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MODELING OF DIELECTRIC MIXTURES
CONTAINING CONDUCTING INCLUSIONS WITH
STATISTICALLY DISTRIBUTED ASPECT RATIO

M. Y. Koledintseva, S. K. R. Chandra, R. E. DuBroff
and R. W. Schwartz

University of Missouri-Rolla
1870 Miner Circle, Rolla, Missouri, 65409-0040, U.S.A.

Abstract—An analytical model of composites made of a dielectric
base and randomly oriented metal inclusions in the form of nanorods
is presented. This model is based on the generalized Maxwell Garnett
(MG) mixing rule. In this model, the nanorod particles are modeled
as prolate spheroids with a statistically normal distribution of their
aspect ratios. It is shown that parameters of the distribution laws affect
the frequency characteristics of the composites both at microwave and
optical frequencies. The results of computations are represented.

1. INTRODUCTION

The Maxwell Garnett mixing rule [1] is the most popular way for
homogenization of composites-intrinsically inhomogeneous mixtures of
two or more phases, one of which is typically a dielectric base, or host,
material. This is a classical model that has been successfully applied
for electromagnetic homogenization of different types of mixtures: with
three- and two-dimensional random disposition of inclusions, as well as
for ordered structures, such as isotropic and anisotropic metamaterials,
including those with a negative refraction index [2].

The Maxwell Garnett model applied to multiphase mixtures
describes the effective relative permittivity as [3–5],

εef = εb +

1
3

n∑
i=1

fi (εi − εb)
3∑

k=1

εb
εb +Nik (εi − εb)

1 − 1
3

n∑
i=1

fi (εi − εb)
3∑

k=1

Nik

εb +Nik (εi − εb)

, (1)
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where εb and εi are the relative permittivities of the base dielectric
and inclusions of the the i-th type, respectively; fi is the volume
fraction occupied by the inclusions of the i-th type; Nik are the
depolarization factors of the i-th type of inclusions, and the index
k = 1, 2, 3 corresponds to x, y, and z Cartesian coordinates. In general,
the permittivities of the base material and inclusions may be frequency-
dependent.

The MG formulation typically describes sparse mixtures, where
there is no multiple scattering on the dipoles of inclusions. The electric
field inside ellipsoidal inclusions is assumed to be static and uniform,
but the effective permittivity functions include depolarization factors.
Thus, if all the ellipsoids are of the same form for a single type of
inclusions, that is, having equal axial ratios, with axes A1,2,3 known,
then the depolarization factors are calculated as [2, 6, 7],

Ni1 =
∞∫
0

Ai1Ai2Ai3

2
(
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)3/2 ·
(
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)3/2 ·
(
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(2)

where index i stands for the depolarization factors of the ellipsoids of
i-th type, and indices 1, 2, and 3 correspond to the ellipsoid’s axes.
The sum of the depolarization factors satisfies the condition

Ni1 +Ni2 +Ni3 = 1. (3)

The table of depolarization factors for canonical spheroids (spheres,
disks, and cylinders) can be found in [4]. For spherical inclusions,
all three depolarization factors are equal (1/3), for the spheroidal
particles, two of the depolarization factors are equal. Equation (1)
allows that within the same composite material, particles can have
different depolarization factors. For nanorods considered as prolate
spheroids, an appropriate approximation for one of the depolarization
factors is Ni1 ≈ (1/a)2 ln(a) [8], while the two other depolarization
factors are Ni2 = Ni3 = (1 −Ni1)/2. Herein, a = l/d is the aspect
ratio of an inclusion of length l and diameter d. It should be mentioned
that any shape of an inclusion eventually can be approximated by an
ellipsoid of the closest effective dimensions [9].

However, in real mixtures it is almost impossible to have a uniform
aspect ratio for all inclusions. Technologically, there is always some
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statistical distribution of their sizes. This distribution is typically a
normal Gaussian distribution. This distribution should be included in
the MG formulation and in computations of frequency characteristics
of materials.

