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A Variable Partitioning Strategy for the Multirate
Method in Power Systems

Jingjia Chen, Student Member, IEEE, and Mariesa L. Crow, Senior Member, IEEE

Abstract—An application of the multirate method to differential
and algebraic equations (DAEs) is discussed in this paper. Based on
the specific formulation of the power systems algebraic equations,
an effective algebraic variable partitioning strategy is developed
and implemented. The application of the partitioning strategy to
an example power system provides validation of the proposed par-
titioning strategy in terms of speed-up and accuracy.

Index Terms—Differential and algebraic equations (DAEs), dy-
namic security assessment, multirate method, numerical integra-
tion, power systems simulation.

I. INTRODUCTION

T IME domain simulation is a crucial application for the dy-
namic security assessment of power systems. The compu-

tational complexity of time domain simulation has kept it from
being widely used in online decision making. If, for example, a
transient stability analysis could be run in real-time, then power
system operators could implement online control to avoid cas-
cading failures. The time domain simulation tool could assist
the operator with proactive measures to limit the extent of the
incident, which could significantly improve power system reli-
ability [1].

The comprehensive dynamic simulation of a power system
involves time scales that ranges from seconds to minutes to
even hours; therefore, it is necessary to combine short-term and
long-term analysis in a single program [2]. In recent years, con-
siderable effort has been focused in this direction [3]–[5]. Tradi-
tional power system simulation methods focus on fixed or vari-
able step methods which are suitable for the simulation of sys-
tems that exhibit infrequent fast decaying transients. When inte-
grating systems of differential equations whose component dy-
namics persist at different time scales, it is preferable to avoid
unnecessary calculations on slowly changing solution compo-
nents.

For power systems, the existence of power-electronic-based
devices, such as FACTS and HVDC components, and dynamic
loads, such as induction motors, increases the range of the time
scales. In typical transients, only a small fraction of the vari-
ables in the system exhibit fast dynamics; therefore, it is ineffi-
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cient to simulate the entire power system with a small integra-
tion time step when most variables react slowly and accuracy
constraints can be easily satisfied with a larger step size. There-
fore, when there are sustained mid- to high-frequency dynamics
in the system, conventional time domain simulation methods are
inefficient.

Multirate methods were first proposed by Gear [6]. The mul-
tirate method is an integration method typically applied to ordi-
nary differential equations (ODEs). Multirate methods are best
suited for systems with widely ranging time response behavior.
The basic principle of multirate methods is the integration of dif-
ferent variables with different step sizes which are necessary and
sufficient for the accuracy required. The coupling between the
slow and fast variables is realized by interpolation and extrapo-
lation. Since there is no need to integrate the whole system with
a small step size in the multirate method, considerable compu-
tational speed-up can be achieved, especially for large systems
with very few fast variables.

Multirate methods have been applied to electric circuit
analysis in [7]. The application of multirate methods to power
system dynamics was first introduced in [8] and further devel-
oped in [9]. More recently, multirate methods have been applied
to power electronics-based systems [10]. The multirate method
has also been applied to mechanical systems [11], which also
featured DAEs.

The multirate method works most effectively on systems that
are properly partitioned into fast and slow subsystems. In [10],
high speed-ups were obtained, but the power electronics-based
system lent itself to easy partitioning. Several partitioning
strategies have been proposed for ODE systems based on the
rate of change of the state variables [9]. The local truncation
error of the multirate method is discussed in [12]. Partitioning
for DAE systems is more complex, since the algebraic variables
do not have an inherent rate of change associated with them.
Good partitioning strategies for DAE system multirate methods
do not exist. A poor partitioning of the algebraic variables can
adversely affect both computational speed and accuracy of the
method.

