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Intelligent Strain Sensing on a Smart Composite Wing using Extrinsic Fabry-Perot 
Interferometric Sensors and Neural Networks. 

Rohit Dual, Vicki Elle?, Kakkattukuzhy M. Isaac ', Steve E. Watkinsz;and Donald C. Wunsch' 

'Applied Computational lntelligence Laboratory 
'Applied Optics Laboratory 

Department of Electrical and Computer Engineering 
'Department of Mechanical and Aerospace Engineering 

University of Missouri-Rolla 
Rolla, MO-65409, USA 

Abrtracr ~ Strain prediction at various locations on a smart 
composite wing can provide useful information on its 
aerodynamic condition. The smart wing consisted of a 
glasslepoxy composite beam with three Extrinsic Fahry-Perot 
Interferometric (EFPI) sensors mounted at three different 
locations near the wing root. Strain acting on the three sensors 
at different air speeds and angles-of-attack were experimentally 
ohtained in a closed circuit wind tunnel under normal conditions 
of operation. A function mapping fhe angle of attack and air 
speed to the strains on the three sensors was simulated using 
feed-forward neural networks trained using hack-propagation 
training algorithm. This mapping provides a method to predicl 
stall condilion by comparing the strain available in real time 
and the predicted strain by the trained neural network. 

I INTRODUCT~ON 

Advanced composite materials are being used in 
substantial amounts for the developmeni and construction of 
advanced aerospace structures [ I ]  that provides the structures 
with clear advantages of long life, high strength-to-weight 
ratio, and flexible design. A built-in Health Monitoring 
System (HMS) can monitor structural condition, and react to 
any changes in environment, resulting in a smart structure 12- 
31. Research in HMS development for efficient smart 
structures has improved capability in data interpretation or 
control functions [3-61. The choice of an optical sensor 
system, an important component of a HMS, has proven to he 
an effective choice owing to the number of advantages over 
non-optical sensors including little perturbation to the host 
structure, immunity to electromagnetic interference and the 
ability to form multiplexed networks for complex 
measurements [2]. Advances in fiber optic sensing 
technology are reducing the weight, required power, and the 
cost. Fiber optic sensor based HMS have been used for 
monitoring structural integrity [7-81, vibration control [9], 
and damage assessment using modal analysis [IO]. 

Artificial Neural Networks (ANN) are being used 
extensively as an efficient processing system due to their 
capabilities in pattern recognition, classification and function 
approximation [4-6, 10-1 11. The integration of optical sensor 
system and ANNs has enhanced the applications of fiher- 

reinforced composite components into aerospace systems. 
Research has been carried out on the development of a smart 
helicopter rotor model using neural networks [IZ]. Neural 
networks are being extensively used in many aerospace 
applications including auto-pilots, flight path simulations, 
control systems, component simulations and fault detection 

Prediction of aerodynamic parameters under varying 
load conditions on an aircraft wing would provide useful 
information on the working condition of the wing. One such 
parameter is the strain levels acting at various points on the 
wing. The mathematical modeling of strain levels using 
known parameters such as angle-of-attack and wind speed is 
highly complex and not feasible. Complication factors are 
unpredictable wing stall, conditions on the wing surface, and 
changes in environmental conditions such as icing, rain, dirt; 
wind turbulence and shear. These varying input parameters 
cannot he accurately modeled using mathematical equations. 
The use of predictive and adaptive tools, like ANNs, that 
learn from data obtained from sensors can model to high 
accuracy. The data from the sensors incorporate the 
unpredictable conditions. The fusion of efficient fiber optic 
sensor technology and neural networks provides a possible 
solution to modeling the strains acting on different points on 
the wing and lead to an improvement in flight safety, and 
maintenance. 

Prior research has been carried out on the modeling of 
strain acting on the sensor attached on the wing root using 
neural networks [14]. This paper deals with an extension of 
the approach. Here, a more complex and aerodynamic wing 
was used and multiple sensors were distributed along the 
length of wing. The next section gives a brief overview on 
fiber optic sensors used in this test and its support system. 
The third section deals with the experimentation carried out 
to obtain the strains from the sensors under varying 
parameters of angle-of-attack and speed. The fourth section 
gives two types of neural network implementations for the 
sensors. The final .section gives the conclusions and insight 
into future work to be carried out. 
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11 FIBER OPTIC SENSORS 

Common fiber optic sensors are based on interferometric 
and attenuation effects. Apart From being immune to 
electromagnetic interference, non-conductive to electrical 
sources, capable of wide temperature operation, and safe in 
inflammable or explosive environment, fiber optic sensors 
can he embedded into composite structures, have high 
bandwidth, may he multiplexed, and are capable of serving 
not only as sensors but also mediums to relay their 
information [2,8,15]. Interferometric sensors are more 
sensitive and are localized in sensing compared to attenuation 
systems. Fabry-Perot sensors have added advantages over 
other interferometric types. They have no reference arm 
requirement as in Michelson or Mach-Zehnder sensor and are 
single ended [2]. 