In a previous paper [5], we have shown that mixtures of randomly
oriented nanosize conducting particles at concentrations far below
the percolation threshold can still be treated using the MG mixing
rule at optical frequencies, but with some corrections. The dielectric
properties of the conducting inclusions are described by the complex
relative permittivity

εi(jω) = ε′i − jε′′i = ε′i − j
σe

ωε0
, (4)

the real part of which is much smaller than the imaginary part
(ε′i � σe/(ωε0)). In (4), σe is the bulk conductivity of inclusions.

In [5], subtle effects such as the skin effect in conducting inclusions,
the Drude frequency dependence of metals, the effect of the mean free
path in small-size conducting inclusions, as well as the dimensional
resonances, have been incorporated in the MG model. All these effects
have a substantial impact on the resulting absorbance characteristics
in the optical band. The statistical distribution of the aspect ratio of
the inclusions should also influence the optical characteristics of the
composites. Even if all the inclusions in the composite designed for
operation at optical frequencies have the same d.c. bulk conductivity,
the effective conductivity of inclusions with different aspect ratios is
different. This means there will be a statistical spread in the effective
conductivity of inclusions.

This paper describes a model incorporating the statistical
distribution of the inclusion’s aspect ratio. The statistical distribution
of initial bulk conductivity and angles of orientation are a topic for
further analysis.

The structure of the paper is the following. Section 2 describes
a mathematical model of the composite taking the abovementioned
statistical distribution and subtle frequency effects into account. The
results of calculations based on this model are presented and discussed
in Section 3. The conclusions are summarized in Section 4.

2. MATHEMATICAL MODEL

Let us consider the case when aspect ratio of inclusions is statistically
distributed in some range (amin, amax). Typically, the particles of
inclusions in mixtures are made of the same metal, e.g., silver, and the
conductivity of the latter may be assumed as more or less homogeneous
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throughout the conglomerate of particles, so we will not consider the
statistical distribution of bulk conductivity at this time.

The effective permittivity (1) can then be rewritten in the form

εef = εb +

1
3

amax∫
amin

ηiεbfi(a)
3∑

k=1

1
1 + ηiNik(a)

da

1 − 1
3

amax∫
amin

ηifi(a)
3∑

k=1

1
1 + ηiNik(a)

da

. (5)

In (5), the volume fraction of the i-th type inclusions fi(a) is calculated
as

fi(a) = nΣvi(a)p(a). (6)

The volume fraction of inclusions fi(a) is dimensionless and
proportional to the volume of inclusions vi(a) and the total
concentration of inclusions nΣ, defined as a number of inclusions per
unit volume of the mixture. In (6), p(a) is described by the Gaussian
distribution law with respect to the aspect ratio [10],

p(a) =
1√

2πσa

e
− (a−a0)2

2σ2
a , (7)

In (7), the mean value is a0, and the standard deviation for the values
of aspect ratio is σa. The volume of a cylindrical inclusion is

vi(a) =
π

4
ad3. (8)

The coefficient ηi in (5) is complex and frequency-dependent in the
general case, since it is defined as

ηi =
εi − εb
εb

= η′i + jη′′i . (9)

The limits of integration in (5) are chosen in a reasonable way for the
Gaussian distribution as

amin = a0 − 3σa;
amax = a0 + 3σa.

(10)

The coefficient ηi depends on the bulk conductivity of inclusions. If
the conductivity of an inclusion particle equals the bulk conductivity
(this is true when the size of an inclusion is much greater than the
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wave length), then the frequency dependence of the conductivity may
be neglected, and the coefficient is

ηi =
εi
εb

− 1 =
ε′i
εb

− j σe

ωε0εb
− 1. (11)

This is the case at microwave frequencies. However, at optical
frequencies, the conductivity of inclusions is frequency-dependent in
principle, since subtle frequency-dependent effects, such as skin effect,
Drude effect, as well as dimensional resonances in inclusions should be
taken into account [5]. Then, the total conductivity σΣ should replace
σe in (11), where

σΣ = σD + σskin + σres. (12)

In (12), σD is the Drude conductivity (see Eq. (12) in [5]), and σskin

is the corrected conductivity that includes both the skin effect in
conducting inclusions and the mean free path of electrons (see Eqs. (4)–
(8) in [5]).