In this paper, a partitioning strategy for the application of the
multirate method to power system DAEs is presented. Since in
power systems there are far more algebraic variables (mostly
voltage angles and magnitudes) than state variables (mostly gen-
erators or other dynamics components), a proper algebraic vari-
able partitioning is critical for significant speed-up and to main-
tain numerical accuracy. Based on the analysis of the specific
form of the power system algebraic equations, an effective al-
gebraic variable partitioning strategy is developed and imple-
mented. The application of the proposed partitioning strategy

0885-8950/$25.00 © 2008 IEEE
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Fig. 1. Multirate implementation.

to an example power system is used to compare computational
speed and efficiency.

II. MULTIRATE METHOD

In the multirate method, different integration steps are used
for the fast variables and slow variables. A micro step is
used for the fast variables and a macro step is used for the
slow variables. If the ratio of the macro step to the micro step is
an integer , then .

In a linear system, it is possible to find a matrix which re-
lates to for both fast and slow variables [9]. This
type of closed form relationship is not possible in a nonlinear
system. Therefore, in the nonlinear case, iterative predictor-cor-
rector methods are required to solve the nonlinear system.

At each macro step, the slow variables are first predicted for
the next macro step and then interpolated to provide approxi-
mations for each micro step interval. Typically, a linear inter-
polation is used, but other interpolations may also be used. The
choice of interpolation method affects both computational speed
and numerical accuracy. Once the slow variables are interpo-
lated at each fast interval, the fast variables can be found by
numerical integration at each micro step using the interpolated
slow variables as needed. The entire system is solved at each
macro step. The updated values of the slow variables are com-
pared to the predicted values. If they are within the specified tol-
erance, the time step is advanced to the next time interval; oth-
erwise, the step is repeated using the updated values to provide
better interpolated values. This process is illustrated in Fig. 1.

Note that the coupling from the fast subsystem to the slow
subsystem is necessarily weak. From a physical standpoint, if
the coupling were not weak, then the fast dynamics would be
apparent in the slow subsystem; but, by definition, the slow sub-
system does not have any fast dynamics—therefore, the cou-
pling from the fast to the slow is weak. The converse, however,
does not have to hold: the coupling from the slow to the fast may
be either weak or strong.

III. ERROR AND SELECTION OF STEP RATIO

There are many classes of methods such as Adams Bash-
forth, Adams Moulton, BDF, and Gear’s methods that fall in
the family of multistep methods [6]. Any of these methods can
be used as the underlying integration algorithm for a multi-
rate method. In this paper, the well-known second-order Adams

Bashforth method, also known as the trapezoidal method, is
used. The trapezoidal method is given by

(1)

Consider a system of differential equations that have been par-
titioned into fast and slow subsystems as follows:

(2)

(3)

where denotes the vector of fast variables and
denotes the vector of slow variables. In the multirate method, the
fast subsystem will be integrated with timestep

(4)

for and and are interpolated values.
The slow subsystem is integrated with timestep

(5)

For multistep methods, a generalized expression for the local
truncation error has been developed [13]. The local truncation
error for the trapezoidal method is given by

(6)

Therefore, the error in at time is

(7)

and the error in at time is

(8)

During implementation, the ratio should be chosen such
that the level of error in both and are on the same order. Note
that with a single rate method, the error in the slow subsystem
would be much smaller than the error in the fast subsystem. The
advantage of the multirate method is that much larger stepsizes
in the slow subsystem can be taken for the same level of error.
Therefore, if the interpolation error is neglected, then can be
chosen such that

(9)

This is an easily implementable method of determining and
adaptively changing it throughout the simulation. The required
derivatives for the LTE can be approximated using backward’s
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difference methods [13]

(10)

(11)

(12)

(13)

(14)

(15)

If the integration timestep is fixed, then (15) can be simplified
to

(16)

This approximation can be obtained from previously calculated
values for , and without significant additional
computation.

Multistep methods are fit to a polynomial of degree and
are exact if the multistep coefficients are selected correctly [13].
Therefore, if the interpolation method is also polynomial of de-
gree , then the interpolated values will match the integration
values and the interpolation error will be zero. Therefore, if a
lower order interpolation is chosen (such as a linear interpola-
tion which is a degree 1 polynomial), the interpolation error is
bounded and small. Furthermore, (9) yields a real value for .
If the ratio is chosen as the lower integer value , then
this is a conservative value and the interpolation errors can be
safely neglected.

