, and s}. Analog-to-digital conversion is per-
formed on the phase current and capacitor voltages in order to
determine the current direction and capacitor voltage flags. This
information along with the desired switching state forms the ad-
dress of the desired state in the redundant state selection table.
Redundant states were calculated off-line and programmed into
a complex programmable logic device (CPLD).

The ratio of the capacitor and dc source voltages was set
to 1:2:4. A 3.7-kW induction motor with the same parameter
in steady-state study was used as a load. The dc voltage v4.
was supplied from an isolated rectified three-phase source. All
the other operation conditions are the same as in the five-level
steady-state simulation study. Also, the same variables as in the
five-level steady-state simulation study are shown in Fig. 9 for
comparison. As can be seen, the voltages and currents exhibit
typical five-level inverter performance. The laboratory results
showed that the capacitor voltages can be regulated at v.1, =
50 V and v.2, = 100 V. At steady state, the power factor of the
machine was 0.753 lagging with 2.73-kW input power. The low
frequency harmonics seen in the current waveform were due to
induction motor saturation. Since the devices used in the sim-
ulation study do not take the drop voltages into account, there
were minor discrepancy between the line-to-ground voltage and
line-to-line voltage of the simulation and laboratory results.



HUANG AND CORZINE: EXTENDED OPERATION OF FLYING CAPACITOR MULTILEVEL INVERTERS 147

2007

Vo (V) 100

2507

™ 0 WWW

-250-
2507

S

-250-
207

i (A) 0 /%\ /’\

=204
1007

V”U (V) 0

-100-

Fig. 9. Five-level inverter laboratory test results.

VIII. CONCLUSION

This paper has studied extended operation of a three-cell
flying capacitor multilevel inverter. Redundant switching states,
vital to capacitor voltage balancing, are sacrificed to achieve
a higher number of output voltage levels. Two joint-phase
redundant state selection algorithms were proposed to keep the
capacitor voltages constant. Simulation results demonstrate the
effectiveness of each algorithm. One algorithm was validated
with laboratory experiments on a motor drive system. In that
study, a three-cell flying capacitor inverter which typically
operates in the four-level mode was extended to five-level
operation. It was also demonstrated through simulation that
the three-cell inverter can achieve eight-level operation for
applications involving reactive power compensation.
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