σskin = σe ·
1 − j

∆
J1((1 + j)∆)
J0((1 + j)∆)

,

∆ =
d

2δskin
=
d

2

√
ωµaΛfreeσe

2
,

(13)

where J0 and J1 are the zero and first order Bessel functions of the
first kind, Λfree is the coefficient related to the mean free path of
electrons, and µa = µ0µr is the permeability of inclusions (if they are
non-magnetic, then µa = µ0 = 4π · 10−7 H/m). The conductivity σres

is the conductivity term accounting for the dimensional resonance in
the inclusion particles (see Eq. (23) in [5]),

σres =
4
π
·
l2ef
d2l

· fi(a)
Zin(a)

, (14)

where Zin(a) represents the complex input impedance of an equivalent
“dipole antenna”, corresponding to an inclusion (it is a function of an
aspect ratio), and lef is its effective dipole antenna length.

The total conductivity (12) is complex:

σΣ = σ′Σ + jσ′′Σ. (15)

The imaginary part, σ′′Σ, contributes to the real part of εi, and, hence,
to the real part of ηi. The real part σ′Σ affects the imaginary part of
εi, and, hence, the imaginary part of ηi.
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At microwave frequencies, the conductivity of inclusions can
be modeled as the bulk conductivity of the material of inclusions
without any frequency-dependent effects. At the same time, for
practical manufactured composites (e.g., carbon-filled composites), the
distribution of conductivity throughout the conglomerate of particles
might extend over a substantial range of conductivity values. In such
cases, the effective permittivity of the composite can be calculated
through a double Gaussian distribution including both aspect ratio
and d.c. bulk conductivity as

εef = εb +

1
3

amax∫
amin

σe max∫
σe min

ηi(σe)εbfi(a, σe)
3∑

k=1

1
1 + ηi(σe)Nik(a)

dσeda

1 − 1
3

amax∫
amin

σe max∫
σe min

ηi(σe)fi(a, σe)
3∑

k=1

Nik(a)
1 + ηi(σe)Nik(a)

dσeda

,

(16)
where ηi(σe) is a function of the bulk conductivity. The volume fraction
of the inclusions can be generalized to

fi(a, σe) = nΣvi(a)p(a, σe), (17)

and the probability density for the double normal distribution of two
statistically independent values, calculated according to [8], is

p(a, σe) =
1

2πσcondσa
e
− (σe−σe0)2

2σ2
cond

− (a−a0)2

2σ2
a , (18)

σcond is the standard deviation for the values of bulk conductivity σe,
and σe0 is the mean value.

3. RESULTS OF COMPUTATIONS

A Matlab program has been developed to calculate reflection and
transmission coefficients from a slab of composite material containing
metal particles (nanorods) with a statistical distribution of aspect
ratio. The program takes into account subtle frequency-dependent
effects at optical frequencies, described in [5]. Most of the results shown
take into account dimensional resonances in inclusions; however, a few
figures (e.g., Figure 2) do not — for comparison reasons.

For the following results, absorbance is defined as A =
log10(Ptransm/Pincident) [bels] and is plotted as a function of
wavelength.
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Figure 1. Absorbance of a composite with a Gaussian distribution
of aspect ratio and with homogeneous aspect ratio. Dimensional
resonances are taken into account.