This research uses the extrinsic Fabry-Perot 
interferometric (EFPI) sensor, Figure 1, to sense the strain 
levels. EFPI sensors have short gauge length and 
consequently are used for point strain measurement. 

Ontical Fiher 

. .  
Cavity b p i i l n q  Tube 

Figure 1: Extrinsic Fably-Perot Interferometric (EFPI). 
The optical output is the reflected signal formed by the 
interference of multiple reflections from the glass-air 
interfaces of the cavity. 

The sensor instrumentation is shown in Figure 2. The 
sensor and instrumentation used in this study were 
manufactured by Luna Innovations, lnc, and were capable of 
ahsolute strain measurements. Also, multiple EFPI sensors 
can be multiplexed at a scanning rate of one-Hertz per sensor 
channel. 

An LED source provides the input light beam into the 
single mode fiber. A coupler and wavelength demodulator 
branches the reflected interference fringes to a detector. The 
interference response at several wavelengths can determine 
the absolute cavity displacement and hence the absolute 
strain. 

I11 EXPERIMENTATION 

A fiber-reinforced composite wing with an aluminum 
frame was manufactured in the Composite Fabrication 
Laboratory at the University of Missouri-Rolla. The wing 
has a NACA 0012 airfoil section. The chord length is 10 cms 
and the span is 50.8 cm. The wing has of two spars made of 
stainless steel rods and aluminum ribs spaced -100 cm apart. 
The aluminium ribs were first machined in the shape of the 
airfoil section and the steel rods were inserted in holes drilled 
in the ribs, providing a skeleton for the wing. Styrofoam 
blocks inserted between the spars were then shaped to form 
the airfoil section, accomplished by cutting the Styrofoam 
using a thin heated wire. Fiberglass cloth was used form the 
skin. After wrapping with the cloth, resin was applied to 
provide the final composite wing. The wing surface was 
sanded to a fine finish, taking precautions to maintain the 
airfoil cross section shape. The finished wing was then 
examined for structural integrity and geometrical accuracy. 
The fiber optic sensors were mounted in grooves cut in  the 
Styrofoam prior to covering with fiberglass cloth. The optical 
fibers from the sensors were placed in channels formed on the 
wing prior to installing the cloth covering. After installing the 
cloth, applying the resin and sanding, the sensors and the 
fibers were hardly noticeable and did not cause any surface 
irregularity. The wing had a top view as shown in Figure 3, 
showing the aerodynamic wind direction. 

e 

Wavelength 
Demodulator 

Figure 2: Schematic diagram of the fiber-optic support 
system It consists of a light emitting diode (LED), an 
optical isolator, a 2x1 coupler, and a detection apparafus. 

Figure 3: Top-view of the Composite Wing used in 
Experimentation. Aerodynamic forces are created by the 
pressure and shear stress distributions leading to a strain 
field over a wing surface. 

Key strain points can he monitored using EFPI sensors 
under different operating conditions. Monitoring the strain at 
pre-decided locations on the wing surface, can provide useful 
information in modeling wing stall. Three EFPI sensors were 
strategically placed on the upper surface at the wing root as 
shown in Figure 4. 
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Figure 4: Sensor placement on the surface of the wing. The 
arrows show the direction of wind-flow. 

The experiments were conducted in a'closed circuit wind 
tunnel. The wind tunnel test section measured 120 x 76 cm. 
The air speed was measured using a pitot-static tube and a 
digital dynamic pressure sensor. The strain readings were 
recorded using the attached sensors and associated 
instrumentation. The only parameters that were varied were 
the air-speed and angle-of-attack. The variation in the angle- 
of-attack was measured as shown in Figure 5. 

. ,  

Figure 5 :  Setup for Measuring the Angle-of-Attack. Fixed 
increments of 1 cm in horizontal scale bring about a change 
in angle-of-attack. A mirror was mounted at the wing root. 
A laser beam is bounced off the mirror to a ruler. Rotation 
in the wing angle (a) brings about a horizontal shift in the 
beam (x). 