IV. MULTIRATE METHOD APPLICATIONS TO DAES

The multirate method has been widely applied to system of
ODEs but has only infrequently been used for DAE systems.
In this section, the multirate method is fully extended to DAEs,
and the partitioning of the algebraic variables will be discussed
in the next section.

Consider the two-time-scale initial value problem of non-
linear DAEs as follows:

(17)

(18)

(19)

where and . In this
work, it is assumed that is continuously differentiable
with respect to . In power systems, the variable set con-
tains the dynamic states that correspond to generators, FACTS
devices, dynamic loads, etc. The variable set contains the net-
work states that correspond to bus voltages and angles.

The algebraic variables can be divided into two groups as-
sociated with the fast and slow variables. Note, however, that
algebraic variables are neither “fast” nor “slow” since they do
not exhibit independent dynamics but are simply called fast or
slow by how they are partitioned. Rather than considering alge-
braic equations partitions as segregating the algebraic states into
“fast” and “slow” groups, consider the partitions as dictating
how often the algebraic states must be updated to sufficiently
propagate their information to the system. A “slow” algebraic
variable is updated only when the slow states are updated—a
“fast” algebraic variable is updated when the fast states are up-
dated. The goal of the partitioning is to find the smallest set of
algebraic states that require frequent updating to meet the accu-
racy requirements of the simulation.

The fast algebraic variables and the slow algebraic vari-
ables are given by

(20)

where and .
Therefore, the original DAE system can be written as

(21)

(22)

(23)

(24)

This leads to the following algorithm.
Multirate Algorithm

1) Predict the slow state variables at time . In this paper,
a first-order predictor is used, but higher-order predictors
may also be used

(25)

where the superscript refers to the predicted value.
2) Predict the slow algebraic variables at time

(26)

This is a linear extrapolation for .
3) Integrate the fast components for

(27)

(28)

with integration time step , where and
are the interpolated values of and at . For linear
interpolation

(29)

and

(30)

Note that since (27) and (28) are nonlinear functions, if
an implicit numerical integration method is used, then the
discretized equation must be solved iteratively using a
Newton-type nonlinear solver.
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4) Integrate both fast and slow components at the macro time
step (which is the same time as the final micro step). Note
that the fast subsystem will be integrated with integration
time step and the slow subsystem will be integrated with
time step .

5) Compare the calculated slow value with the predicted
value. If , set ; otherwise,
set .

6) Go to step 1.
This algorithm is described using a fixed and , but in prac-
tical implementation, both can vary according to user specifica-
tions.

V. ALGEBRAIC VARIABLE PARTITIONING STRATEGY

There are two types of variables in DAEs: state variables
and algebraic variables. In power systems, the state variables
are from the differential equations, which are usually generator
models, controllers, or dynamic loads. The algebraic variables
are usually the bus voltage magnitude and phase angles, but
they may also include other system variables, depending on the
models and components used.

Typically, a power system has a large number of buses, and
the number of network buses far exceeds the number of gen-
erator buses; therefore, there will be a greater number of alge-
braic variables than state variables. Since the speed-up provided
by the multirate method is directly related to the ratio of the
number of fast variables to the number of slow variables, the
greater the number of slow variables (including algebraic vari-
ables), the greater the speed-up.

The local truncation error (LTE) is typically used as a mea-
sure by which the state variables are partitioned into slow and
fast subsets [8]. A large LTE indicates that the state variable
is varying rapidly and is therefore a fast variable. Algebraic
variables, however, do not have an LTE associated with them;
therefore, there is no straightforward indicator which predicts
whether or not they should be taken as fast, or slow, variables.

The objective of this section is to find a method to separate
the algebraic variables into two groups: the “fast” algebraic vari-
ables, which require an update every micro integration step, and
the “slow” algebraic variables, which require an update every
macro integration step.