Figure 1 shows that the absorbance curves obtained for inclusions
with a homogeneous aspect ratio of a0 = 50 (lighter curve) and for
inclusions having a very narrow distribution curve around a0 = 50
with a standard deviation of σa = 1 (dark curve) almost overlap.
This suggests that the results for a very narrow distribution of aspect
ratios converges to the result for a case of uniform aspect ratios,
as expected. In these calculations it was assumed that the mixture
contains silver inclusions in a dielectric base. As is mentioned in
[5], the frequency-independent permittivity εb = 2.2 can be a good
approximation for the PMMA (polymethylmethacrylate) base material
in the wave length range of interest. The concentration of Ag particles
(number of particles per cubic meter) is constant at 4.45 · 1019 m−3.
This means that the volumetric fraction of inclusions varies, depending
on their length and diameter.

Figure 2 shows the effect of including the dimensional resonances
into the electromagnetic model of a composite with Gaussian
distribution of the aspect ratio. The aspect ratio of Ag inclusions
is statistically distributed for both curves, so that the mean aspect
ratio is a0 = 50, and the standard deviation is σa = 10. The
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Figure 2. Absorbance for two cases: when dimensional resonances
are taken into account (solid line) and not taken into account (dashed
line).

dielectric base is non-dispersive with a relative permittivity of εb =
2.2. The concentration of Ag particles is 4.45 · 1019 m−3. Taking
dimensional resonance into account shifts the wavelength of the
maximum absorption to the longer wavelengths, and results in a higher
absorbance.

The effect of the mean aspect ratio, varying from a0 = 50 to
a0 = 100, on the absorbance, with a constant standard deviation
σa = 5 and the diameter of inclusions kept constant at 10 nm, is shown
in Figure 3. The higher the aspect ratio, the greater absorbance is, and
the relative width of the absorbance curve becomes narrower. In this
figure, the dimensional resonances in inclusions are taken into account.
There is also a noticeable shift of the maximum absorption peak with
the increase of the mean aspect ratio. For the curves in Figure 4, the
standard deviation is the same (σa = 10), and the diameter of the
inclusions is kept at 20 nm, that is, greater than in Figure 3, and this
results in higher maximum absorption than in Figure 3. However, the
peak absorption has moved to shorter wavelengths in comparison to
the results shown in Figure 3.

In Figure 5, the mean aspect ratio is kept the same for all
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Figure 3. The effect of the mean aspect ratio (at the standard
deviation σa = const = 5) on the absorbance of a composite with
Gaussian distribution of aspect ratio.
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Figure 4. The effect of the mean aspect ratio (at the standard
deviation σa = const = 10) on the absorbance of a composite with
a Gaussian distribution of aspect ratio.
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Figure 5. The effect of the standard deviation (at a0 = const = 50) on
the absorbance of a composite with a Gaussian distribution of aspect
ratio.

the graphs (a0 = 50), the diameter of inclusions is d = 10 nm,
and the standard deviation varies. As expected, when the Gaussian
distribution curve becomes wider, the width of the absorption curve
also increases. In these computations, the absorption peak moves
towards the longer wavelengths as σa increases. The widening of
the curves is asymmetrical. This probably is related to both the
increased skin-effect loss at lower frequencies in the thinner inclusions
(i.e., with higher aspect ratio) and dimensional resonances. In thicker
inclusions (with lower aspect ratio) the trend to the absorption at
shorter wavelengths should dominate, but skin-effect loss should be
less important.

As in the case of Figure 5, Figure 6 shows that a higher the
standard deviation corresponds to a wider absorption curve (a0 = 70,
d = 10). Because of the higher mean aspect ratio (a0), the absorption
peaks in Figure 6 are higher than in Figure 5.