The dynamic pressure was varied between 0 Pa and 460 
Pa for a particular horizontal increment in angle-of-attack. 
The variation in the angle-of-attack (a) was brought about by 
the variation in the horizontal scale in increments of. lcm 
between -4 cm to + I  1 cm (for cc between -1.627' and +4.3 1'). 
Sampled versions of the time-based.strains were stored at a 
sampling rate of 3 Hz as shown in Figure.6. A total of 103 
test samples were recorded, for each sensor, by the 
combination of different air speeds and angle-of-attacks. The 
next section deals with the modeling of these strains to the 
input parameters of air speed and angle-of-attack. 

strain foraenlorSt 

Tim. 

strain fO,*en.O,SZ 

175c------------i I 

I I 

H I 

Figure 6:  Sampled versions of strains from the three 
sensors. Note the small range over which the strain varies. 
This range may vary depending on the sampling time. A 
set of neural networks was trained on maximum and 
minimum values of strain and another set was trained on 
average strain values. 

IV NEURAL NETWORK IMPLEMENTATION 

The networks were trained on two types of sensor data. 
Note from figure 6, the sensor output varies over a range of 
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values. The results of training and simulation of the networks 
on the maximum and minimum, and average strain values are 
compared. 
A.  Training on Minimum and Maximum Strain Values 

A total of three neural networks were implemented, one 
for each sensor. The networks varied in the architecture, 
owing to the difference in their placement, resulting in a 
different mapping function. For all the three networks, the 
input and output data was normalized and scaled between -1 
and I .  A 2,38,2 ANN for sensor ‘SI’, 2,42,2 ANN for sensor 
‘S2’, and 2,42,2 ANN for sensor ‘S3’ were used to train and 

Simulated Vs Actual Max Strain 

simulate the three sensors. The output layer has 2 neurons, 
because the network was trained to the minimum and 
maximum strain values. The transfer functions of the input 
and output layers are ‘TANSIC’ and ‘PURELI” 
respectively. The networks were trained using Levenberg- 
Marquardt backpropagation training algorithm to the desired 
mean square error of le-5. For all the three networks, 94 
vectors were used for training and 9 for testing the trained 
network. 

Figures 7, 8 and 9 show the simulation results for the 
sensor ‘SI’, ‘S2’ and ‘S3’ respectively. 

Simulated Vs Actual Min Strain 

Simulated Vs Actual Max Strain Simulated Vs Actual Min Strain 

Test Samples 

~- 

Test Sampler 

Test Sampler 

i 
I . 7 

I 
Test Sampler 1 

/ I  
Figure I: Simulation results for maximum and minimum strain for sensor ‘SI’. The maximum absolute error for maximum and 

minimum strain is 15% and 60% respectively. 
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Simulated Vs Actual Max Strain 
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Figure 9: Simulation results for maximum and minimum strain for sensor ‘S3’. The maximum absolute error for maximum and 
minimum strain is 15.8% and 9.27% respectively. 

B. Training on Average Strain Value. 

A total of three neural networks were implemented, one 
for each sensor. The networks varied in the architecture, 
owing to the difference in their placement, resulting in a 
different mapping function. For all the three networks, the 
input and output data was normalized and scaled between -1 
and 1. A 2,30,1 ANN for sensor ‘SI’, 2,30,1 ANN for sensor 
‘S2’, and 2,36,1 ANN for sensor ‘S3’ were used to train and 
simulate the three sensors. The output layer has 1 neuron, 
because the network was trained to the average value. The 
transfer functions of the input and output layers are 
‘TANSIG’ and ‘PURELI” respectively. The networks were 
trained using Levenberg-Marquardt backpropagation training 
algorithm to the desired mean square error of le-5. For all 
the three networks, 94 vectors were used for training and 9 
for testing the trained network. 

Figures IO,  I I and 12 show the simulation results for the 
sensor ‘SI’, ‘S2’ and ‘S3’  respectively. 

Simulated Vs Actual Average Strain 

Simulated Vs Actual Average Strain 

-1.5 i- I 
Tee Samples 

Figure 11 :  Simulation results for average strain for sensor 
‘ S 2 ’ .  The maximum absolute error for strain is 6.82% 
respectively. 

Simulated Vs Actual Average Strain 
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Figure 12: Simulation results for average strain for sensor 
‘S3’. The maximum absolute error for strain is 6.34% 
respectively Figure 1 0  Simulation results for average strain for sensor 

‘SI’. The maximum absolute error for strain is 38.1% 
respectively. 
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[IS]. M. R. Saych, R. Viswanathan, and S.K. Dhali. “Ncural Nctworks for 
Smart Struchlrcs with Fibcr Optic Scnsors”, Proeccdings of 
OE/Midwesr: 1990, Pruc. SPIE. 1396. 417.429 (1990). 

v CONCLUSION AND FUTURE WORK. 