Power system dynamics are in the form (17)–(19). To simu-
late the system, the differential equations are discretized using
the chosen integration method. Using the trapezoidal integration
method, which is commonly adopted in power system simula-
tion, the discretized system can be written as

where is the integration time step and and are the con-
verged values from the previous time step. The original DAEs
can then be transformed into a set of nonlinear algebraic equa-
tions

(31)

(32)

where

Since these nonlinear equations are implicit in and ,
they must be solved numerically using Newton’s method to it-
eratively solve the nonlinear algebraic equations

where is the Jacobian of (31) and (32) and is the
Newton iteration index. The Newton iteration stops when

, where is a user-defined tolerance.
To develop a partitioning scheme for the algebraic variables

of DAEs, the algebraic equations are used. Consider first that
not all algebraic equations converge simultaneously. This can be
verified by comparing the power mismatches of different buses
at each iteration. Typically: 1) some mismatches have already
converged; 2) most mismatches are decaying fast enough to con-
verge with a constant Jacobian within a few iterations; and 3) a
few identifiable mismatches will converge fast only if the corre-
sponding part (rows) of the Jacobian are updated [14]. There is
no need to update the entire Jacobian at every step. This quality
is frequently referred to as numerical latency. By applying the
multirate method, only a subset of the algebraic variables are
updated and, consequently, the related Jacobian elements. It can
be therefore concluded that fast-changing variables will result in
larger mismatch components.

Thus, it is reasonable to attempt to partition the algebraic vari-
ables by considering the bus mismatches. The proposed alge-
braic variable partitioning strategy is as follows.

At time
1) Calculate the power mismatches of the second Newton it-

eration: .
2) Calculate

(33)

(34)

3) Calculate

4) If or , then
bus is regarded as “fast,” and the bus voltage and angle
are added as fast algebraic variables.

5) Integrate the differential equations with the “fast” algebraic
constraint(s) until .

6) Integrate both fast and slow steps.
7) , go to step 1.

The constant is a user-defined non-negative constant and
varies by system. Initial analyses for partitioning may simply
assume that and refine it adaptively for improved perfor-
mance. The larger is chosen, the fewer states will be consid-
ered as “fast.” A coarse “rule of thumb” is to choose between
0.05 and 0.1.
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While the formulation presented is developed using power
mismatch equations, the method is also valid for current injec-
tion formulations as well since it identifies fast buses and not
individual variables.

VI. IMPLEMENTATION ISSUES

The primary focus of the multirate algorithm is to develop a
numerical algorithm which is superior in computational speed
to traditional methods. Thus, it is imperative that all steps
throughout the implementation of the algorithm be as computa-
tionally efficient as possible, without destroying the underlying
convergence rate. There are several specific implementation
issues that must be addressed to effectively utilize the multirate
method.

A. Adaptive Partitioning

It is possible, and even desirable, to modify the fast and slow
partitions adaptively throughout the simulation interval. As dif-
ferent states become active or decay, they should be moved up or
down in the partitions. The basic adaptive partitioning strategy is
to move any variables which have significantly decayed in com-
parison to the other variables to the slow partition and move
any variables which exhibit continued rapid or fast behavior to
the fast partition. Thus, the strategy must encompass a means by
which the relative behavior of each state can be assessed within
the context of the larger system response. The following simple
approach can be used to adjust the states in the fast and slow
partitions.

1) At the conclusion of each macro time step, calculate the
following:

where and are the number of states in the FAST and
SLOW partitions,respectively.

2) Move state from SLOW to FAST if

and

3) Move state from FAST to SLOW if

and

The value is the geometric mean of the LTEs
of the FAST (SLOW) partition. The values
and are the normalized maximum and minimum
LTEs in the FAST (SLOW) partition. The first conditions in

steps 2 and 3 of the algorithm test for a spread of time-scale
behavior within the group. The second condition attempts to
determine if there are distinct separations in the LTEs of the
states. If there is a continuum of LTEs, then it can be argued that
no states should be moved up or down, but if distinct gaps exist,
then states should be shuffled from one partition to another.