Figure 7 demonstrates that even if the values of a0 and σa

are chosen to be identical for all the computations, the actual
absorption peak value and position with respect to the wavelength
depend on the fixed thickness of the inclusions, while the lengths
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Figure 6. The effect of the standard deviation (at a0 = const = 50) on
the absorbance of a composite with a Gaussian distribution of aspect
ratio.
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Figure 7. The effect of a diameter of inclusions on the absorbance
curve, when mean aspect of ratio a0 = const = 50 and a standard
deviation of σa = 25 remain the same.
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Figure 8. The effect of the dispersive (Debye) base material
parameters on the absorbance of a composite with a Gaussian
distribution of aspect ratio. The concentration of Ag particles is
constant at 4.45 · 1019 m−3.

are statistically distributed. The maximum absorption increases with
increasing inclusion diameter, since the corresponding volume fraction
of inclusions in the mixture increases — this is an obvious result. As for
the position of the absorption peak, when d < 10 nm, increasing d shifts
the absorbance peak to longer wavelengths. When d > 10 nm further
increases in d shift the absorption peak to the shorter wavelengths.
This effect might be explained by the combination of two tendencies.
Skin effect loss is high, when d is small and frequencies are low
(corresponding to longer wavelengths). At the same time, when d
is small, the mean value of the inclusion length l0, corresponding to
a0 = const, is also small, and the dimensional resonance shifts to the
higher frequencies. This agrees with the graphs in [5, Figure 6].

The effect of the dielectric base material parameters on the
absorption curve of the composite is shown in Figures 8 and 9. In
Figure 8, the base material is non-dispersive or following the Debye
dispersion law,

εb = ε∞ +
εs − ε∞
1 + jωτ

, (19)
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Figure 9. The effect of the base material parameters on the
absorbance of a composite with a Gaussian distribution of aspect
ratio.

with different parameters for the static permittivity εs, “optical limit”
permittivity ε∞, and the Debye relaxation constant τ . It is seen that,
depending on the parameters of the base material, the resulting curve
becomes wider or narrower, the peak of maximum absorption shifts,
and the maximum absorption level may increase or decrease. When εs
for the base material remains the same, but ε∞ increases, there is a
trend for the maximum absorption peak to shift to shorter wavelengths.
When εs increases (at the same ε∞), there is almost no shift of the
peak, but the peak absorption level increases. The increase of τ leads
to the shift of the curve to the shorter wavelengths, and the curve
becomes wider. However, the relative sensitivity of the curve to the
parameters of the dielectric base is not dramatic. Only when εs and
the corresponding difference (εs−ε∞) is high, will the absorption curve
change substantially.

Figure 9 shows absorbance curves for a non-dispersive base
material, a Debye material, and three base materials following the
Lorentzian frequency law,

εb = ε∞ +
(εs − ε∞)2ω2

p

ω2
0 − ω2 + 2jωδ

. (20)
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For dielectrics, ωp = ω0, that is, the plasma and resonance angular
frequencies coincide. The parameter (2δ) is the width of the resonance
curve at the half magnitude (or −3 dB) level from the maximum. At
the same εs and ε∞, the increase of δ for the Lorentzian dependence
leads to the widening of the resultant absorption curve and a decrease
in the maximum absorption. When ω0 increases, the absorption peak
shifts to the shorter wavelengths. These results are quite expected
from the material Q-factor point of view [11].

Figure 10 demonstrates the difference between the absorbance
curves obtained when the inclusions are statistically distributed (light
solid curve) and statistically uniform (dark dashed line). The base
material in each case is the same narrowband Lorentzian. Statistical
distribution of the aspect ratio of inclusions makes the absorption
curve wider, while the peak value might slightly increase. To form the
absorbance curve with more abrupt slopes, it is important to assure
that all the inclusions are almost of the same size.
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Figure 10. Comparison of absorbance curves in presence of a
Lorenztian base material for composites with a statistically distributed
and a uniform aspect ratio of inclusions.
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4. CONCLUSION

An electromagnetic model for a composite material containing
nanorods with statistically distributed aspect ratios has been
considered. The model is based on the generalized Maxwell Garnett
mixing rule for multiphase mixtures. Subtle frequency effects at optical
wavelengths are taken into account. The results of computations
show that parameters of the distribution law substantially affect the
frequency characteristics of the composites at optical frequencies, and
it is possible to control the form of the absorbance curve.
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