The strains at the three different locations, on the surface 
of a composite wing, were modeled to the varying parameters 
of air speed and angle-of-attack, Senor locations on the wing 
were chosen near the wing root where the strain is largest. 
The result obtained provides a strong foundation to the 
development of a system that will help in the prediction of 
stall and thereby avoid serious consequences arising from it. 
Future work will look into simulating stall condition and 
testing the trained networks to predict the stall. Online 
training of the networks to time varying input parameters will 
be investigated. Improvements in the measurement of angle- 
of-attack and airspeed could improve the system accuracy. 
Also, optimal sensor locations will be found, using 
techniques like Finite Element Analysis (FEA), to maximize 
performance; as each strain point is modeled using a different 
architecture of the neural network. 

VI REFERENCES 

[ I ] .  J. Edmonds, and G. A. Hickman , “Damagc Dctcction and 
ldcntitication in Compositc Aircraft Componcnts,” IEEE Aerospace 
Conference Proceedings, 2000, Vol. 6 ,2000 .  pp. 73 -77 

[Z]. E. Udd. “Fibcr Optic Smart StNcNrcs,” Proceedings o/rhe IEEE, 84 
(6), 884-894 (1996) 

131. W. B. Spillman Jr., “Sensing and Processing for Smart Structurcs.” 
ProLeed,ngsuftheIEEE, 84 (1),68-77(1996). 

[4]. V. Rao. R. Damlc, “ldcntitication and Control of Smart Stmcturcs 
using Neural Nctworks.” Proceedings of the 33” IEEE Confirence on 
DecisianondControl, I, 91-96 (1994) 

[SI. P. Tsau, and M. H. H. Shcn. “Structural Damagc Dctcctian and 
ldcntification Using Ncural Nctworks.” AIAA Journal, 32 ( I ) ,  176-183 
(1994). 
U. Ceravolo. A. Dc Stefano. and D. Sabia. “Hierarchical usc of Neural 161. 

L .  

Tcchniqucs is  SlNcNral Damagc Rccagnition.” Smart Malerials and 
Slrcrures, 4.270-280 (1995). 

171. K. A. Murphy, M. F. Gunthcr, A. M. Vcngsarkar and R. 0. Claus, . .  . .  
“Fabry-Pcrot Fibcr Oplie Scnsors in Full-Sdc Fatigue Testing on an 
F-I5 AircraR,”Ap~liedOprics, 31. pp. 431433 (1992). 

[E]. K. F. Halc, “An Optical-fibcr Fatiguc Crackdctcction and Monitoring 
Systcm,”Smort Molerials ondSlmclures, 2, 156-161 (1992). 

[91. S. M. Yang. and J. A Jcng, “Vibration Control of a Compositc Plate 
with Embcddcd Optical Scnsar and Piczoclcctric Acluatar.”Journal of 
lnrelligent MoteriolSyslems andStrucrure, 8,393-9 (1997). 

[IO]. S. E. Walkins, G. W. Sandcrs. F. Akhavan, and K. Chandrashckhara, 
“Modal Analysis using Fibcr Optic Sensors and Ncural Ncworks for 
Prediction of Composite Beam Dclaminatian,” Smml Maleriols and 
sInlct”res, I I, 489495 (2002). 

[Ill. R. Dua, S .  E. Watkins, D. C. Wunsch, K. Chandrashckhara, and F. 
Akhavan, ”Dctcction and Classification of Impact-Induced Damagc in 
Composite Plates using Ncural Nctworks.” INNS-IEEE International 
Joint Conference on Neural NemoncS. (Mount Royal. NJ: International 
Ncural Nctwork Soeicty) (Warhingron DC. Jury 2001) p 5 1. 

[IZ]. R. Ganguli. 1. Chopra, and D. 1. Haas, “Hclicopter Rotor System Fault 
Detection using Physics-Bascd Modcl and Ncural Nctworks,” AIAA 
Journal. 36, 1078-1086 (1998). 

1131. M.T. Hagan, H.B. Dcmuth. M. Bcalc, Ncural Nctwork Design (PWS 
Publishing Company, Boston), 1996 

[14]. A. Lunia, K. M. Isaac, K. Chandrashekhara. and S. E. Watkins, 
“Aerodynamic Tcsting of a Smart Composite Wing using Fibcraptic 
Strain Sensing and Ncural Networks,” Smart MoreriaLF and Strchrres, 
9.767-713 (2000). 

2672 


	Intelligent Strain Sensing on a Smart Composite Wing using Extrinsic Fabry-Perot Interferometric Sensors and Neural Networks
	Recommended Citation

	Intelligent strain sensing on a smart composite wing using extrinsic Fabry-Perot interferometric sensors and neural networks