Lastly, a new can be calculated from

which is consistent with (9).

B. Sparsity

At each macro step, the entire system is solved; therefore, the
Jacobian sparsity is unaffected. For the multirate method to be
computationally effective, the premise is that the number of fast
variables is small compared to the whole system; therefore, the
fast system Jacobian will also be small and relatively full (not
sparse); therefore, we did not attempt to use sparse techniques
on the fast/small subsystem, only the larger full system.

C. Newton–Raphson Iterations

Fig. 1 implies that at each micro-step, Newton–Raphson iter-
ations are performed until the fast equations are solved and then
the solution is advanced to the next time step, where the process
repeats. This continues until the macro-step is reached. If the
slow states have not yet converged, the macro-step is repeated.
Strict adherence to this approach requires numerous micro-step
iterations, even in the early macro-step loops when the guess
at is quite coarse. Recall, however, that during the first
few macro-step iterations, the slow variables may not be very
accurate; thus, it is not computationally efficient to force the
fast variables to within the convergence tolerance. Similarly, it is
computationally inefficient to drive the slow subsystem to con-
vergence at the macro-step if the fast system is not accurate.

A more efficient approach is to perform only one
Newton–Raphson iteration at each micro-step and then again at
the macro-step. If the fast and slow subsystems both converge
with quadratic convergence (which they will if an accurate
predictor is used), then both subsystems will converge simulta-
neously within two to three Newton–Raphson iterations. This
approach eliminates the computation of to
fast subsystem solutions and two to six slow subsystem solu-
tions (depending on whether two or three Newtwon–Raphson
iterations would normally be required) and can significantly
reduce the computational effort required. The accuracy is
maintained since all variables, including the fast variables,
must converge within the specified tolerance throughout the
whole macro-step interval.

VII. POWER SYSTEM EXAMPLE

To illustrate the efficacy of the multirate method and to ex-
plore the impact of various partitionings, the IEEE 118-bus test
system shown in Fig. 2 will be used. The system was modified
to include a STATCOM at bus 34, and induction motors at buses
19, 24, and 35. The system dynamics are due to a three-phase
fault at bus 15 applied shortly after 0 s and cleared at 0.05 s. The
voltage at bus 34 with and without STATCOM control is shown
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Fig. 2. IEEE 118-bus test system.

Fig. 3. Controlled versus uncontrolled voltage at bus 34.

in Fig. 3. While a discussion of the control approach is not the
purpose of this paper, it can be seen that the control works effec-
tively to hold the bus voltage near the pre-fault value and rapidly
damps system oscillations. The numerical results presented in
this paper are all taken from the controlled STATCOM case.

The eigenvalues of the linearized system are shown in Fig. 4.
The micro time step for the simulation is chosen to be
ms. From Fig. 4, the largest angular frequency is 1000 rad/s,
which is equivalent to 160 cycles/s . For numerical
accuracy, each cycle requires 32 sample points to be sufficiently
rendered; thus, the best micro step size is

s.
The local truncation error for the trapezoidal integration

method of the STATCOM and induction motors calculated
from (6) and (15) is shown in Fig. 5. From Figs. 4 and 5, it is
apparent that the STATCOM is the “fastest” state—especially
after the fault is applied and then removed, but the fast dy-
namics decay rapidly. After about 0.1 s, the dynamics of the

Fig. 4. System eigenvalues.

induction motors begin to dominate with induction motors 19
and 35 having a significant effect. Induction motor 24 has the
least effect. This figure also highlights the effect of “fast” but
not excited state variables. Even though a state variable may be
intrinsically fast, unless it is excited, its LTE will remain small,
and it will be considered a “slow” state.

From (9) and Fig. 5, the ratio is related to the ratio of the
LTE of the fastest state to the slowest state. Note that the -axis
in Fig. 5 is log-scale. Taking the ratio of the various LTEs over
time indicates that the LTE ratio is greater than or equal to 10;
therefore, the ratio of slow timestep to fast timestep should be
less than or equal to 10, or to reflect this time re-
sponse separation. Fig. 6 shows the error versus CPU time as
the timestep ratio is increased. The error is calculated as

(35)
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Fig. 5. Local truncation error.

Fig. 6. Error versus CPU for different timestep ratios.

where is the total number of dynamic and algebraic states,
is the timestep ratio, is the fixed step numerical solution,
is the numerical solution for ratio , and is the mean
value of over . Note that the speed-up levels off
as approaches 10. This is predicted from the consideration of
the local truncation errors. A comparison of error and CPU time
for the multirate versus non-multirate is given in Table I. The
fast grouping in the multirate case are: [STATCOM, IM1, IM3,
buses 14, 15, 19, 22, 30, 33–40]. In the non-multirate case, the
timestep across all states is the same. For example, consider the
second row of the table. It indicates that for , the timestep
for fast states is , but for the remaining states, the timestep is

. The combination results in a CPU of 697 and an error of
197. For the non-multirate case, all states use a timestep of .
For this case, the CPU is 574 with an error of 581. So while
the non-multirate is slightly faster (a speed-up ratio of 1.7 for
non-multirate versus as speed up of 1.4 for the multirate), the
multirate method has nearly three times better accuracy. This
trend is continued until for a ratio of 8, the speed up difference
is 5.60 (non-multirate) to 2.98 (multirate) while the multirate
method has better than an order of magnitude better accuracy
(12.98 to be exact). In the trade-off between speed and accuracy,
the multirate method yields far better results than the non-multi-
rate integration. Note that in this paper, the CPU measure is unit-
less since different processors will have different clock times.

TABLE I
CPU AND ERROR FOR NON-MULTIRATE AND MULTIRATE SIMULATION

Fig. 7. CPU versus error for various fast partitionings.

The CPU results presented are intended to provide a comparison
between methods and should not be considered actual times.

To illustrate the impact of various algebraic partitionings,
Fig. 7 compares CPU time versus error as the algebraic states
are successively added to the fast partition according to the al-
gebraic partitioning scheme presented earlier. The numbers in
the brackets indicate the number of the bus variable suc-
cessively added to the fast partition. Note that as the fast buses
are successively increased, the error decreases while the CPU
time increases. It is not surprising that the first three buses iden-
tified are the buses adjacent to induction machines 19 and 35
and the STATCOM (at bus 34). Successive buses “fill in” the
surrounding area including the tie lines to other regions of the
system (buses 38, 40, 22, and 30). However, after the tie lines are
included, the error tends to saturate, implying that the fast dy-
namics do not penetrate substantially into the remaining system.

Lastly, while the numerical error may seem quite large in ab-
solute value, recall that it is the accumulated error over all states
over the entire simulation interval. To provide a reference frame
for the size of the error, consider the exact (non-multirate) wave-
form versus the multirate waveform in Fig. 8. At full
scale, the waveforms appear to be identical. It is only in the
“zoomed” case at the point where the fault is cleared (a point
of rapid change) that any significant error is apparent. There-
fore, even for fairly large absolute errors values, the waveforms
are, in fact, quite accurate.

VIII. CONCLUSION

In this paper, an application of the multirate method to DAEs
for power systems is presented. The primary contributions of
the paper are:
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Fig. 8. Exact versus multirate �� � �� waveform.

• a method of selecting the ratio is developed;
• an algebraic variable partition strategy is developed and

implemented;
• the DAE multirate method is applied to the IEEE 118-bus

system with promising results.
Future work includes a rigorous error analysis for the alge-

braic states, including the effect of interpolation.

APPENDIX

The STATCOM Model [15]

where is the injected STATCOM currents, is the
voltage across the capacitor, is the switching losses, and

is the coupling transformer resistance and inductance.
The STATCOM bus voltage is , and the power balance

equations are
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